1
|
Seo D, Ito R, Ishikawa K, Miura T, Yamamoto Y, Onodera Y, Nishioka S, Ito YM, Fuyama K, Maeda T. 3D scanner's potential as a novel tool for lymphedema measurement in mouse hindlimb models. Sci Rep 2025; 15:3747. [PMID: 39885185 PMCID: PMC11782579 DOI: 10.1038/s41598-025-85637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
Lymphedema is characterized by persistent swelling due to impaired lymphatic function and presents significant challenges in both research and clinical settings. Traditional contact-based measurement techniques such as paw thickness and circumferential measurements using calipers or silk thread are useful but limited by observer variability and measurement accuracy. Non-contact methods, including various imaging techniques, offer improvements but often at higher cost and complexity. In this study, we address the need for a more reliable, cost-effective, and non-invasive method for assessing lymphedema in mouse models. Here we show that 3D scanning technology can enhance the measurement of lymphedema in a mouse hindlimb model. Our results indicate that 3D scanners provide more consistent measurements with lower variability compared with conventional methods and without the need for direct contact, which could potentially alter the measurement outcomes. The findings of this study suggest that 3D scanning could replace traditional methods, offering a more standardized and less subjective tool for lymphedema research in the near future. This technology would not only improve upon conventional methods but also extend the capabilities for detailed anatomical analyses in small animal models, which could have implications for other areas of biomedical research.
Collapse
Affiliation(s)
- Dongkyung Seo
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Riri Ito
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Soichiro Nishioka
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoichi M Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Kanako Fuyama
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Bucan A, Frendø M, Ngo MT, Sørensen JA, Hölmich LR. Surgical lymphedema models in the mice hindlimb-A systematic review and quality assessment. Microsurgery 2024; 44:e31088. [PMID: 37665032 DOI: 10.1002/micr.31088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Lymphedema constitutes a major unsolved problem in plastic surgery. To identify novel lymphedema treatments, preclinical studies are vital. The surgical mouse lymphedema model is popular and cost-effective; nonetheless, a synthesis and overview of the literature with evidence-based guidelines is needed. The aim of this review was to perform a systematic review to establish best practice and support future high-quality animal studies exploring lymphedema treatments. METHODS We performed a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching four databases (PubMed, Embase, Web of Science, and Scopus) from inception-September 2022. The Animals in Research Reporting In Vivo Experiments 2.0 (ARRIVE 2.0) guidelines were used to evaluate reporting quality. Studies claiming to surgically induce lymphedema in the hindlimb of mice were included. RESULTS Thirty-seven studies were included. Four main models were used. (1) Irradiation+surgery. (2) A variation of the surgery used by (1) + irradiation. (3) Surgery only (SPDF-model). (4) Surgery only (PLND-model). Remaining studies used other techniques. The most common measurement modality was the caliper. Mean quality coefficient was 0.57. Eighteen studies (49%) successfully induced sustained lymphedema. Combination of methods seemed to yield the best results, with an overrepresentation of irradiation, the removal of two lymph nodes, and the disruption of both the deep and superficial lymph vessels in the 18 studies. CONCLUSION Surgical mouse hindlimb lymphedema models are challenged by two related problems: (1) retaining lymphedema for an extended period, that is, establishing a (chronic) lymphedema model (2) distinguishing lymphedema from post-operative edema. Most studies failed to induce lymphedema and used error-prone measurements. We provide an overview of studies claiming to induce lymphedema and advocate improved research via five evidence-based recommendations to use: (1) a proven lymphedema model; (2) sufficient follow-up time, (3) validated measurement methods; (4) ARRIVE-guidelines; (5) contralateral hindlimb as control.
