1
|
Wan X, Zhang Y, Wan Y, Xiong M, Xie A, Liang Y, Wan H. A Multifunctional Biomimetic Nanoplatform for Dual Tumor Targeting-Assisted Multimodal Therapy of Colon Cancer. ACS NANO 2024; 18:26666-26689. [PMID: 39300799 DOI: 10.1021/acsnano.4c05773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The biomimetic nanoparticles (NPs) possessing abilities of tumor targeting and multimodal therapy show great potential for efficient combat of colon cancer. Herein, we developed a multifunctional biomimetic nanoplatform (Fe3O4@PDA@CaCO3-ICG@CM) based on CaCO3-modified magnetic polydopamine (PDA) loaded with indocyanine green (ICG), which was encapsulated by a mouse lymphoma cell (EL4) membrane (CM) expressing functional proteins (i.e., lymphocyte function-associated antigen 1, LFA-1; transforming growth factor-β receptor, TGF-βR; programmed cell death protein 1, PD-1; and factor related apoptosis ligand, FasL). Under magnetic attraction and LFA-1/PD-1-mediated endocytosis, Fe3O4@PDA@CaCO3-ICG@CM efficiently targeted CT26 colon tumor cells. The released calcium ion (Ca2+) from the NPs triggered by acidic tumor microenvironment, the enhanced photothermal effect contributed by the combination of PDA and ICG, and FasL's direct killing effect together induced tumor cells apoptosis. Moreover, the apoptosis of CT26 cells induced immunogenic cell death (ICD) to promote the maturation of dendritic cells (DCs) to activate CD4+/CD8+ T cells, thereby fighting against tumor cells, which could further be boosted by programmed death-ligand 1 (PD-L1) blockage and transforming growth factor-β (TGF-β) scavenging by Fe3O4@PDA@CaCO3-ICG@CM. As a result, in vivo satisfactory therapeutic effect was observed for CT26 tumor bearing-mice treated with Fe3O4@PDA@CaCO3-ICG@CM under laser irradiation and magnetic attraction, which could eradicate primary tumors and restrain distant tumors through dual tumor targeting-assisted multimodal therapy and eliciting adaptive antitumor immune response, generating the immune memory for inhibiting tumor metastasis and recurrence. Taken together, the multifunctional biomimetic nanoplatform exhibits superior antitumor effects, providing an insightful strategy for the field of nanomaterial-based treatment of cancer.
Collapse
Affiliation(s)
- Xin Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yiqun Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mengmeng Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Anqi Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Hao Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
2
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
3
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
4
|
Alimohammadvand S, Kaveh Zenjanab M, Mashinchian M, Shayegh J, Jahanban-Esfahlan R. Recent advances in biomimetic cell membrane-camouflaged nanoparticles for cancer therapy. Biomed Pharmacother 2024; 177:116951. [PMID: 38901207 DOI: 10.1016/j.biopha.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
The emerging strategy of biomimetic nanoparticles (NPs) via cellular membrane camouflage holds great promise in cancer therapy. This scholarly review explores the utilization of cellular membranes derived from diverse cellular entities; blood cells, immune cells, cancer cells, stem cells, and bacterial cells as examples of NP coatings. The camouflaging strategy endows NPs with nuanced tumor-targeting abilities such as self-recognition, homotypic targeting, and long-lasting circulation, thus also improving tumor therapy efficacy overall. The comprehensive examination encompasses a variety of cell membrane camouflaged NPs (CMCNPs), elucidating their underlying targeted therapy mechanisms and delineating diverse strategies for anti-cancer applications. Furthermore, the review systematically presents the synthesis of source materials and methodologies employed in order to construct and characterize these CMCNPs, with a specific emphasis on their use in cancer treatment.
Collapse
Affiliation(s)
- Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Mashinchian
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Shayegh
- Department of Microbiology, Faculty of Veterinary and Agriculture, Islamic Azad University, Shabestar branch, Shabestar, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Huang D, Wang X, Wang W, Li J, Zhang X, Xia B. Cell-membrane engineering strategies for clinic-guided design of nanomedicine. Biomater Sci 2024; 12:2865-2884. [PMID: 38686665 DOI: 10.1039/d3bm02114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cells are the fundamental units of life. The cell membrane primarily composed of two layers of phospholipids (a bilayer) structurally defines the boundary of a cell, which can protect its interior from external disturbances and also selectively exchange substances and conduct signals from the extracellular environment. The complexity and particularity of transmembrane proteins provide the foundation for versatile cellular functions. Nanomedicine as an emerging therapeutic strategy holds tremendous potential in the healthcare field. However, it is susceptible to recognition and clearance by the immune system. To overcome this bottleneck, the technology of cell membrane coating has been extensively used in nanomedicines for their enhanced therapeutic efficacy, attributed to the favorable fluidity and biocompatibility of cell membranes with various membrane-anchored proteins. Meanwhile, some engineering strategies of cell membranes through various chemical, physical and biological ways have been progressively developed to enable their versatile therapeutic functions against complex diseases. In this review, we summarized the potential clinical applications of four typical cell membranes, elucidated their underlying therapeutic mechanisms, and outlined their current engineering approaches. In addition, we further discussed the limitation of this technology of cell membrane coating in clinical applications, and possible solutions to address these challenges.
Collapse
Affiliation(s)
- Di Huang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xiaoyu Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Wentao Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiaomei Zhang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Bing Xia
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| |
Collapse
|
6
|
Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomater Sci 2024; 12:863-895. [PMID: 38230669 DOI: 10.1039/d3bm01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As the second-leading cause of human death, cancer has drawn attention in the area of biomedical research and therapy from all around the world. Certainly, the development of nanotechnology has made it possible for nanoparticles (NPs) to be used as a carrier for delivery systems in the treatment of tumors. This is a biomimetic approach established to craft remedial strategies comprising NPs cloaked with membrane obtained from various natural cells like blood cells, bacterial cells, cancer cells, etc. Here we conduct an in-depth exploration of cell membrane-coated NPs (CMNPs) and their extensive array of applications including drug delivery, vaccination, phototherapy, immunotherapy, MRI imaging, PET imaging, multimodal imaging, gene therapy and a combination of photothermal and chemotherapy. This review article provides a thorough summary of the most recent developments in the use of CMNPs for the diagnosis and treatment of cancer. It critically assesses the state of research while recognizing significant accomplishments and innovations. Additionally, it indicates ongoing problems in clinical translation and associated queries that warrant deeper research. By doing so, this study encourages creative thinking for future projects in the field of tumor therapy using CMNPs while also educating academics on the present status of CMNP research.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
7
|
Graván P, Peña-Martín J, de Andrés JL, Pedrosa M, Villegas-Montoya M, Galisteo-González F, Marchal JA, Sánchez-Moreno P. Exploring the Impact of Nanoparticle Stealth Coatings in Cancer Models: From PEGylation to Cell Membrane-Coating Nanotechnology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2058-2074. [PMID: 38159050 PMCID: PMC10797597 DOI: 10.1021/acsami.3c13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Nanotechnological platforms offer advantages over conventional therapeutic and diagnostic modalities. However, the efficient biointerfacing of nanomaterials for biomedical applications remains challenging. In recent years, nanoparticles (NPs) with different coatings have been developed to reduce nonspecific interactions, prolong circulation time, and improve therapeutic outcomes. This study aims to compare various NP coatings to enhance surface engineering for more effective nanomedicines. We prepared and characterized polystyrene NPs with different coatings of poly(ethylene glycol), bovine serum albumin, chitosan, and cell membranes from a human breast cancer cell line. The coating was found to affect the colloidal stability, adhesion, and elastic modulus of NPs. Protein corona formation and cellular uptake of NPs were also investigated, and a 3D tumor model was employed to provide a more realistic representation of the tumor microenvironment. The prepared NPs were found to reduce protein adsorption, and cell-membrane-coated NPs showed significantly higher cellular uptake. The secretion of proinflammatory cytokines in human monocytes after incubation with the prepared NPs was evaluated. Overall, the study demonstrates the importance of coatings in affecting the behavior and interaction of nanosystems with biological entities. The findings provide insight into bionano interactions and are important for the effective implementation of stealth surface engineering designs.
