1
|
Derman ID, Moses JC, Rivera T, Ozbolat IT. Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues. Bioact Mater 2025; 43:195-224. [PMID: 39386221 PMCID: PMC11462153 DOI: 10.1016/j.bioactmat.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The epithelium is one of the important tissues in the body as it plays a crucial barrier role serving as a gateway into and out of the body. Most organs in the body contain an epithelial tissue component, where the tightly connected, organ-specific epithelial cells organize into cysts, invaginations, or tubules, thereby performing distinct to endocrine or exocrine secretory functions. Despite the significance of epithelium, engineering functional epithelium in vitro has remained a challenge due to it is special architecture, heterotypic composition of epithelial tissues, and most importantly, difficulty in attaining the apico-basal and planar polarity of epithelial cells. Bioprinting has brought a paradigm shift in fabricating such apico-basal polarized tissues. In this review, we provide an overview of epithelial tissues and provide insights on recapitulating their cellular arrangement and polarization to achieve epithelial function. We describe the different bioprinting techniques that have been successful in engineering polarized epithelium, which can serve as in vitro models for understanding homeostasis and studying diseased conditions. We also discuss the different attempts that have been investigated to study these 3D bioprinted engineered epithelium for preclinical use. Finally, we highlight the challenges and the opportunities that need to be addressed for translation of 3D bioprinted epithelial tissues towards paving way for personalized healthcare in the future.
Collapse
Affiliation(s)
- Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Joseph Christakiran Moses
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Cancer Institute, Penn State University, University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University, University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, 01330, Turkey
| |
Collapse
|
2
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408032. [PMID: 39420757 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
- Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
3
|
Rayat Pisheh H, Haghdel M, Jahangir M, Hoseinian MS, Rostami Yasuj S, Sarhadi Roodbari A. Effective and new technologies in kidney tissue engineering. Front Bioeng Biotechnol 2024; 12:1476510. [PMID: 39479295 PMCID: PMC11521926 DOI: 10.3389/fbioe.2024.1476510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Kidney disease encompasses a wide spectrum of conditions, ranging from simple infections to chronic kidney disease. When the kidneys are unable to filter blood and remove waste products, these abnormalities can lead to kidney failure. In severe cases of kidney failure, kidney transplantation is considered the only definitive treatment. Worldwide, the World Health Organization (WHO) repeatedly emphasizes the importance of organ donation and increasing transplantation rates. Many countries implement national programs to promote the culture of organ donation and improve patient access to kidney transplantation. The extent to which this procedure is performed varies across countries and is influenced by several factors, including the volume of organ donation, medical infrastructure, access to technology and health policies. However, a kidney transplant comes with challenges and problems that impact its success. Kidney tissue engineering is a new approach that shows promise for repairing and replacing damaged kidney tissue. This article reviews recent advances in kidney tissue engineering, focusing on engineered structures such as hydrogels, electrospinning, 3D bioprinting, and microfluidic systems. By mimicking the extracellular environment of the kidney, these structures provide suitable conditions for the growth and development of kidney cells. The role of these structures in the formation of blood vessels, the mimicry of kidney functions and the challenges in this field were also discussed. The results of this study show that kidney tissue engineering has high potential for treating kidney diseases and reducing the need for kidney transplantation. However, to achieve clinical application of this technology, further research is required to improve the biocompatibility, vascularization and long-term performance of engineered tissues.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobin Haghdel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboube Jahangir
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Sadat Hoseinian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaghayegh Rostami Yasuj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Sarhadi Roodbari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Kiranmai G, Alam A, Chameettachal S, Khandelwal M, Pati F. Engineering a Biomimetic Glomerular Filtration Barrier: Coculturing Endothelial Podocytes on Kidney ECM-Bacterial Cellulose Membrane Hybrid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52008-52022. [PMID: 39305285 DOI: 10.1021/acsami.4c09505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A novel avenue for advancing our understanding of kidney disease mechanisms and developing targeted therapeutics lies in overcoming the limitations of the existing in vitro models. Traditional animal models, while useful, do not fully capture the intricacies of human kidney physiology and pathophysiology. Tissue engineering offers a promising solution, yet current models often