Collapse
Affiliation(s)
- Amar Bucan
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Martin Frendø
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation (CAMES), Center for HR & Education, Copenhagen, Denmark
| | - Mikaella Ty Ngo
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Jens Ahm Sørensen
- Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark
| | - Lisbet Rosenkrantz Hölmich
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Ton C, Salehi S, Abasi S, Aggas JR, Liu R, Brandacher G, Guiseppi-Elie A, Grayson WL. Methods of ex vivo analysis of tissue status in vascularized composite allografts. J Transl Med 2023; 21:609. [PMID: 37684651 PMCID: PMC10492401 DOI: 10.1186/s12967-023-04379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 09/10/2023] Open
Abstract
Vascularized composite allotransplantation can improve quality of life and restore functionality. However, the complex tissue composition of vascularized composite allografts (VCAs) presents unique clinical challenges that increase the likelihood of transplant rejection. Under prolonged static cold storage, highly damage-susceptible tissues such as muscle and nerve undergo irreversible degradation that may render allografts non-functional. Skin-containing VCA elicits an immunogenic response that increases the risk of recipient allograft rejection. The development of quantitative metrics to evaluate VCAs prior to and following transplantation are key to mitigating allograft rejection. Correspondingly, a broad range of bioanalytical methods have emerged to assess the progression of VCA rejection and characterize transplantation outcomes. To consolidate the current range of relevant technologies and expand on potential for development, methods to evaluate ex vivo VCA status are herein reviewed and comparatively assessed. The use of implantable physiological status monitoring biochips, non-invasive bioimpedance monitoring to assess edema, and deep learning algorithms to fuse disparate inputs to stratify VCAs are identified.
Collapse
Affiliation(s)
- Carolyn Ton
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Salehi
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Abasi
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Media and Metabolism, Wildtype, Inc., 2325 3rd St., San Francisco, CA, 94107, USA
| | - John R Aggas
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Test Development, Roche Diagnostics, 9115 Hague Road, Indianapolis, IN, 46256, USA
| | - Renee Liu
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Reconstructive Transplantation Program, Center for Advanced Physiologic Modeling (CAPM), Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, USA.
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, USA.
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Cheon H, Gelvosa MN, Kim SA, Song H, Jeon JY. Lymphatic channel sheet of polydimethylsiloxane for preventing secondary lymphedema in the rat upper limb model. Bioeng Transl Med 2023; 8:e10371. [PMID: 36684082 PMCID: PMC9842043 DOI: 10.1002/btm2.10371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Secondary lymphedema is a severe complication of cancer treatment, but there is no effective curative method yet. Lymph node dissection and radiation therapy for cancer treatment may lead to secondary lymphedema, which is a chronic disease induced by malfunction of lymphatic flow. The lymphatic channel sheet (LCS) is an artificial micro-fluidic structure that was fabricated with polydimethylsiloxane to maintain lymphatic flow and induce lymphangiogenesis. The structure has two-dimensional multichannels that increase the probability of lymphangiogenesis and allow for relatively easy application. We verified the efficacy of the lymphatic channel sheet through macroscopic and microscopic observation in small animal models, which underwent brachial lymph node dissection and irradiation. The lymphatic channel sheet enabled the successful transport of lymphatic fluid from the distal to the proximal area in place of the removed brachial lymph nodes. It prevented swelling and abnormal lymphatic drainage during the follow-up period. Lymphangiogenesis was also identified inside the channel by histological analysis after 8 weeks. According to these experimental results, we attest to the roles of the lymphatic channel sheet as a lymphatic pathway and scaffold in the rat upper limb model of secondary lymphedema. The lymphatic channel sheet maintained lymphatic flow after lymph node dissection and irradiation in an environment where lymph flow is cut off. It also relieved symptoms of secondary lymphedema by providing a lymph-friendly space and inducing lymphangiogenesis.