Collapse
Affiliation(s)
- Pablo Graván
- Department
of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
- Department
of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto
de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Biopathology
and Regenerative Medicine Institute (IBIMER), Centre for Biomedical
Research (CIBM), University of Granada, 18016 Granada, Spain
- Excellence
Research Unit Modelling Nature (MNat), University
of Granada, 18016 Granada, Spain
- BioFab i3D—Biofabrication
and 3D (bio)printing laboratory, University
of Granada, 18100 Granada, Spain
| | - Jesús Peña-Martín
- Department
of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto
de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Biopathology
and Regenerative Medicine Institute (IBIMER), Centre for Biomedical
Research (CIBM), University of Granada, 18016 Granada, Spain
- Excellence
Research Unit Modelling Nature (MNat), University
of Granada, 18016 Granada, Spain
- BioFab i3D—Biofabrication
and 3D (bio)printing laboratory, University
of Granada, 18100 Granada, Spain
| | - Julia López de Andrés
- Department
of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto
de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Biopathology
and Regenerative Medicine Institute (IBIMER), Centre for Biomedical
Research (CIBM), University of Granada, 18016 Granada, Spain
- Excellence
Research Unit Modelling Nature (MNat), University
of Granada, 18016 Granada, Spain
- BioFab i3D—Biofabrication
and 3D (bio)printing laboratory, University
of Granada, 18100 Granada, Spain
| | - María Pedrosa
- Department
of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
- Excellence
Research Unit Modelling Nature (MNat), University
of Granada, 18016 Granada, Spain
| | - Martín Villegas-Montoya
- Department
of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
- Excellence
Research Unit Modelling Nature (MNat), University
of Granada, 18016 Granada, Spain
- Faculty
of Biology, Calzada de las Américas
and University, Ciudad Universitaria, 80040 Culiacán, Sinaloa, Mexico
| | | | - Juan A. Marchal
- Department
of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto
de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Biopathology
and Regenerative Medicine Institute (IBIMER), Centre for Biomedical
Research (CIBM), University of Granada, 18016 Granada, Spain
- Excellence
Research Unit Modelling Nature (MNat), University
of Granada, 18016 Granada, Spain
- BioFab i3D—Biofabrication
and 3D (bio)printing laboratory, University
of Granada, 18100 Granada, Spain
| | - Paola Sánchez-Moreno
- Department
of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
- Excellence
Research Unit Modelling Nature (MNat), University
of Granada, 18016 Granada, Spain
| |
Collapse
|
8
|
Adhalrao SB, Jadhav KR, Patil PL, Kadam VJ, Nirmal MK. Engineering Platelet Membrane Imitating Nanoparticles for Targeted Therapeutic Delivery. Curr Pharm Biotechnol 2024; 25:1230-1244. [PMID: 37539932 DOI: 10.2174/1389201024666230804140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 08/05/2023]
Abstract
Platelet Membrane Imitating Nanoparticles (PMINs) is a novel drug delivery system that imitates the structure and functionality of platelet membranes. PMINs imitate surface markers of platelets to target specific cells and transport therapeutic cargo. PMINs are engineered by incorporating the drug into the platelet membrane and encapsulating it in a nanoparticle scaffold. This allows PMINs to circulate in the bloodstream and bind to target cells with high specificity, reducing off-target effects and improving therapeutic efficacy. The engineering of PMINs entails several stages, including the separation and purification of platelet membranes, the integration of therapeutic cargo into the membrane, and the encapsulation of the membrane in a nanoparticle scaffold. In addition to being involved in a few pathological conditions including cancer, atherosclerosis, and rheumatoid arthritis, platelets are crucial to the body's physiological processes. This study includes the preparation and characterization of platelet membrane-like nanoparticles and focuses on their most recent advancements in targeted therapy for conditions, including cancer, immunological disorders, atherosclerosis, phototherapy, etc. PMINs are a potential drug delivery system that combines the advantages of platelet membranes with nanoparticles. The capacity to create PMMNs with particular therapeutic cargo and surface markers provides new possibilities for targeted medication administration and might completely change the way that medicine is practiced. Despite the need for more studies to optimize the engineering process and evaluate the effectiveness and safety of PMINs in clinical trials, this technology has a lot of potential.
Collapse
Affiliation(s)
- Shradha B Adhalrao
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - Kisan R Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - Prashant L Patil
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - Vilasrao J Kadam
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - M Kasekar Nirmal
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| |
Collapse
|
9
|
Brezgin S, Parodi A, Kostyusheva A, Ponomareva N, Lukashev A, Sokolova D, Pokrovsky VS, Slatinskaya O, Maksimov G, Zamyatnin AA, Chulanov V, Kostyushev D. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol Adv 2023; 64:108122. [PMID: 36813011 DOI: 10.1016/j.biotechadv.2023.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.
Collapse
Affiliation(s)
- Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Darina Sokolova
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Vadim S Pokrovsky
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Olga Slatinskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia; Department of Infectious Diseases, Sechenov University, Moscow 119048, Russia; National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow 127994, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
10
|
Carfagno A, Lin SC, Chafran L, Akhrymuk I, Callahan V, Po M, Zhu Y, Altalhi A, Durkin DP, Russo P, Vliet KA, Webb-Robertson BJ, Kehn-Hall K, Bishop B. Bioprospecting the American Alligator Peptidome for antiviral peptides against Venezuelan equine encephalitis virus. Proteomics 2023; 23:e2200237. [PMID: 36480152 DOI: 10.1002/pmic.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The innate immune protection provided by cationic antimicrobial peptides (CAMPs) has been shown to extend to antiviral activity, with putative mechanisms of action including direct interaction with host cells or pathogen membranes. The lack of therapeutics available for the treatment of viruses such as Venezuelan equine encephalitis virus (VEEV) underscores the urgency of novel strategies for antiviral discovery. American alligator plasma has been shown to exhibit strong in vitro antibacterial activity, and functionalized hydrogel particles have been successfully employed for the identification of specific CAMPs from alligator plasma. Here, a novel bait strategy in which particles were encapsulated in membranes from either healthy or VEEV-infected cells was implemented to identify peptides preferentially targeting infected cells for subsequent evaluation of antiviral activity. Statistical analysis of peptide identification results was used to select five candidate peptides for testing, of which one exhibited a dose-dependent inhibition of VEEV and also significantly inhibited infectious titers. Results suggest our bioprospecting strategy provides a versatile platform that may be adapted for antiviral peptide identification from complex biological samples.
Collapse
Affiliation(s)
- Amy Carfagno
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| | - Shih-Chao Lin
- School of Systems Biology, George Mason University, Manassas, Virginia, USA.,National Taiwan Ocean University, Keelung City, Taiwan
| | - Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| | - Ivan Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Victoria Callahan
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Marynet Po
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| | - Yaling Zhu
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| | - Amaal Altalhi
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| | - David P Durkin
- Chemistry Department, U.S. Naval Academy, Annapolis, Maryland, USA
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Kent A Vliet
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | | | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.,Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
11
|
Imran M, Gowd V, Saha P, Rashid S, Ahmad Chaudhary A, Mohamed MYA, Alawam AS, Khan R. Biologically inspired stealth - Camouflaged strategies in nanotechnology for the improved therapies in various diseases. Int J Pharm 2023; 631:122407. [PMID: 36402290 DOI: 10.1016/j.ijpharm.2022.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
Nanotechnology has received increasing attention in the past decade and it's being used as a model for developing better treatments for a variety of diseases. Despite the fact that nanotechnology-based therapy has greatly improved treatment regimens, it still faces challenges such as inadequate circulation, insufficient accumulation at the target region, and undesired toxicity. In this regard, scientists are working on producing cell-membrane camouflaged nanoparticles as a biomimetic technique for modifying the surface of existing nanoparticles to produce significant therapeutic benefits following imparting myriad of desired functionalities. Membranes originating from erythrocytes, white blood cells, cancer cells, stem cells, platelets, or bacterial cells have been used to coat nanoparticle surfaces and create biologically inspired camouflaged nanoparticles. These biomemitic delivery systems have been proven to have potential applications in diagnosing and treating vaiorus diseases, including drug administration, immunisation, immunological regulation, and detoxification. From its inception to the present, we provide a complete description of this advanced technique for functionalizing nanoparticle surfaces. The method of making these membrane coated nanoparticles as well as their characterisation have been thoroughly discussed. Following that, we focused on the diversity of cell membranes derived from distinct cells in the evolution of nanoparticles, emphasising how these biologically inspired stealth - camouflaged techniques have led to increased therapeutic efficacy in a variety of disease states.
Collapse
Affiliation(s)
- Mohammad Imran
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge, City, Sector-81, Mohali 140306, Punjab, India
| | - Vemana Gowd
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge, City, Sector-81, Mohali 140306, Punjab, India
| | - Puspita Saha
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge, City, Sector-81, Mohali 140306, Punjab, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh 11623, Saudi Arabia
| | - Marwa Yousry A Mohamed
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh 11623, Saudi Arabia
| | - Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh 11623, Saudi Arabia
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge, City, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
12
|
Wu Z, Zhang H, Yan J, Wei Y, Su J. Engineered biomembrane-derived nanoparticles for nanoscale theranostics. Theranostics 2023; 13:20-39. [PMID: 36593970 PMCID: PMC9800735 DOI: 10.7150/thno.76894] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
Currently, biological membrane-derived nanoparticles (NPs) have shown enormous potential as drug delivery vehicles due to their outstanding biomimetic properties. To make these NPs more adaptive to complex biological systems, some methods have been developed to modify biomembranes and endow them with more functions while preserving their inherent natures. In this review, we introduce five common approaches used for biomembrane decoration: membrane hybridization, the postinsertion method, chemical methods, metabolism engineering and gene engineering. These methods can functionalize a series of biomembranes derived from red blood cells, white blood cells, tumor cells, platelets, exosomes and so on. Biomembrane engineering could markedly facilitate the targeted drug delivery, treatment and diagnosis of cancer, inflammation, immunological diseases, bone diseases and Alzheimer's disease. It is anticipated that these membrane modification techniques will advance biomembrane-derived NPs into broader applications in the future.