fall short in replicating the complex microarchitecture and biochemical milieu of the kidney. To address this challenge, we propose the development of a sophisticated in vitro glomerular filtration barrier (GFB) utilizing advanced biomaterials and a kidney decellularized extracellular matrix (kdECM). In our approach, we employ a bacterial cellulose membrane (BC) as a scaffold, providing a robust framework for cell growth and interaction. Coating this scaffold with kdECM hydrogel derived from caprine kidney tissue via a detergent-free decellularization method ensures the preservation of vital extracellular matrix proteins crucial for cellular compatibility and signaling. Our engineered GFB not only supports the growth of endothelial and podocyte cells but also exhibits the presence of key markers such as CD31 and nephrin, indicating successful cellular integration. Furthermore, the expression of collagen IV, an essential extracellular matrix (ECM) protein, validates the fidelity of our model in simulating cellular interactions within a kdECM matrix. Additionally, we assessed the filtration efficiency of the developed GFB model using albumin, a standard protein, to evaluate its performance under conditions that closely mimic the native physiological environment. This innovative approach, which faithfully recapitulates the native microenvironment of the glomerulus, holds immense promise for elucidating kidney disease mechanisms, conducting permeability studies, and advancing personalized therapeutic strategies. By leveraging cutting-edge biomaterials and tissue-specific coculture technology, this study can be further extended to develop GFB for the treatment of renal diseases, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Aszad Alam
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| |
Collapse
|
5
|
Lee G, Kim SJ, Park JK. Bioprinted Multi-Composition Array Mimicking Tumor Microenvironments to Evaluate Drug Efficacy with Multivariable Analysis. Adv Healthc Mater 2024; 13:e2303716. [PMID: 38830208 DOI: 10.1002/adhm.202303716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Current organ-on-a-chip technologies confront limitations in effectively recapitulating the intricate in vivo microenvironments and accommodating diverse experimental conditions on a single device. Here, a novel approach for constructing a multi-composition tumor array on a single microfluidic device, mimicking complex transport phenomena within tumor microenvironments (TMEs) and allowing for simultaneous evaluation of drug efficacy across 12 distinct conditions is presented. The TME array formed by bioprinting on a microfluidic substrate consists of 36 individual TME models, each characterized by one of three different compositions and tested under four varying drug concentrations. Notably, the TME model exhibits precise compartmentalization, fostering the development of self-organized vascular endothelial barriers surrounding breast cancer spheroids affecting substance transport. Multivariable screening and analysis of diverse conditions, including model complexity, replicates, and drug concentrations, within a single microfluidic platform, highlight the synergistic potential of integrating bioprinting with microfluidics to evaluate drug responses across diverse TME conditions comprehensively.
Collapse
Affiliation(s)
- Gihyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soo Jee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology, KAIST Institutes (KI), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Nanocentury, KAIST Institutes (KI), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Figueroa-Milla AE, DeMaria W, Wells D, Jeon O, Alsberg E, Rolle MW. Vascular tissues bioprinted with smooth muscle cell-only bioinks in support baths mimic features of native coronary arteries. Biofabrication 2024; 16:045033. [PMID: 39121893 DOI: 10.1088/1758-5090/ad6d8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
This study explores the bioprinting of a smooth muscle cell-only bioink into ionically crosslinked oxidized methacrylated alginate (OMA) microgel baths to create self-supporting vascular tissues. The impact of OMA microgel support bath methacrylation degree and cell-only bioink dispensing parameters on tissue formation, remodeling, structure and strength was investigated. We hypothesized that reducing dispensing tip diameter from 27 G (210μm) to 30 G (159μm) for cell-only bioink dispensing would reduce tissue wall thickness and improve the consistency of tissue dimensions while maintaining cell viability. Printing with 30 G tips resulted in decreased mean wall thickness (318.6μm) without compromising mean cell viability (94.8%). Histological analysis of cell-only smooth muscle tissues cultured for 14 d in OMA support baths exhibited decreased wall thickness using 30 G dispensing tips, which correlated with increased collagen deposition and alignment. In addition, a TUNEL assay indicated a decrease in cell death in tissues printed with thinner (30 G) dispensing tips. Mechanical testing demonstrated that tissues printed with a 30 G dispensing tip exhibit an increase in ultimate tensile strength compared to those printed with a 27 G dispensing tip. Overall, these findings highlight the importance of precise control over bioprinting parameters to generate mechanically robust tissues when using cell-only bioinks dispensed and cultured within hydrogel support baths. The ability to control print dimensions using cell-only bioinks may enable bioprinting of more complex soft tissue geometries to generatein vitrotissue models.