Collapse
Affiliation(s)
- Hwayeong Cheon
- Biomedical Engineering Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulRepublic of Korea
| | - Ma. Nessa Gelvosa
- Department of Rehabilitation MedicineAsan Medical Center, University of Ulsan College of MedicineSeoulRepublic of Korea
| | - Sang Ah Kim
- Department of Rehabilitation MedicineAsan Medical Center, University of Ulsan College of MedicineSeoulRepublic of Korea
| | - Ho‐Young Song
- Department of Minimal‐Invasive InterventionThe Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhou CityChina
| | - Jae Yong Jeon
- Department of Rehabilitation MedicineAsan Medical Center, University of Ulsan College of MedicineSeoulRepublic of Korea
| |
Collapse
|
5
|
Hsu JF, Yu RP, Stanton EW, Wang J, Wong AK. Current Advancements in Animal Models of Postsurgical Lymphedema: A Systematic Review. Adv Wound Care (New Rochelle) 2022; 11:399-418. [PMID: 34128396 PMCID: PMC9142133 DOI: 10.1089/wound.2021.0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Secondary lymphedema is a debilitating disease caused by lymphatic dysfunction characterized by chronic swelling, dysregulated inflammation, disfigurement, and compromised wound healing. Since there is no effective cure, animal model systems that support basic science research into the mechanisms of secondary lymphedema are critical to advancing the field. Recent Advances: Over the last decade, lymphatic research has led to the improvement of existing animal lymphedema models and the establishment of new models. Although an ideal model does not exist, it is important to consider the strengths and limitations of currently available options. In a systematic review adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we present recent developments in the field of animal lymphedema models and provide a concise comparison of ease, cost, reliability, and clinical translatability. Critical Issues: The incidence of secondary lymphedema is increasing, and there is no gold standard of treatment or cure for secondary lymphedema. Future Directions: As we iterate and create animal models that more closely characterize human lymphedema, we can achieve a deeper understanding of the pathophysiology and potentially develop effective therapeutics for patients.
Collapse
Affiliation(s)
- Jerry F. Hsu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roy P. Yu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Eloise W. Stanton
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jin Wang
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Alex K. Wong
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Correspondence: Division of Plastic Surgery, City of Hope National Medical Center, 1500 E. Duarte Road, Pavillion 2216, Duarte, CA 91010, USA.
| |
Collapse
|
6
|
Microcomputed tomography versus plethysmometer and electronic caliper in the measurements of lymphedema in the hindlimb of mice. Sci Rep 2022; 12:12267. [PMID: 35851094 PMCID: PMC9293915 DOI: 10.1038/s41598-022-16311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
Lymphedema affects 20% of women diagnosed with breast cancer. It is a pathology with no known cure. Animal models are essential to explore possible treatments to understand and potentially cure lymphedema. The rodent hindlimb lymphedema model is one of the most widely used. Different modalities have been used to measure lymphedema in the hindlimb of mice, and these are generally poorly assessed in terms of the interrater agreement; thus, there could be a risk of measuring bias and poor reproducibility. We examined the interrater agreement of µCT-scans, electronic caliper thickness of the paw and plethysmometer in the measurement of lymphedema in the hindlimb of mice. Three independent raters assessed 24 C57BL6 mice using these three modalities four times (week 1, 2, 4 and 8) with a total of 96 samples. The mean interrater differences were then calculated. The interrater agreement was highest in the µCT-scans, with an extremely low risk of measurement bias. The interrater agreement in the plethysmometer and electronic caliper was comparable with a low to moderate risk of measurement bias. The µCT-scanner should be used whenever possible. The electronic caliper should only be used if there is no µCT-scanner available. The plethysmometer should not be used in rodents of this size.
Collapse
|
7
|
Frueh FS, Gassert L, Scheuer C, Müller A, Fries P, Boewe AS, Ampofo E, Rübe CE, Menger MD, Laschke MW. Adipose tissue-derived microvascular fragments promote lymphangiogenesis in a murine lymphedema model. J Tissue Eng 2022; 13:20417314221109957. [PMID: 35923176 PMCID: PMC9340320 DOI: 10.1177/20417314221109957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/12/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic lymphedema after cancer treatment is common and there is still no cure for this disease. We herein investigated the lymphangiogenic capacity of adipose tissue-derived microvascular fragments (MVF), which contain stem cells and lymphatic vessel fragments. Secondary lymphedema was induced in the hindlimbs of C57BL/6J mice. Green fluorescence protein (GFP)+ MVF were isolated from transgenic C57BL/6Tg (CAG-EGFP)1Osb/J mice, suspended in collagen hydrogel, and injected in the lymphadenectomy defect of wild-type animals. This crossover model allowed the detection of MVF-derived blood and lymphatic vessels after transplantation. The MVF group was compared with animals receiving collagen hydrogel only or a sham intervention. Lymphangiogenic effects were analyzed using volumetry, magnetic resonance (MR) lymphography, histology, and immunohistochemistry. MVF injection resulted in reduced hindlimb volumes when compared to non-treated controls. MR lymphography revealed lymphatic regeneration with reduced dermal backflow after MVF treatment. Finally, MVF transplantation promoted popliteal angiogenesis and lymphangiogenesis associated with a significantly increased microvessel and lymphatic vessel density. These findings indicate that MVF transplantation represents a promising approach to induce therapeutic lymphangiogenesis.