Collapse
Affiliation(s)
- Ziqing Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Institute of Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Jing Yan
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Institute of Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China.,✉ Corresponding authors: Jiacan Su, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail: ; Yan Wei, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail:
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China.,Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.,✉ Corresponding authors: Jiacan Su, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail: ; Yan Wei, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail:
| |
Collapse
|
13
|
Yang H, Miao Y, Yu Z, Wei M, Jiao X. Cell adhesion molecules and immunotherapy in advanced non-small cell lung cancer: Current process and potential application. Front Oncol 2023; 13:1107631. [PMID: 36895477 PMCID: PMC9989313 DOI: 10.3389/fonc.2023.1107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) is a severe disease and still has high mortality rate after conventional treatment (e.g., surgical resection, chemotherapy, radiotherapy and targeted therapy). In NSCLC patients, cancer cells can induce immunosuppression, growth and metastasis by modulating cell adhesion molecules of both cancer cells and immune cells. Therefore, immunotherapy is increasingly concerned due to its promising anti-tumor effect and broader indication, which targets cell adhesion molecules to reverse the process. Among these therapies, immune checkpoint inhibitors (mainly anti-PD-(L)1 and anti-CTLA-4) are most successful and have been adapted as first or second line therapy in advanced NSCLC. However, drug resistance and immune-related adverse reactions restrict its further application. Further understanding of mechanism, adequate biomarkers and novel therapies are necessary to improve therapeutic effect and alleviate adverse effect.
Collapse
Affiliation(s)
- Hongjian Yang
- Innovative Institute, China Medical University, Shenyang, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Shenyang, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China
| |
Collapse
|
14
|
Mohale S, Kunde SS, Wairkar S. Biomimetic fabrication of nanotherapeutics by leukocyte membrane cloaking for targeted therapy. Colloids Surf B Biointerfaces 2022; 219:112803. [PMID: 36084510 DOI: 10.1016/j.colsurfb.2022.112803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
Abstract
Cell membrane cloaking is an important biomimetic approach for improving drug residence time in the body due to its distinctive concealment ability, making it highly biocompatible and efficient for targeted drug delivery. Leukocytes are considered a fundamental part of the immune system. Leukocyte membrane cloaked nanoparticles offer site-specificity and can escape the opsonization process besides enhanced systemic circulation time. This review emphasizes the anatomical and physiological features of different leukocytes in addition to the preparation and characterization of leukocyte membrane cloaked nanoparticles. It also covers the recent advancements of this biointerfacing platform in cancer therapy, inflammatory disorders, multifunctional targeted therapy and hybrid membrane-coated nanoparticles. However, leukocytes are complex, nucleated cell structures and isolating their membranes poses a greater difficulty. Leukocyte membrane cloaking is an upcoming strategy in the infancy stage; nevertheless, there is immense scope to explore this biomimetic delivery system in terms of clinical transition, particularly for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Samyak Mohale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Shalvi Sinai Kunde
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
15
|
Shen M, Wu X, Zhu M, Yi X. Recent advances in biological membrane-based nanomaterials for cancer therapy. Biomater Sci 2022; 10:5756-5785. [PMID: 36017968 DOI: 10.1039/d2bm01044e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials have shown significant advantages in cancer theranostics, owing to their enhanced permeability and retention effect in tumors and multi-function integration capability. Biological membranes, which are collected from various cells and their secreted membrane structures, can further be applied to establish membrane-based nanomaterials with perfect biocompatibility, tumor-targeting capacity, immune-stimulatory activity and adjustable versatility for cancer therapy. In this review, according to their source, membranes are divided into four groups: (1) cell membranes; (2) secretory membranes; (3) engineered membranes; and (4) hybrid membranes. First, cell membranes can be extracted from natural cells of the body, tumor tissue cells, and bacteria. Furthermore, secretory membranes mainly refer to exosome, apoptotic body and bacterial outer membrane vesicle, and membranes with specific protein/peptide expression or therapeutic inclusions are obtained from engineered cells. Finally, a hybrid membrane will be constituted by two or more of the abovementioned membranes. These membranes can form drug-carrying nanoparticles themselves or coat multi-functional nanoparticles, further realizing efficient cancer therapy. We summarize the application of various biological membrane-based nanomaterials in cancer therapy and point out their advantages as well as the places that need to be further improved, providing systematic knowledge of this field and a strategy for further optimization.
Collapse
Affiliation(s)
- Mengling Shen
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xiaojie Wu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Minqian Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
16
|
Wang C, Wu S. Research update on cell membrane camouflaged nanoparticles for cancer therapy. Front Bioeng Biotechnol 2022; 10:944518. [PMID: 35992357 PMCID: PMC9388754 DOI: 10.3389/fbioe.2022.944518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cell membrane-camouflaged biomimetic functionalization of nanoparticles has emerged as a promising strategy for cancer theranostics. These cell membranes used for camouflaging are generally isolated from natural or engineered erythrocytes, neutrophils, macrophages, T lymphatic cells, stem cells, and cancer cells. The camouflaging strategy of coating nanoparticles with cell membranes allows for tumor homotypic targeting through self-recognition as source cells, immune evasion, and a prolonged blood circulation time, thereby improving the effective payload delivery and tumor therapy. More so, some engineered cell membranes with functionalized peptides, proteins and moieties on membrane surface can be transferred for therapy in the same time. In this review, we summarize the latest research on various types of cell membrane-camouflaged nanoparticles aimed at anti-cancer therapy, focusing on the biological advantages of different cell membranes, constitutions of nanoparticles, fabrication processes, key findings, potential therapies, and discuss the major challenges and future opportunities.
Collapse
|
17
|
Moore TL, Cook AB, Bellotti E, Palomba R, Manghnani P, Spanò R, Brahmachari S, Di Francesco M, Palange AL, Di Mascolo D, Decuzzi P. Shape-specific microfabricated particles for biomedical applications: a review. Drug Deliv Transl Res 2022; 12:2019-2037. [PMID: 35284984 PMCID: PMC9242933 DOI: 10.1007/s13346-022-01143-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The storied history of controlled the release systems has evolved over time; from degradable drug-loaded sutures to monolithic zero-ordered release devices and nano-sized drug delivery formulations. Scientists have tuned the physico-chemical properties of these drug carriers to optimize their performance in biomedical/pharmaceutical applications. In particular, particle drug delivery systems at the micron size regime have been used since the 1980s. Recent advances in micro and nanofabrication techniques have enabled precise control of particle size and geometry-here we review the utility of microplates and discoidal polymeric particles for a range of pharmaceutical applications. Microplates are defined as micrometer scale polymeric local depot devices in cuboid form, while discoidal polymeric nanoconstructs are disk-shaped polymeric particles having a cross-sectional diameter in the micrometer range and a thickness in the hundreds of nanometer range. These versatile particles can be used to treat several pathologies such as cancer, inflammatory diseases and vascular diseases, by leveraging their size, shape, physical properties (e.g., stiffness), and component materials, to tune their functionality. This review highlights design and fabrication strategies for these particles, discusses their applications, and elaborates on emerging trends for their use in formulations.
Collapse
Affiliation(s)
- Thomas L Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy.
| | - Alexander B Cook
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Elena Bellotti
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Purnima Manghnani
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| |
Collapse
|
18
|
Chen H, Jayasinghe MK, Yeo EYM, Wu Z, Pirisinu M, Usman WM, Pham TT, Lim KW, Tran NV, Leung AYH, Du X, Zhang Q, Phan AT, Le MTN. CD33
‐targeting extracellular vesicles deliver antisense oligonucleotides against
FLT3‐ITD
and
miR
‐125b for specific treatment of acute myeloid leukaemia. Cell Prolif 2022; 55:e13255. [PMID: 35851970 PMCID: PMC9436904 DOI: 10.1111/cpr.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Acute Myeloid Leukaemia (AML) is the most common blood cancer in adults. Although 2 out of 3 AML patients go into total remission after chemotherapies and targeted therapies, the disease recurs in 60%–65% of younger adult patients within 3 years after diagnosis with a dramatically decreased survival rate. Therapeutic oligonucleotides are promising treatments under development for AML as they can be designed to silence oncogenes with high specificity and flexibility. However, there are not many well validated approaches for safely and efficiently delivering oligonucleotide drugs. This issue could be resolved by utilizing a new generation of delivery vehicles such as extracellular vesicles (EVs). Methods In this study, we harness red blood cell‐derived EVs (RBCEVs) and engineer them via exogenous drug loading and surface functionalization to develop an efficient drug delivery system for AML. Particularly, EVs are designed to target CD33, a common surface marker with elevated expression in AML cells via the conjugation of a CD33‐binding monoclonal antibody onto the EV surface. Results The conjugation of RBCEVs with the CD33‐binding antibody significantly increases the uptake of RBCEVs by CD33‐positive AML cells, but not by CD33‐negative cells. We also load CD33‐targeting RBCEVs with antisense oligonucleotides (ASOs) targeting FLT3‐ITD or miR‐125b, 2 common oncogenes in AML, and demonstrate that the engineered EVs improve leukaemia suppression in in vitro and in vivo models of AML. Conclusion Targeted RBCEVs represent an innovative, efficient, and versatile delivery platform for therapeutic ASOs and can expedite the clinical translation of oligonucleotide drugs for AML treatments by overcoming current obstacles in oligonucleotide delivery.