Collapse
Affiliation(s)
- Andre E Figueroa-Milla
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - William DeMaria
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Derrick Wells
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL, United States of America
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
- The Roux Institute at Northeastern University, Portland, ME, United States of America
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
| |
Collapse
|
7
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
8
|
Ino K, Konno A, Utagawa Y, Kanno T, Iwase K, Abe H, Shiku H. Fabrication of Two-Layer Microfluidic Devices with Porous Electrodes Using Printed Sacrificial Layers. MICROMACHINES 2024; 15:1054. [PMID: 39203705 PMCID: PMC11356774 DOI: 10.3390/mi15081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
Two-layer microfluidic devices with porous membranes have been widely used in bioapplications such as microphysiological systems (MPS). Porous electrodes, instead of membranes, have recently been incorporated into devices for electrochemical cell analysis. Generally, microfluidic channels are prepared using soft lithography and assembled into two-layer microfluidic devices. In addition to soft lithography, three-dimensional (3D) printing has been widely used for the direct fabrication of microfluidic devices because of its high flexibility. However, this technique has not yet been applied to the fabrication of two-layer microfluidic devices with porous electrodes. This paper proposes a novel fabrication process for this type of device. In brief, Pluronic F-127 ink was three-dimensionally printed in the form of sacrificial layers. A porous Au electrode, fabricated by sputtering Au on track-etched polyethylene terephthalate membranes, was placed between the top and bottom sacrificial layers. After covering with polydimethylsiloxane, the sacrificial layers were removed by flushing with a cold solution. To the best of our knowledge, this is the first report on the sacrificial approach-based fabrication of two-layer microfluidic devices with a porous electrode. Furthermore, the device was used for electrochemical assays of serotonin and could successfully measure concentrations up to 5 µM. In the future, this device can be used for MPS applications.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - An Konno
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinobu Utagawa
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Taiyo Kanno
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kazuyuki Iwase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki-aza Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
9
|
Pun S, Prakash A, Demaree D, Krummel DP, Sciumè G, Sengupta S, Barrile R. Rapid Biofabrication of an Advanced Microphysiological System Mimicking Phenotypical Heterogeneity and Drug Resistance in Glioblastoma. Adv Healthc Mater 2024:e2401876. [PMID: 39101329 DOI: 10.1002/adhm.202401876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Microphysiological systems (MPSs) reconstitute tissue interfaces and organ functions, presenting a promising alternative to animal models in drug development. However, traditional materials like polydimethylsiloxane (PDMS) often interfere by absorbing hydrophobic molecules, affecting drug testing accuracy. Additive manufacturing, including 3D bioprinting, offers viable solutions. GlioFlow3D, a novel microfluidic platform combining extrusion bioprinting and stereolithography (SLA) is introduced. GlioFlow3D integrates primary human cells and glioblastoma (GBM) lines in hydrogel-based microchannels mimicking vasculature, within an SLA resin framework using cost-effective materials. The study introduces a robust protocol to mitigate SLA resin cytotoxicity. Compared to PDMS, GlioFlow3D demonstrated lower small molecule absorption, which is relevant for accurate testing of small molecules like Temozolomide (TMZ). Computational modeling is used to optimize a pumpless setup simulating interstitial fluid flow dynamics in tissues. Co-culturing GBM with brain endothelial cells in GlioFlow3D showed enhanced CD133 expression and TMZ resistance near vascular interfaces, highlighting spatial drug resistance mechanisms. This PDMS-free platform promises advanced drug testing, improving preclinical research and personalized therapy by elucidating complex GBM drug resistance mechanisms influenced by the tissue microenvironment.
Collapse
Affiliation(s)
- Sirjana Pun
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Anusha Prakash
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
- Abbvie, Worcester, Massachusetts, 01605, USA
| | - Dalee Demaree
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
- Thermo Fisher Scientific, Waltham, Massachusetts, 02451, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology, University of Cincinnati, Cincinnati, OH, 45219, USA
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Giuseppe Sciumè
- Institute of Mechanics and Engineering-12 M, University of Bordeaux, Bordeaux, 33607, France
| | - Soma Sengupta
- Department of Neurology, University of Cincinnati, Cincinnati, OH, 45219, USA
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599-7025, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599-7295, USA
| | - Riccardo Barrile
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
10
|
Nie J, Lou S, Pollet AMAO, van Vegchel M, Bouten CVC, den Toonder JMJ. A Cell Pre-Wrapping Seeding Technique for Hydrogel-Based Tubular Organ-On-A-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400970. [PMID: 38872259 PMCID: PMC11321624 DOI: 10.1002/advs.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Indexed: 06/15/2024]
Abstract
Organ-on-a-chip (OOC) models based on microfluidic technology are increasingly used to obtain mechanistic insight into (patho)physiological processes in humans, and they hold great promise for application in drug development and regenerative medicine. Despite significant progress in OOC development, several limitations of conventional microfluidic devices pose challenges. First, most microfluidic systems have rectangular cross sections and flat walls, and therefore tubular/ curved structures, like blood vessels and nephrons, are not well represented. Second, polymers used as base materials for microfluidic devices are much stiffer than in vivo extracellular matrix (ECM). Finally, in current cell seeding methods, challenges exist regarding precise control over cell seeding location, unreachable spaces due to flow resistances, and restricted dimensions/geometries. To address these limitations, an alternative cell seeding technique and a corresponding workflow is introduced to create circular cross-sectioned tubular OOC models by pre-wrapping cells around sacrificial fiber templates. As a proof of concept, a perfusable renal proximal tubule-on-a-chip is demonstrated with a diameter as small as 50 µm, cellular tubular structures with branches and curvature, and a preliminary vascular-renal tubule interaction model. The cell pre-wrapping seeding technique promises to enable the construction of diverse physiological/pathological models, providing tubular OOC systems for mechanistic investigations and drug development.