Collapse
Affiliation(s)
- Florian S Frueh
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Laura Gassert
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Andreas Müller
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Peter Fries
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Anne S Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Claudia E Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
8
|
Suzuki Y, Nakajima Y, Nakatani T, Okuwa M, Sugama J. Comparison of normal hindlimb lymphatic systems in rats with detours present after lymphatic flow blockage. PLoS One 2021; 16:e0260404. [PMID: 34898636 PMCID: PMC8668128 DOI: 10.1371/journal.pone.0260404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
In the present study, we aimed to identify the normal hindlimb lymphatic systems in rats and compare them with the detours after lymphatic flow blockage. The lymphatic systems of the hindlimbs of normal rats were investigated via lymphography using a near-infrared fluorescence imaging system. The lymphatic vessels were stained using Evans Blue. The lymphatic flow was blocked through lymphatic vessel ligation combined with inguinal and popliteal lymph node dissection. Detours that appeared after 30 days were visualized using lymphography and immunostaining with anti-podoplanin antibodies. Three main results were obtained in the present study. First, the deep medial system, the superficial medial system, a connection between the superficial and deep medial lymphatic systems, and the superficial lateral system, were elucidated. Second, three types of detours, namely the detour of the lateral abdomen, the detour to the lymphatic vessel near the midline of the abdomen, and the detour to the contralateral inguinal lymph node, were identified after lymphatic flow blockage. Lastly, detours were located in the fatty layer above the panniculus carnosus muscle and their lumina were wide. The histology suggested that the detour was a pre-collecting lymphatic vessel. Lymphatic routes in the rat hindlimbs after lymphatic flow blockage were different from those of the normal rat lymphatic system. It was suggested that the detour is a pre-collecting lymphatic vessel and that encouraging its development may be a new method of simple lymphatic drainage.
Collapse
Affiliation(s)
- Yuiko Suzuki
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
- Faculty of Health Sciences, Komatsu University, Ishikawa, Japan
| | - Yukari Nakajima
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
- * E-mail: (YN); (JS)
| | - Toshio Nakatani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Mayumi Okuwa
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Junko Sugama
- Research Center for Implementation Nursing Science Initiative, School of Health Sciences, Fujita Health University, Aichi, Japan
- * E-mail: (YN); (JS)
| |
Collapse
|
9
|
Awwad A. Editorial for: "Noncontrast MR Lymphography in Secondary Lower Limb Lymphedema". J Magn Reson Imaging 2020; 53:467-468. [PMID: 32851747 DOI: 10.1002/jmri.27343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Amir Awwad
- NIHR Nottingham Biomedical Research Centre, Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Radiology Department, Barts Health NHS Trust, St Bartholomew's and Royal London Hospitals, London, UK
| |
Collapse
|
10
|
Bucan A, Dhumale P, Jørgensen MG, Dalaei F, Wiinholt A, Hansen CR, Hvidsten S, Baun C, Hejbøl EK, Schrøder HD, Sørensen JA. Comparison between stromal vascular fraction and adipose derived stem cells in a mouse lymphedema model. J Plast Surg Hand Surg 2020; 54:302-311. [PMID: 32520635 DOI: 10.1080/2000656x.2020.1772799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: Lymphedema is one of the most common complications following breast cancer. Axillary lymph node dissection and radiotherapy are two well-known risk factors resulting in either removal or damage to the lymph nodes. As stem cells are known for their regenerative capabilities, they could theoretically repair/restore the damaged lymph vessels leading to a decrease in lymphedema.Methods: We evaluated the treatment of SVF and ASC on a mouse lymphedema model. Forty-five mice were allocated into three groups containing 15 mice each. The SVF group was injected with 100 μl containing 1 × 106 SVF, the ASC group with 100 μl ml containing 1 × 106 ASC and the NS with 100 μl ml of NS. Volumes of the mice were assessed weekly by μCT hindlimb volumetry for a total of 8 weeks. Lymph vessel morphometry was assessed by cross-sections of both hindlimbs stained for anti-LYVE1. Lymphatic function was assessed by lymphatic clearance.Results: The volume change between the groups was non-significant throughout all 8 weeks. The immunohistochemistry showed a statistically significant difference between the hindlimbs in ASC vs. NS group p = 0.032, 95% CI [-2121, -103].Conclusion: The volume of the hindlimbs showed that treatment with SVF or ASC yielded very similar results compared to the control group when assessed after 8 weeks. In week two the biggest difference between ASC and NS was seen but the difference diminished during the 8 weeks. The secondary outcomes showed that the lymph vessel lumen decreased when treated with ASC compared to the control group. Lymphoscintigraphy yielded non-significant results.