Collapse
Affiliation(s)
- Huan Chen
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong Kowloon Hong Kong SAR
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Eric Yew Meng Yeo
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Marco Pirisinu
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong Kowloon Hong Kong SAR
| | - Waqas Muhammad Usman
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong Kowloon Hong Kong SAR
| | - Thach Tuan Pham
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Kah Wai Lim
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Nhan Van Tran
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Anskar Y. H. Leung
- Department of Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital The University of Hong Kong Pok Fu Lam Hong Kong SAR
| | - Xin Du
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine Shenzhen China
| | - Qiaoxia Zhang
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine Shenzhen China
| | - Anh Tuân Phan
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Minh T. N. Le
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
19
|
Lv Q, Ma B, Li W, Fu G, Wang X, Xiao Y. Nanomaterials-Mediated Therapeutics and Diagnosis Strategies for Myocardial Infarction. Front Chem 2022; 10:943009. [PMID: 35873037 PMCID: PMC9301085 DOI: 10.3389/fchem.2022.943009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The alarming mortality and morbidity rate of myocardial infarction (MI) is becoming an important impetus in the development of early diagnosis and appropriate therapeutic approaches, which are critical for saving patients' lives and improving post-infarction prognosis. Despite several advances that have been made in the treatment of MI, current strategies are still far from satisfactory. Nanomaterials devote considerable contribution to tackling the drawbacks of conventional therapy of MI by improving the homeostasis in the cardiac microenvironment via targeting, immune modulation, and repairment. This review emphasizes the strategies of nanomaterials-based MI treatment, including cardiac targeting drug delivery, immune-modulation strategy, antioxidants and antiapoptosis strategy, nanomaterials-mediated stem cell therapy, and cardiac tissue engineering. Furthermore, nanomaterials-based diagnosis strategies for MI was presented in term of nanomaterials-based immunoassay and nano-enhanced cardiac imaging. Taken together, although nanomaterials-based strategies for the therapeutics and diagnosis of MI are both promising and challenging, such a strategy still explores the immense potential in the development of the next generation of MI treatment.
Collapse
Affiliation(s)
- Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boxuan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wujiao Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yun Xiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Zhao J, Ruan J, Lv G, Shan Q, Fan Z, Wang H, Du Y, Ling L. Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: A comprehensive review. Colloids Surf B Biointerfaces 2022; 215:112503. [PMID: 35429736 DOI: 10.1016/j.colsurfb.2022.112503] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022]
Abstract
Natural types of cells display distinct characteristics with homotypic targeting and extended circulation in the blood, which are worthy of being explored as promising drug delivery systems (DDSs) for cancer therapy. To enhance their delivery efficiency, these cells can be combined with therapeutic agents and artificial nanocarriers to construct the next generation of DDSs in the form of biomimetic nanomedicines. In this review, we present the recent advances in cell membrane-based DDSs (CDDSs) and their applications for efficient cancer therapy. Different sources of cell membranes are discussed, mainly including red blood cells (RBC), leukocytes, cancer cells, stem cells and hybrid cells. Moreover, the extraction methods used for obtaining such cells and the mechanism contributing to the functional action of these biomimetic CDDSs are explained. Finally, a future perspective is proposed to highlight the limitations of CDDSs and the possible resolutions toward clinical transformation of currently developed biomimetic chemotherapies.
Collapse
Affiliation(s)
- Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264005, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Qi Shan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
21
|
Khan MHR, Righetti R. Ultrasound estimation of strain time constant and vascular permeability in tumors using a CEEMDAN and linear regression-based method. Comput Biol Med 2022; 148:105707. [PMID: 35725503 DOI: 10.1016/j.compbiomed.2022.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/12/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
Abstract
Ultrasound poroelastography focuses on the estimation of the spatio-temporal mechanical behavior of tissues using data often corrupted with non-stationary noise. The cumulative strain calculated from prolonged temporal acquisition of RF data can face the problem of aggregate noise. This noise can significantly affect the accuracy of curve fitting techniques necessary to estimate the clinically significant strain Time Constant (TC) and related parameters. We present a new technique, which decomposes the non-linear temporal behavior of the differential strain to extract the monotonic decaying trend by using the time-domain and data-driven Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm. A linear regression scheme is then used to obtain the slope of the transformed non-linear trend, which carries information about the strain TC. Assessment of Vascular Permeability (VP), a transport parameter indicative of tumor growth, requires accurate strain TC estimations. Finite Element (FE), ultrasound simulations and in vivo experiments are used to investigate the performance of the proposed technique. Based on the simulation analysis, the average Percentage Relative Error (PRE) values of our method are 4.15% (for TC estimation) and 5.00% (for VP estimation) at 20 dB SNR level for different Percentage of Good Frames (PGF) (i.e., 20%, 50%, 75%, and 100%). These PRE values are substantially lower than those obtained using other conventional elastographic techniques. Our proposed method could become a new data-adaptive tool for analyzing the non-linear time-dependent response of complex tissues such as cancers.
Collapse
Affiliation(s)
- Md Hadiur Rahman Khan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, 77843, TX, USA
| | - Raffaella Righetti
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, 77843, TX, USA.
| |
Collapse
|
22
|
Fukuta T, Kogure K. Biomimetic Nanoparticle Drug Delivery Systems to Overcome Biological Barriers for Therapeutic Applications. Chem Pharm Bull (Tokyo) 2022; 70:334-340. [DOI: 10.1248/cpb.c21-00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
23
|
Biomimetic approaches for targeting tumor inflammation. Semin Cancer Biol 2022; 86:555-567. [DOI: 10.1016/j.semcancer.2022.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
|
24
|
Fukuta T, Oku N, Kogure K. Application and Utility of Liposomal Neuroprotective Agents and Biomimetic Nanoparticles for the Treatment of Ischemic Stroke. Pharmaceutics 2022; 14:pharmaceutics14020361. [PMID: 35214092 PMCID: PMC8877231 DOI: 10.3390/pharmaceutics14020361] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemic stroke is still one of the leading causes of high mortality and severe disability worldwide. Therapeutic options for ischemic stroke and subsequent cerebral ischemia/reperfusion injury remain limited due to challenges associated with drug permeability through the blood-brain barrier (BBB). Neuroprotectant delivery with nanoparticles, including liposomes, offers a promising solution to address this problem, as BBB disruption following ischemic stroke allows nanoparticles to pass through the intercellular gaps between endothelial cells. To ameliorate ischemic brain damage, a number of nanotherapeutics encapsulating neuroprotective agents, as well as surface-modified nanoparticles with specific ligands targeting the injured brain regions, have been developed. Combination therapy with nanoparticles encapsulating neuroprotectants and tissue plasminogen activator (t-PA), a globally approved thrombolytic agent, has been demonstrated to extend the narrow therapeutic time window of t-PA. In addition, the design of biomimetic drug delivery systems (DDS) employing circulating cells (e.g., leukocytes, platelets) with unique properties has recently been investigated to overcome the injured BBB, utilizing these cells’ inherent capability to penetrate the ischemic brain. Herein, we review recent findings on the application and utility of nanoparticle DDS, particularly liposomes, and various approaches to developing biomimetic DDS functionalized with cellular membranes/membrane proteins for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Naoto Oku
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| |
Collapse
|
25
|
Majumder S, Islam MT, Righetti R. Estimation of Mechanical and Transport Parameters in Cancers Using Short Time Poroelastography. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:1900411. [PMID: 36147877 PMCID: PMC9484738 DOI: 10.1109/jtehm.2022.3198316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/03/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
Mechanical and transport properties of cancers such as Young's modulus (YM), Poisson's ratio (PR), and vascular permeability (VP) have great clinical importance in cancer diagnosis, prognosis, and treatment. However, non-invasive estimation of these parameters in vivo is challenged by many practical factors. Elasticity imaging methods, such as "poroelastography", require prolonged data acquisition, which can limit their clinical applicability. In this paper, we investigate a new method to perform poroelastography experiments, which results in shorter temporal acquisition windows. This method is referred to as "short-time poroelastography" (STPE). Finite element (FE) and ultrasound simulations demonstrate that, using STPE, it is possible to accurately estimate YM, PR (within 10% error) using windows of observation (WoOs) of length as short as 1 underlying strain Time Constant (TC). The error was found to be almost negligible (< 3%) when using WoOs longer than 2 strain TCs. In the case of VP estimation, WoOs of at least 2 strain TCs are required to obtain an error < 8% (in simulations). The stricter requirement for the estimation of VP with respect to YM and PR is due its reliance on the transient strain behavior while YM and PR depend on the steady state strain values only. In vivo experimental data are used as a proof-of-principle of the potential applicability of the proposed methodology in vivo. The use of STPE may provide a means to efficiently perform poroelastography experiments without compromising the accuracy of the estimated tissue properties.
Collapse
Affiliation(s)
- Sharmin Majumder
- Department of Electrical and Computer EngineeringTexas A&M University College Station TX 77843 USA
| | - Md Tauhidul Islam
- Department of Radiation OncologyStanford University Stanford CA 94305 USA
| | - Raffaella Righetti
- Department of Electrical and Computer EngineeringTexas A&M University College Station TX 77843 USA
| |
Collapse
|
26
|
Shah PM, Ullah F, Shah D, Gani A, Maple C, Wang Y, Abrar M, Islam SU. Deep GRU-CNN Model for COVID-19 Detection From Chest X-Rays Data. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022; 10:35094-35105. [PMID: 35582498 DOI: 10.1109/access.2021.3089454] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/20/2021] [Indexed: 05/20/2023]
Abstract
In the current era, data is growing exponentially due to advancements in smart devices. Data scientists apply a variety of learning-based techniques to identify underlying patterns in the medical data to address various health-related issues. In this context, automated disease detection has now become a central concern in medical science. Such approaches can reduce the mortality rate through accurate and timely diagnosis. COVID-19 is a modern virus that has spread all over the world and is affecting millions of people. Many countries are facing a shortage of testing kits, vaccines, and other resources due to significant and rapid growth in cases. In order to accelerate the testing process, scientists around the world have sought to create novel methods for the detection of the virus. In this paper, we propose a hybrid deep learning model based on a convolutional neural network (CNN) and gated recurrent unit (GRU) to detect the viral disease from chest X-rays (CXRs). In the proposed model, a CNN is used to extract features, and a GRU is used as a classifier. The model has been trained on 424 CXR images with 3 classes (COVID-19, Pneumonia, and Normal). The proposed model achieves encouraging results of 0.96, 0.96, and 0.95 in terms of precision, recall, and f1-score, respectively. These findings indicate how deep learning can significantly contribute to the early detection of COVID-19 in patients through the analysis of X-ray scans. Such indications can pave the way to mitigate the impact of the disease. We believe that this model can be an effective tool for medical practitioners for early diagnosis.
Collapse
Affiliation(s)
- Pir Masoom Shah
- Department of Computer ScienceBacha Khan University Charsadda 24000 Pakistan
- School of Computer ScienceWuhan University Wuhan 430072 China
| | - Faizan Ullah
- Department of Computer ScienceBacha Khan University Charsadda 24000 Pakistan
| | - Dilawar Shah
- Department of Computer ScienceBacha Khan University Charsadda 24000 Pakistan
| | - Abdullah Gani
- Faculty of Computer Science and Information TechnologyUniversity of Malaya Kuala Lumpur 50603 Malaysia
- Faculty of Computing and InformaticsUniversity Malaysia Sabah Labuan 88400 Malaysia
| | - Carsten Maple
- Secure Cyber Systems Research Group, WMGUniversity of Warwick Coventry CV4 7AL U.K
- Alan Turing Institute London NW1 2DB U.K
| | - Yulin Wang
- School of Computer ScienceWuhan University Wuhan 430072 China
| | - Mohammad Abrar
- Department of Computer ScienceMohi-ud-Din Islamic University Nerian Sharif 12080 Pakistan
| | - Saif Ul Islam
- Department of Computer ScienceInstitute of Space Technology Islamabad 44000 Pakistan
| |
Collapse
|
27
|
Boada CA, Zinger A, Rohen S, Martinez JO, Evangelopoulos M, Molinaro R, Lu M, Villarreal-Leal RA, Giordano F, Sushnitha M, De Rosa E, Simonsen JB, Shevkoplyas S, Taraballi F, Tasciotti E. LDL-Based Lipid Nanoparticle Derived for Blood Plasma Accumulates Preferentially in Atherosclerotic Plaque. Front Bioeng Biotechnol 2021; 9:794676. [PMID: 34926432 PMCID: PMC8672093 DOI: 10.3389/fbioe.2021.794676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein-based drug delivery is a promising approach to develop safe nanoparticles capable of targeted drug delivery for various diseases. In this work, we have synthesized a lipid-based nanoparticle (NPs) that we have called “Aposomes” presenting native apolipoprotein B-100 (apoB-100), the primary protein present in Low-Density Lipoproteins (LDL) on its surface. The aposomes were synthesized from LDL isolated from blood plasma using a microfluidic approach. The synthesized aposomes had a diameter of 91 ± 4 nm and a neutral surface charge of 0.7 mV ± mV. Protein analysis using western blot and flow cytometry confirmed the presence of apoB-100 on the nanoparticle’s surface. Furthermore, Aposomes retained liposomes’ drug loading capabilities, demonstrating a prolonged release curve with ∼80% cargo release at 4 hours. Considering the natural tropism of LDL towards the atherosclerotic plaques, we evaluated the biological properties of aposomes in a mouse model of advanced atherosclerosis. We observed a ∼20-fold increase in targeting of plaques when comparing aposomes to control liposomes. Additionally, aposomes presented a favorable biocompatibility profile that showed no deviation from typical values in liver toxicity markers (i.e., LDH, ALT, AST, Cholesterol). The results of this study demonstrate the possibilities of using apolipoprotein-based approaches to create nanoparticles with active targeting capabilities and could be the basis for future cardiovascular therapies.
Collapse
Affiliation(s)
- Christian A Boada
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, México, Mexico
| | - Assaf Zinger
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Department of Engineering Medicine, Texas A&M University, Houston, TX, United States.,Laboratory for Bioinspired NanoEngineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Scott Rohen
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Jonathan O Martinez
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Michael Evangelopoulos
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Roberto Molinaro
- IRCCS Ospedale San Raffaele srl, Milan, Italy.,Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Ramiro Alejandro Villarreal-Leal
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, México, Mexico
| | - Federica Giordano
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Manuela Sushnitha
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Enrica De Rosa
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States
| | - Jens B Simonsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Sergey Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Francesca Taraballi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Ennio Tasciotti
- San Raffaele University, Rome and IRCCS San Raffaele Hospital, Rome, Italy
| |
Collapse
|
28
|
Guo M, Xia C, Wu Y, Zhou N, Chen Z, Li W. Research Progress on Cell Membrane-Coated Biomimetic Delivery Systems. Front Bioeng Biotechnol 2021; 9:772522. [PMID: 34869288 PMCID: PMC8636778 DOI: 10.3389/fbioe.2021.772522] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023] Open
Abstract
Cell membrane-coated biomimetic nanoplatforms have many inherent properties, such as bio-interfacing abilities, self-identification, and signal transduction, which enable the biomimetic delivery system to escape immune clearance and opsonization. This can also maximize the drug delivery efficiency of synthetic nanoparticles (NPs) and functional cell membranes. As a new type of delivery system, cell membrane-coated biomimetic delivery systems have broadened the prospects for biomedical applications. In this review, we summarize research progress on cell membrane biomimetic technology from three aspects, including sources of membrane, modifications, and applications, then analyze their limitations and propose future research directions.
Collapse
Affiliation(s)
- Mengyu Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenjie Xia
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nong Zhou
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area's Medicinal Herbs, College of Food and Biology Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021; 178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
The translational success of liposomes in chemotherapeutics has already demonstrated the great potential of biomembrane-based nanostructure in effective drug delivery. Meanwhile, increasing efforts are being dedicated to the application of naturally derived lipid membranes, including cellular membranes and extracellular vesicles in anti-cancer therapies. While synthetic liposomes support superior multifunctional flexibility, natural biomembrane materials possess interesting biomimetic properties and can also be further engineered for intelligent design. Despite being remarkably different from each other in production and composition, the phospholipid bilayer structure in common allows liposomes, cell membrane-derived nanomaterials, and extracellular vesicles to be modified, functionalized, and exploited in many similar manners against challenges posed by tumor-targeted drug delivery. This review will summarize the recent advancements in engineering the membrane-derived nanostructures with "intelligent" modules to respond, regulate, and target tumor cells and the microenvironment to fight against malignancy. We will also discuss perspectives of combining engineered functionalities with naturally occurring activity for enhanced cancer therapy.
Collapse
|
30
|
Guo J, Yang Z, Wang X, Xu Y, Lu Y, Qin Z, Zhang L, Xu J, Wang W, Zhang J, Tang J. Advances in Nanomaterials for Injured Heart Repair. Front Bioeng Biotechnol 2021; 9:686684. [PMID: 34513807 PMCID: PMC8424111 DOI: 10.3389/fbioe.2021.686684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of mortality worldwide. Because of the limited regenerative capacity of adult myocardium to compensate for the loss of heart tissue after ischemic infarction, scientists have been exploring the possible mechanisms involved in the pathological process of ASCVD and searching for alternative means to regenerate infarcted cardiac tissue. Although numerous studies have pursued innovative solutions for reversing the pathological process of ASCVD and improving the effectiveness of delivering therapeutics, the translation of those advances into downstream clinical applications remains unsatisfactory because of poor safety and low efficacy. Recently, nanomaterials (NMs) have emerged as a promising new strategy to strengthen both the efficacy and safety of ASCVD therapy. Thus, a comprehensive review of NMs used in ASCVD treatment will be useful. This paper presents an overview of the pathophysiological mechanisms of ASCVD and the multifunctional mechanisms of NM-based therapy, including antioxidative, anti-inflammation and antiapoptosis mechanisms. The technological improvements of NM delivery are summarized and the clinical transformations concerning the use of NMs to treat ASCVD are examined. Finally, this paper discusses the challenges and future perspectives of NMs in cardiac regeneration to provide insightful information for health professionals on the latest advancements in nanotechnologies for ASCVD treatment.