Collapse
Affiliation(s)
- Amar Bucan
- Research Unit for Plastic Surgery, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Pratibha Dhumale
- Department of Clinical Biochemistry and Pharmacology, University of Southern Denmark, Odense, Denmark
| | - Mads Gustaf Jørgensen
- Research Unit for Plastic Surgery, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Farima Dalaei
- Research Unit for Plastic Surgery, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Alexander Wiinholt
- Research Unit for Plastic Surgery, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Christian Rønn Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Svend Hvidsten
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | | | - Jens Ahm Sørensen
- Research Unit for Plastic Surgery, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Quantification of tissue volume in the hindlimb of mice using microcomputed tomography images and analysing software. Sci Rep 2020; 10:8297. [PMID: 32427873 PMCID: PMC7237686 DOI: 10.1038/s41598-020-65214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/30/2020] [Indexed: 11/25/2022] Open
Abstract
When studying illnesses that cause disturbance in volume such as lymphedema, reliable quantification of tissue volume is important. Lymphedema results in swelling and enlargement of extremities and can be both physically and psychologically stressful to the patient. Experiments in rodent models provide a cost-effective research platform and are important for preclinical research on lymphedema. When performing such research, it can be crucial to measure the changes in tissue volume. Researchers must ensure that the risk of measurement error, when measuring the tissue volume, is as low as possible. The main goal of this article was to perform a comprehensive examination of the intra- and interrater agreement and hereby assess the risk of measurement error when using microcomputed tomography (µCT) images to measure hindlimb volume. We examined the agreement between four raters with different levels of prior experience and found that the risk of measurement error is extremely low when using this method. The main limitation of this method is that it is relatively expensive and time-consuming. The main advantages of this method are that it is easily learned and that it has a high intra- and interrater agreement, even for raters with no prior measuring experience.
Collapse
|
12
|
The Roles of Podoplanin-Positive/Podoplanin-Negative Cells from Adipose-Derived Stem Cells in Lymphatic Regeneration. Plast Reconstr Surg 2020; 145:420-431. [DOI: 10.1097/prs.0000000000006474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Czepukojc B, Abuhaliema A, Barghash A, Tierling S, Naß N, Simon Y, Körbel C, Cadenas C, van Hul N, Sachinidis A, Hengstler JG, Helms V, Laschke MW, Walter J, Haybaeck J, Leclercq I, Kiemer AK, Kessler SM. IGF2 mRNA Binding Protein 2 Transgenic Mice Are More Prone to Develop a Ductular Reaction and to Progress Toward Cirrhosis. Front Med (Lausanne) 2019; 6:179. [PMID: 31555647 PMCID: PMC6737005 DOI: 10.3389/fmed.2019.00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
The insulin-like growth factor 2 (IGF2) mRNA binding proteins (IMPs/IGF2BPs) IMP1 and 3 are regarded as oncofetal proteins, whereas the hepatic IMP2 expression in adults is controversially discussed. The splice variant IMP2-2/p62 promotes steatohepatitis and hepatocellular carcinoma. Aim of this study was to clarify whether IMP2 is expressed in the adult liver and influences progression toward cirrhosis. IMP2 was expressed at higher levels in embryonic compared to adult tissues as quantified in embryonic, newborn, and adult C57BL/6J mouse livers and suggested by analysis of publicly available human data. In an IMP2-2 transgenic mouse model microarray and qPCR analyses revealed increased expression of liver progenitor cell (LPC) markers Bex1, Prom1, Spp1, and Cdh1 indicating a de-differentiated liver cell phenotype. Induction of these LPC markers was confirmed in human cirrhotic tissue datasets. The LPC marker SPP1 has been described to play a major role in fibrogenesis. Thus, DNA methylation was investigated in order to decipher the regulatory mechanism of Spp1 induction. In IMP2-2 transgenic mouse livers single CpG sites were differentially methylated, as quantified by amplicon sequencing, whereas human HCC samples of a human publicly available dataset showed promoter hypomethylation. In order to study the impact of IMP2 on