Collapse
Affiliation(s)
- Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Zhenzhen Yang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Jing Xu
- Department of Cardiac Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Henan Medical Association, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| |
Collapse
|
31
|
Fukuta T. [Development of Biomembrane-mimetic Nanoparticles for the Treatment of Ischemic Stroke]. YAKUGAKU ZASSHI 2021; 141:1071-1078. [PMID: 34471008 DOI: 10.1248/yakushi.21-00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increase in vascular permeability of the blood-brain barrier (BBB) is a distinct pathology following ischemic stroke. In previous studies, we demonstrated that liposomal drug delivery system (DDS)-based delivery of neuroprotectants is useful for treating cerebral ischemia/reperfusion injury. Additionally, our previous studies reported that combination therapy with liposomal fasudil plus tissue plasminogen activator (t-PA), a thrombolytic agent, brings about decrease in the risk of t-PA-derived cerebral hemorrhage and prolong the therapeutic time window of t-PA for treating acute ischemic stroke. However, accumulation of systemically administered liposomes into the brain parenchyma is still limited, and new technologies are needed that can overcome the BBB. The unique properties of leukocytes and exosomes, one of the extracellular vesicles, make them promising candidates for overcoming biological barriers (including the BBB) for drug delivery, as leukocytes and certain exosomes were reported to be able to permeate through the inflamed BBB in the ischemic stroke area. We prepared leukocyte-mimetic liposomes (LM-Lipo) via transfer of leukocyte membrane proteins by employing a phenomenon called intermembrane protein transfer, and demonstrated that LM-Lipo could pass through the layer of inflamed endothelial cells via regulation of intercellular junctions, like leukocytes. Additionally, we showed that LM-Lipo efficiently penetrated into spheroids of cancer cells, and inhibited their growth by entrapped doxorubicin. Taken together, it was suggested that imparting leukocyte-like characteristics to liposomes may be an effective approach to overcoming biological barriers. Herein, we summarize our findings regarding liposomal DDS for ischemic stroke therapy and recent approaches to develop biomembrane-mimetic DDS using leukocytes and exosomes.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
32
|
Villarreal-Leal RA, Cooke JP, Corradetti B. Biomimetic and immunomodulatory therapeutics as an alternative to natural exosomes for vascular and cardiac applications. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 35:102385. [PMID: 33774130 PMCID: PMC8238887 DOI: 10.1016/j.nano.2021.102385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Inflammation is a central mechanism in cardiovascular diseases (CVD), where sustained oxidative stress and immune responses contribute to cardiac remodeling and impairment. Exosomes are extracellular vesicles released by cells to communicate with their surroundings and to modulate the tissue microenvironment. Recent evidence indicates their potential as cell-free immunomodulatory therapeutics for CVD, preventing cell death and fibrosis while inducing wound healing and angiogenesis. Biomimetic exosomes are semi-synthetic particles engineered using essential moieties present in natural exosomes (lipids, RNA, proteins) to reproduce their therapeutic effects while improving on scalability and standardization due to the ample range of moieties available to produce them. In this review, we provide an up-to-date description of the use of exosomes for CVD and offer our vision on the areas of opportunity for the development of biomimetic strategies. We also discuss the current limitations to overcome in the process towards their translation into clinic.
Collapse
Affiliation(s)
- Ramiro A Villarreal-Leal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - John P Cooke
- RNA Therapeutics Program, Department of Cardiovascular Sciences (R.S., J.P.C.), Houston Methodist Research Institute, TX, USA; Houston Methodist DeBakey Heart and Vascular Center (J.P.C.), Houston Methodist Hospital, TX, USA
| | - Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Center of NanoHealth, Swansea University Medical School, Swansea, UK.
| |
Collapse
|
33
|
Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release 2021; 335:130-157. [PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/13/2023]
Abstract
Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.
Collapse
|
34
|
Chen X, Liu B, Tong R, Zhan L, Yin X, Luo X, Huang Y, Zhang J, He W, Wang Y. Orchestration of biomimetic membrane coating and nanotherapeutics in personalized anticancer therapy. Biomater Sci 2021; 9:590-625. [PMID: 33305765 DOI: 10.1039/d0bm01617a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoparticle-based therapeutic and detectable modalities can augment anticancer efficiency, holding potential in capable target and suppressive metastases post administration. However, the individual discrepancies of the current "one-size-fits-all" strategies for anticancer nanotherapeutics have heralded the need for "personalized therapy". Benefiting from the special inherency of various cells, diverse cell membrane-coated nanoparticles (CMCNs) were established on a patient-by-patient basis, which would facilitate the personalized treatment of individual cancer patients. CMCNs in a complex microenvironment can evade the immune system and target homologous tumors with a suppressed immune response, as well as a prolonged circulation time, consequently increasing the drug accumulation at the tumor site and anticancer therapeutic efficacy. This review focuses on the emerging strategies and advances of CMCNs to synergistically integrate the merit of source cells with nanoparticulate delivery systems for the orchestration of personalized anticancer nanotherapeutics, thus discussing their rationalities in facilitating chemotherapy, imaging, immunotherapy, phototherapy, radiotherapy, sonodynamic, magnetocaloric, chemodynamic and gene therapy. Furthermore, the mechanism, challenges and opportunities of CMCNs in personalized anticancer therapy were highlighted to further boost cooperation from different fields, including materials science, chemistry, medicine, pharmacy and biology for the lab-to-clinic translation of CMCNs combined with the individual advantages of source cells and nanotherapeutics.
Collapse
Affiliation(s)
- Xuerui Chen
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bingbing Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lin Zhan
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin Luo
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wen He
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
35
|
Zhang T, Liu H, Li L, Guo Z, Song J, Yang X, Wan G, Li R, Wang Y. Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment. Bioact Mater 2021; 6:3865-3878. [PMID: 33937590 PMCID: PMC8076651 DOI: 10.1016/j.bioactmat.2021.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subset of breast cancer and currently lacks effective therapeutic targets. As two main phototherapeutic methods, photothermal therapy (PTT) and photodynamic therapy (PDT) show many advantages in TNBC treatment, and their combination with chemotherapy can achieve synergistic therapeutic effects. In the present study, a biomimetic nanoplatform was developed based on leukocyte/platelet hybrid membrane (LPHM) and dendritic large pore mesoporous silicon nanoparticles (DLMSNs). A near infrared (NIR) fluorescent dye IR780 and a chemotherapeutic drug doxorubicin (DOX) were co-loaded into the large pores of DLMSNs to prepare DLMSN@DOX/IR780 (DDI) nanoparticles (NPs), followed by camouflage with LPHM to obtain LPHM@DDI NPs. Through the mediation of LPHM, LPHM@DDI NPs showed an excellent TNBC-targeting ability and very high PTT/PDT performances in vitro and in vivo. Upon NIR laser irradiation, LPHM@DDI NPs exhibited synergistic cytotoxicity and apoptosis-inducing activity in TNBC cells, and effectively suppressed tumor growth and recurrence in TNBC mice through tumor ablation and anti-angiogenesis. These synergistic effects were sourced from the combination of PTT/PDT and chemotherapy. Altogether, this study offers a promising biomimetic nanoplatform for efficient co-loading and targeted delivery of photo/chemotherapeutic agents for TNBC combination treatment. A biomimetic nanoplatform was developed from DLMSNs camouflaged with leukocyte/platelet hybrid membrane (LPHM@DLMSNs). IR780 and doxorubicin were co-loaded into LPHM@DLMSNs to prepare LPHM@DDI nanoparticles (NPs). LPHM@DDI NPs showed an excellent targeting ability for triple negative breast cancer (TNBC). LPHM@DDI NPs exerted synergistic effects of PTT/PDT and chemotherapy against TNBC.
Collapse
Affiliation(s)
- Tao Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmaceutics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmaceutics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ling Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmaceutics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zhaoyang Guo
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmaceutics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jia Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmaceutics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoying Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmaceutics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Rongshan Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmaceutics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yinsong Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmaceutics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
36
|
Jahromi LP, Shahbazi M, Maleki A, Azadi A, Santos HA. Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002499. [PMID: 33898169 PMCID: PMC8061401 DOI: 10.1002/advs.202002499] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Indexed: 05/16/2023]
Abstract
Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell-based microrobots for hard-to-treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface-engineered immune cells, immunocytes' cell membranes, leukocyte-derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on-demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Present address:
Helmholtz Institute for Pharmaceutical Research SaarlandHelmholtz Centre for Infection ResearchBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
| | - Mohammad‐Ali Shahbazi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Department of PharmaceuticsSchool of PharmacyShiraz University of Medical SciencesShiraz71468‐64685Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
37
|
Wang J, Gu X, Ouyang Y, Chu L, Xu M, Wang K, Tong X. Engineering of Neutrophil Membrane Camouflaging Nanoparticles Realizes Targeted Drug Delivery for Amplified Antitumor Therapy. Int J Nanomedicine 2021; 16:1175-1187. [PMID: 33623381 PMCID: PMC7894798 DOI: 10.2147/ijn.s288636] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Although the neutrophil membrane (NM)-based nanoparticulate delivery system has exhibited rapid advances in tumor targeting stemmed from the inherited instinct, the antitumor effect requires further improvement due to inefficient cellular internalization in the absence of specific interactions between NM-coated nanoparticles and tumor cells. Methods Herein, we fabricated drug-paclitaxel loaded NM camouflaging nanoparticles (TNM-PN) modified with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), favorable for the cellular internalization. Results The results showed that TNM-PN exerted a significant cytotoxicity to tumor cells by TRAIL-mediated endocytosis and strong adhesion to inflamed endothelial cells in vitro. Due to TRAIL modification as well as the adhesive interactions between neutrophil and inflamed tumor vascular endothelial cells, tumors in TNM-PN group exhibited almost 2-fold higher fluorescence intensities than that of NM camouflaging nanoparticles and 3-fold higher than that of bare nanoparticles, respectively. Significant tumor inhibition and survival rates of mice were achieved in TNM-PN group as a consequence of prolonged blood circulations to 48 h and preferential tumor accumulations, which was ascribed to targeting adhesion originated from NM to immune evasion and subsequent excellent cellular internalization. Conclusion The research unveiled a novel strategy of amplifying cellular internalization based on NM coating nanotechnology to boost antitumor efficacy.