fibrogenesis in the context of steatohepatitis wild-type or IMP2-2 transgenic mice were fed either a methionine-choline deficient (MCD) or a control diet for 2-12 weeks. MCD-fed IMP2-2 transgenic mice showed a higher incidence of ductular reaction (DR), accompanied by hepatic stellate cell activation, extracellular matrix (ECM) deposition, and induction of the LPC markers Spp1, Cdh1, and Afp suggesting the occurrence of de-differentiated cells in transgenic livers. In human cirrhotic samples IMP2 overexpression correlated with LPC marker and ECM component expression. Progression of liver disease was induced by combined MCD and diethylnitrosamine (DEN) treatment. Combined MCD-DEN treatment resulted in shorter survival of IMP2-2 transgenic compared to wild-type mice. Only IMP2-2 transgenic livers progressed to cirrhosis, which was accompanied by strong DR. In conclusion, IMP2 is an oncofetal protein in the liver that promotes DR characterized by de-differentiated cells toward steatohepatitis-associated cirrhosis development with poor survival.
Collapse
Affiliation(s)
- Beate Czepukojc
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Ali Abuhaliema
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Ahmad Barghash
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.,Department of Computer Science, German Jordanian University, Amman, Jordan
| | - Sascha Tierling
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Norbert Naß
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yvette Simon
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Christina Körbel
- Institute of Clinical-Experimental Surgery, Saarland University Hospital, Homburg, Germany
| | - Cristina Cadenas
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Dortmund, Germany
| | - Noemi van Hul
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Agapios Sachinidis
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Jan G Hengstler
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Dortmund, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Matthias W Laschke
- Institute of Clinical-Experimental Surgery, Saarland University Hospital, Homburg, Germany
| | - Jörn Walter
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Pathology, Medical University of Graz, Graz, Austria.,Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
14
|
Choi J, Kim KY, Jeon JY, Yoon SH, Park JH, Song HY, Cho KJ. Development and Evaluation of a New In Vivo Volume Measuring System in Mouse Tail Lymphedema Model. Lymphat Res Biol 2019; 17:402-412. [DOI: 10.1089/lrb.2018.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Joonmyeong Choi
- Biorobotics Laboratory, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kun Yung Kim
- Department of Radiology, Chonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Republic of Korea
| | - Jae Yong Jeon
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Hwan Yoon
- Department of Biomedical Engineering Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho-Young Song
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyu-Jin Cho
- Biorobotics Laboratory, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
|
16
|
Magnetic Resonance Lymphography at 9.4 T Using a Gadolinium-Based Nanoparticle in Rats: Investigations in Healthy Animals and in a Hindlimb Lymphedema Model. Invest Radiol 2018; 52:725-733. [PMID: 28678084 DOI: 10.1097/rli.0000000000000398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Magnetic resonance lymphography (MRL) in small animals is a promising but challenging tool in preclinical lymphatic research. In this study, we compared the gadolinium (Gd)-based nanoparticle AGuIX with Gd-DOTA for interstitial MRL in healthy rats and in a chronic rat hindlimb lymphedema model. MATERIALS AND METHODS A comparative study with AGuIX and Gd-DOTA for interstitial MRL was performed in healthy Lewis rats (n = 6). For this purpose, 75 μL of 3 mM AGuIX (containing 30 mM Gd-DOTA side residues) and 75 μL 30 mM Gd-DOTA were injected simultaneously in the right and left hindlimbs. Repetitive high-resolution, 3-dimensional time-of-flight gradient recalled echo MRL sequences were acquired over a period of 90 minutes using a 9.4 T animal scanner. Gadofosveset-enhanced MR angiography and surgical dissection after methylene blue injection served as supportive imaging techniques. In a subsequent proof-of-principle study, AGuIX-based MRL was investigated in a hindlimb model of chronic lymphedema (n = 4). Lymphedema of the right hindlimbs was induced by means of popliteal and inguinal lymphadenectomy and irradiation with 20 Gy. The nonoperated left hindlimbs served as intraindividual controls. Six, 10, and 14 weeks after lymphadenectomy, MRL investigations were performed to objectify lymphatic reorganization. Finally, skin samples of the lymphedematous and the contralateral control hindlimbs were analyzed by means of histology and immunohistochemistry. RESULTS AGuIX-based MRL resulted in high-resolution anatomical depiction of the rodent hindlimb lymphatic system. Signal-to-noise ratio and contrast-to-noise ratio of the popliteal lymph node were increased directly after injection and remained significantly elevated for up to 90 minutes after application. AGuIX provided significantly higher and prolonged signal intensity enhancement as compared with Gd-DOTA. Furthermore, AGuIX-based MRL demonstrated lymphatic regeneration in the histopathologically verified chronic lymphedema model. Collateral lymphatic vessels were detectable 6 weeks after lymphadenectomy. CONCLUSIONS This study demonstrates that AGuIX is a suitable contrast agent for preclinical interstitial MRL in rodents. AGuIX yields anatomical imaging of lymphatic vessels with diameters greater than 200 μm. Moreover, it resides in the lymphatic system for a prolonged time. AGuIX may therefore facilitate high-resolution MRL-based analyses of the lymphatic system in rodents.
Collapse
|
17
|
Hadar R, Dong L, Del-Valle-Anton L, Guneykaya D, Voget M, Edemann-Callesen H, Schweibold R, Djodari-Irani A, Goetz T, Ewing S, Kettenmann H, Wolf SA, Winter C. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation. Brain Behav Immun 2017; 63:71-80. [PMID: 27939248 DOI: 10.1016/j.bbi.2016.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease.
Collapse
Affiliation(s)
- Ravit Hadar
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universitaet Dresden, Germany
| | - Le Dong
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lucia Del-Valle-Anton
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dilansu Guneykaya
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mareike Voget
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universitaet Dresden, Germany; International Graduate Program Medical Neurosciences, Charité - Universitaetsmedizin Berlin, Germany
| | - Henriette Edemann-Callesen
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universitaet Dresden, Germany; International Graduate Program Medical Neurosciences, Charité - Universitaetsmedizin Berlin, Germany
| | - Regina Schweibold
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anais Djodari-Irani
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Goetz
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universitaet Dresden, Germany
| | - Samuel Ewing
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universitaet Dresden, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Susanne A Wolf
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universitaet Dresden, Germany
| |
Collapse
|
18
|
An Important Role of VEGF-C in Promoting Lymphedema Development. J Invest Dermatol 2017; 137:1995-2004. [PMID: 28526302 DOI: 10.1016/j.jid.2017.04.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/11/2017] [Accepted: 04/18/2017] [Indexed: 12/29/2022]
Abstract
Secondary lymphedema is a common complication after cancer treatment, but the pathomechanisms underlying the disease remain unclear. Using a mouse tail lymphedema model, we found an increase in local and systemic levels of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C and identified CD68+ macrophages as a cellular source. Surprisingly, overexpression of VEGF-C in a transgenic mouse model led to aggravation of lymphedema with increased immune cell infiltration and vascular leakage compared with wild-type littermates. Conversely, blockage of VEGF-C by overexpression of soluble VEGF receptor-3 reduced edema development, diminishing inflammation and blood vascular leakage. Similar findings were obtained in a hind limb lymph node excision lymphedema model. Flow cytometry analyses and immunofluorescence stainings in lymphedematic tissue showed that VEGF receptor-3 expression was restricted to lymphatic endothelial cells. Our data suggest that endogenous VEGF-C causes blood vascular leakage and fluid influx into the tissue, thus actively contributing to edema formation. These data may provide the basis for future clinical therapeutic approaches.
Collapse
|