Collapse
Affiliation(s)
- Jingshuai Wang
- Obstetrics and Gynecology Department, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Xuemin Gu
- Obstetrics and Gynecology Department, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Yiqin Ouyang
- Obstetrics and Gynecology Department, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Lei Chu
- Obstetrics and Gynecology Department, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Mengjiao Xu
- Obstetrics and Gynecology Department, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Kun Wang
- Cancer Center, Shanghai East Hospital of Tongji University, Shanghai, People's Republic of China
| | - Xiaowen Tong
- Obstetrics and Gynecology Department, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Huang D, Sun L, Huang L, Chen Y. Nanodrug Delivery Systems Modulate Tumor Vessels to Increase the Enhanced Permeability and Retention Effect. J Pers Med 2021; 11:124. [PMID: 33672813 PMCID: PMC7917988 DOI: 10.3390/jpm11020124] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The use of nanomedicine for antitumor therapy has been extensively investigated for a long time. Enhanced permeability and retention (EPR) effect-mediated drug delivery is currently regarded as an effective way to bring drugs to tumors, especially macromolecular drugs and drug-loaded pharmaceutical nanocarriers. However, a disordered vessel network, and occluded or embolized tumor blood vessels seriously limit the EPR effect. To augment the EPR effect and improve curative effects, in this review, we focused on the perspective of tumor blood vessels, and analyzed the relationship among abnormal angiogenesis, abnormal vascular structure, irregular blood flow, extensive permeability of tumor vessels, and the EPR effect. In this commentary, nanoparticles including liposomes, micelles, and polymers extravasate through the tumor vasculature, which are based on modulating tumor vessels, to increase the EPR effect, thereby increasing their therapeutic effect.
Collapse
Affiliation(s)
- Dong Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; (D.H.); (L.S.)
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lingna Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; (D.H.); (L.S.)
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Yanzuo Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; (D.H.); (L.S.)
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
39
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
40
|
Fontana F, Bartolo R, Santos HA. Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:135-162. [PMID: 33543459 DOI: 10.1007/978-3-030-58174-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During the last 20+ years, research into the biomedical application of nanotechnology has helped in reshaping cancer treatment. The clinical use of several passively targeted nanosystems resulted in improved quality of care for patients. However, the therapeutic efficacy of these systems is not superior to the original drugs. Moreover, despite extensive investigations into actively targeted nanocarriers, numerous barriers still remain before their successful clinical translation, including sufficient bloodstream circulation time and efficient tumor targeting. The combination of synthetic nanomaterials with biological elements (e.g., cells, cell membranes, and macromolecules) is presently the cutting-edge research in cancer nanotechnology. The features provided by the biological moieties render the particles with prolonged bloodstream circulation time and homotopic targeting to the tumor site. Moreover, cancer cell membranes serve as sources of neoantigens, useful in the formulation of nanovaccines. In this chapter, we will discuss the advantages of biohybrid nanosystems in cancer chemotherapy, immunotherapy, and combined therapy, as well as highlight their preparation methods and clinical translatability.
Collapse
Affiliation(s)
- Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Raquél Bartolo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
41
|
Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. NATURE REVIEWS. MATERIALS 2021; 6:766-783. [PMID: 34026278 PMCID: PMC8132739 DOI: 10.1038/s41578-021-00315-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Biomolecule-based nanostructures are inherently multifunctional and harbour diverse biological activities, which can be explored for cancer nanomedicine. The supramolecular properties of biomolecules can be precisely programmed for the design of smart drug delivery vehicles, enabling efficient transport in vivo, targeted drug delivery and combinatorial therapy within a single design. In this Review, we discuss biomolecule-based nanostructures, including polysaccharides, nucleic acids, peptides and proteins, and highlight their enormous design space for multifunctional nanomedicines. We identify key challenges in cancer nanomedicine that can be addressed by biomolecule-based nanostructures and survey the distinct biological activities, programmability and in vivo behaviour of biomolecule-based nanostructures. Finally, we discuss challenges in the rational design, characterization and fabrication of biomolecule-based nanostructures, and identify obstacles that need to be overcome to enable clinical translation.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Harnessing the nano-bio interface: Application of membrane coating to long acting silica particles. Eur J Pharm Biopharm 2020; 158:382-389. [PMID: 33309845 DOI: 10.1016/j.ejpb.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 01/15/2023]
Abstract
Interaction of conventional drug delivery systems such as polymeric or lipid based nano- and microparticles with the in vivo milieu has garnered significant interest, primarily to orchestrate immune escape and/or improve targeting. Surface modification with targeting ligands has been heavily relied upon for the mentioned purpose in the recent years. However, the surface modified particles can also activate the immune system. Large-scale manufacturing can also be a challenge, as surface modification needs to be reproducible. Furthermore, in vivo, the targeting is dependent on the receptor expression density and number of target sites, which adds to the pharmacokinetic variability of the constructs. An evolving paradigm to overcome complications of surface functionalization is the incorporation of bio-inspired topographies into these conventional delivery systems to enable them to better interact with biological systems. Biomimetic delivery systems combine the unique surface composition of cells or cell membranes, and versatility of synthetic nanoparticles. In this review, we focus on one such delivery system, silica particles, and explore their interaction with different biological membranes.
Collapse
|
43
|
Biomimetic Nanoparticles Potentiate the Anti-Inflammatory Properties of Dexamethasone and Reduce the Cytokine Storm Syndrome: An Additional Weapon against COVID-19? NANOMATERIALS 2020; 10:nano10112301. [PMID: 33233748 PMCID: PMC7699958 DOI: 10.3390/nano10112301] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Recent studies on coronavirus infectious disease 2019 (COVID-19) pathophysiology indicated the cytokine release syndrome induced by the virus as the main cause of mortality. Patients with severe COVID-19 infection present a systemic hyper inflammation that can lead to lung and multi-organ injuries. Among the most recent treatments, corticosteroids have been identified to be effective in mitigating these catastrophic effects. Our group has recently developed leukocyte-derived nanovesicles, termed leukosomes, able to target in vivo the inflamed vasculature associated with pathological conditions including cancer, cardiovascular diseases, and sepsis. Herein, to gain insights on the anti-inflammatory properties of leukosomes, we investigated their ability to reduce uncontrolled inflammation in a lethal model of lipopolysaccharide (LPS)-induced endotoxemia, recapitulating the cytokine storm syndrome observed in COVID-19 infection after encapsulating dexamethasone. Treated animals showed a significant survival advantage and an improved immune response resolution, as demonstrated by a cytokine array analysis of pro- and anti-inflammatory cytokines, chemokines, and other immune-relevant markers. Our results showed that leukosomes enhance the therapeutic activity of dexamethasone and better control the inflammatory response compared to the free drug. Such an approach could be useful for the development of personalized therapies in the treatment of hyperinflammation related to infectious diseases, including the ones caused by COVID-19.
Collapse
|
44
|
Fukuta T, Yoshimi S, Kogure K. Leukocyte-Mimetic Liposomes Penetrate Into Tumor Spheroids and Suppress Spheroid Growth by Encapsulated Doxorubicin. J Pharm Sci 2020; 110:1701-1709. [PMID: 33129835 DOI: 10.1016/j.xphs.2020.10.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022]
Abstract
As leukocytes can penetrate into deep regions of a tumor mass, leukocyte-mimetic liposomes (LM-Lipo) containing leukocyte membrane proteins are also expected to penetrate into tumors by exerting properties of those membrane proteins. The aim of the present study was to examine whether LM-Lipo, which were recently demonstrated to actively pass through inflamed endothelial layers, can penetrate into tumor spheroids, and to investigate the potential of LM-Lipo for use as an anticancer drug carrier. We prepared LM-Lipo via intermembrane protein transfer from human leukemia cells; transfer of leukocyte membrane proteins onto the liposomes was determined by Western blotting. LM-Lipo demonstrated a significantly high association with human lung cancer A549 cells compared with plain liposomes, which contributed to effective anti-proliferative action by encapsulated doxorubicin hydrochloride (DOX). Confocal microscopic images showed that LM-Lipo, but not plain liposomes, could efficiently penetrate into A549 tumor spheroids. Moreover, DOX-encapsulated LM-Lipo significantly suppressed tumor spheroid growth. Thus, leukocyte membrane proteins transferred onto LM-Lipo retained their unique function, which allowed for efficient penetration of the liposomes into tumor spheroids, similar to leukocytes. In conclusion, these results suggest that LM-Lipo could be a useful tumor-penetrating drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan.
| | - Shintaro Yoshimi
- Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| |
Collapse
|
45
|
Kang M, Hong J, Jung M, Kwon SP, Song SY, Kim HY, Lee JR, Kang S, Han J, Koo JH, Ryu JH, Lim S, Sohn HS, Choi JM, Doh J, Kim BS. T-Cell-Mimicking Nanoparticles for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003368. [PMID: 32812291 DOI: 10.1002/adma.202003368] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Cancer immunotherapies, including adoptive T cell transfer and immune checkpoint blockades, have recently shown considerable success in cancer treatment. Nevertheless, transferred T cells often become exhausted because of the immunosuppressive tumor microenvironment. Immune checkpoint blockades, in contrast, can reinvigorate the exhausted T cells; however, the therapeutic efficacy is modest in 70-80% of patients. To address some of the challenges faced by the current cancer treatments, here T-cell-membrane-coated nanoparticles (TCMNPs) are developed for cancer immunotherapy. Similar to cytotoxic T cells, TCMNPs can be targeted at tumors via T-cell-membrane-originated proteins and kill cancer cells by releasing anticancer molecules and inducing Fas-ligand-mediated apoptosis. Unlike cytotoxic T cells, TCMNPs are resistant to immunosuppressive molecules (e.g., transforming growth factor-β1 (TGF-β1)) and programmed death-ligand 1 (PD-L1) of cancer cells by scavenging TGF-β1 and PD-L1. Indeed, TCMNPs exhibit higher therapeutic efficacy than an immune checkpoint blockade in melanoma treatment. Furthermore, the anti-tumoral actions of TCMNPs are also demonstrated in the treatment of lung cancer in an antigen-nonspecific manner. Taken together, TCMNPs have a potential to improve the current cancer immunotherapy.
Collapse
Affiliation(s)
- Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Han Young Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Ro Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokyung Kang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Han
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Songhyun Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
46
|
Guido C, Maiorano G, Cortese B, D’Amone S, Palamà IE. Biomimetic Nanocarriers for Cancer Target Therapy. Bioengineering (Basel) 2020; 7:E111. [PMID: 32937963 PMCID: PMC7552783 DOI: 10.3390/bioengineering7030111] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology offers innovative tools for the design of biomimetic nanocarriers for targeted cancer therapy. These nano-systems present several advantages such as cargo's protection and modulation of its release, inclusion of stimuli-responsive elements, and enhanced tumoral accumulation. All together, these nano-systems suffer low therapeutic efficacy in vivo because organisms can recognize and remove foreign nanomaterials. To overcome this important issue, different modifications on nanoparticle surfaces were exploited in order to reach the desired therapeutic efficacy eliciting, also, the response of immune system against cancer cells. For this reason, more recently, a new strategy involving cell membrane-covered nanoparticles for biomedical application has been attracting increasing attention. Membranes from red blood cells, platelets, leukocytes, tumor, and stem cells, have been exploited as biomimetic coatings of nanoparticles for evading clearance or stimulated immune system by maintaining in the same way their targeting capability. In this review, the use of different cell sources as coating of biomimetic nanocarriers for cancer therapy is discussed.
Collapse
Affiliation(s)
- Clara Guido
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy;
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (S.D.)
| | - Gabriele Maiorano
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (S.D.)
| | - Barbara Cortese
- Nanotechnology Institute, CNR-NANOTEC, c/o La Sapienza University, Piazzale A. Moro, 00185 Rome, Italy;
| | - Stefania D’Amone
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (S.D.)
| | - Ilaria Elena Palamà
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (S.D.)
| |
Collapse
|
47
|
Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin Cancer Biol 2020; 80:340-355. [DOI: 10.1016/j.semcancer.2020.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
|
48
|
Parodi A, Evangelopoulos M, Arrighetti N, Cevenini A, Livingston M, Khaled SZ, Brown BS, Yazdi IK, Paradiso F, Campa-Carranza JN, De Vita A, Taraballi F, Tasciotti E. Endosomal Escape of Polymer-Coated Silica Nanoparticles in Endothelial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907693. [PMID: 32643290 DOI: 10.1002/smll.201907693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Current investigations into hazardous nanoparticles (i.e., nanotoxicology) aim to understand the working mechanisms that drive toxicity. This understanding has been used to predict the biological impact of the nanocarriers as a function of their synthesis, material composition, and physicochemical characteristics. It is particularly critical to characterize the events that immediately follow cell stress resulting from nanoparticle internalization. While reactive oxygen species and activation of autophagy are universally recognized as mechanisms of nanotoxicity, the progression of these phenomena during cell recovery has yet to be comprehensively evaluated. Herein, primary human endothelial cells are exposed to controlled concentrations of polymer-functionalized silica nanoparticles to induce lysosomal damage and achieve cytosolic delivery. In this model, the recovery of cell functions lost following endosomal escape is primarily represented by changes in cell distribution and the subsequent partitioning of particles into dividing cells. Furthermore, multilamellar bodies are found to accumulate around the particles, demonstrating progressive endosomal escape. This work provides a set of biological parameters that can be used to assess cell stress related to nanoparticle exposure and the subsequent recovery of cell processes as a function of endosomal escape.
Collapse
Affiliation(s)
- Alessandro Parodi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Michael Evangelopoulos
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Noemi Arrighetti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, 20133, Italy
| | - Armando Cevenini
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate S.C.R.L., Napoli, NA 80145, Italy
| | - Megan Livingston
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Sm Z Khaled
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brandon S Brown
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Iman K Yazdi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Francesca Paradiso
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jocelyn N Campa-Carranza
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Alessandro De Vita
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, 47014, Italy
| | - Francesca Taraballi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Ennio Tasciotti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
49
|
Masterson CH, McCarthy SD, O'Toole D, Laffey JG. The role of cells and their products in respiratory drug delivery: the past, present, and future. Expert Opin Drug Deliv 2020; 17:1689-1702. [PMID: 32842784 DOI: 10.1080/17425247.2020.1814732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Cell-based delivery systems offer considerable promise as novel and innovative therapeutics to target the respiratory system. These systems consist of cells and/or their extracellular vesicles that deliver their contents, such as anti-microbial peptides, micro RNAs, and even mitochondria to the lung, exerting direct therapeutic effects. AREAS COVERED The purpose of this article is to critically review the status of cell-based therapies in the delivery of therapeutics to the lung, evaluate current progress, and elucidate key challenges to the further development of these novel approaches. An overview as to how these cells and/or their products may be modified to enhance efficacy is given. More complex delivery cell-based systems, including cells or vesicles that are genetically modified to (over)express specific therapeutic products, such as proteins and therapeutic nucleic acids are also discussed. Focus is given to the use of the aerosol route to deliver these products directly into the lung. EXPERT OPINION The use of biological carriers to deliver chemical or biological agents demonstrates great potential in modern medicine. The next generation of drug delivery systems may comprise 'cell-inspired' drug carriers that are entirely synthetic, developed using insights from cell-based therapeutics to overcome limitations of current generation synthetic carriers.
Collapse
Affiliation(s)
- Claire H Masterson
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - Sean D McCarthy
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland.,Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group , Galway, Ireland
| |
Collapse
|
50
|
Van Deun J, Roux Q, Deville S, Van Acker T, Rappu P, Miinalainen I, Heino J, Vanhaecke F, De Geest BG, De Wever O, Hendrix A. Feasibility of Mechanical Extrusion to Coat Nanoparticles with Extracellular Vesicle Membranes. Cells 2020; 9:cells9081797. [PMID: 32751082 PMCID: PMC7464356 DOI: 10.3390/cells9081797] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Biomimetic functionalization to confer stealth and targeting properties to nanoparticles is a field of intense study. Extracellular vesicles (EV), sub-micron delivery vehicles for intercellular communication, have unique characteristics for drug delivery. We investigated the top-down functionalization of gold nanoparticles with extracellular vesicle membranes, including both lipids and associated membrane proteins, through mechanical extrusion. EV surface-exposed membrane proteins were confirmed to help avoid unwanted elimination by macrophages, while improving autologous uptake. EV membrane morphology, protein composition and orientation were found to be unaffected by mechanical extrusion. We implemented complementary EV characterization methods, including transmission- and immune-electron microscopy, and nanoparticle tracking analysis, to verify membrane coating, size and zeta potential of the EV membrane-cloaked nanoparticles. While successful EV membrane coating of the gold nanoparticles resulted in lower macrophage uptake, low yield was found to be a significant downside of the extrusion approach. Our data incentivize more research to leverage EV membrane biomimicking as a unique drug delivery approach in the near future.
Collapse
Affiliation(s)
- Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Quentin Roux
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Sarah Deville
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Thibaut Van Acker
- Department of Analytical Chemistry, Ghent University, 9000 Ghent, Belgium; (T.V.A.); (F.V.)
| | - Pekka Rappu
- Department of Biochemistry, University of Turku, 20500 Turku, Finland; (P.R.); (J.H.)
| | - Ilkka Miinalainen
- Biocenter Oulu, Department of Pathology, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland;
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, 20500 Turku, Finland; (P.R.); (J.H.)
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Ghent University, 9000 Ghent, Belgium; (T.V.A.); (F.V.)
| | | | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|