Collapse
Affiliation(s)
- Jing Nie
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Sha Lou
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Andreas M. A. O. Pollet
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Manon van Vegchel
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Carlijn V. C. Bouten
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Jaap M. J. den Toonder
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
11
|
Saud B, Guha K, Iannacci J, Selishchev S, Sengupta P, Dutta A. Design and simulation of a microfluidics-based artificial glomerular ultrafiltration unit to reduce cell-induced fouling. Artif Organs 2024. [PMID: 39078122 DOI: 10.1111/aor.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The microfluidic-based Glomerulus-on-Chips (GoC) are mostly cell based, that is, 3D cell culture techniques are used to culture glomerular cells in order to mimic glomerular ultrafiltration. These chips require high maintenance to keep cell viability intact. There have been some approaches to build non-cell-based GoCs but many of these approaches have the drawback of membrane fouling. This article presents a structural design and simulation study of a dialysate free microfluidic channel for replicating the function of the human glomerular filtration barrier. The key advancement of the current work is addressing the fouling issue by combining a pre-filter to eliminate cellular components and performing filtration on the blood plasma. METHODS The Laminar Flow Mixture Model in COMSOL Multiphysics 5.6 has been utilized to simulate the behavior of blood flow in the microchannels. The geometrical effect of microchannels on the separation of the filtrate was investigated. The velocity at the inlet of the microchannel and pore size of the filtration membrane are varied to see the change in outflow and filtration fraction. RESULTS The efficiency of the device is calculated in terms of the filtration fraction (FF%) formed. Simulation results show that the filtrate obtained is ~20% of the plasma flow rate in the channel, which resembles the glomerular filtration fraction. CONCLUSION Given that it is not dependent on the functionality of grown cells, the proposed device is anticipated to have a longer lifespan due to its non-cell-based design. The device's cost can be reduced by avoiding cell cultivation inside of it. It can be integrated as a glomerular functional unit with other units of kidney model to build a fully developed artificial kidney.
Collapse
Affiliation(s)
- Bhagyashree Saud
- Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, India
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, India
| | - Jacopo Iannacci
- Center for Sensors and Devices (SD), Fondazione Bruno Kessler (FBK), Trento, Italy
| | - Sergei Selishchev
- National Research University of Electronic Technology (MIET), Moscow, Russia
| | | | - Arindam Dutta
- RG Stone Urology & Laparoscopic Hospital, Kolkata, India
| |
Collapse
|
12
|
Lacueva-Aparicio A, Martínez-Gimeno L, Torcal P, Ochoa I, Giménez I. Advanced Kidney Models In Vitro Using the Established Cell Line Renal Proximal Tubular Epithelial/Telomerase Reverse Transcriptase1 for Nephrotoxicity Assays. Biomimetics (Basel) 2024; 9:446. [PMID: 39056887 PMCID: PMC11275192 DOI: 10.3390/biomimetics9070446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Nephrotoxicity stands as one of the most limiting effects in the development and validation of new drugs. The kidney, among the organs evaluated in toxicity assessments, has a higher susceptibility, with nephrotoxic potential frequently evading detection until late in clinical trials. Traditional cell culture, which has been widely used for decades, does not recapitulate the structure and complexity of the native tissue, which can affect cell function, and the response to cytotoxins does not resemble what occurs in the kidney. In the current study, we aimed to address these challenges by creating in vitro kidney models that faithfully biomimic the dynamics of the renal proximal tubule, using the well-established RPTEC/TERT1 cell line. For doing so, two models were developed, one recreating tubule-like structures (2.5D model) and the other using microfluidic technology (kidney-on-a-chip). The 2.5D model allowed tubular structures to be generated in the absence of hydrogels, and the kidney-on-a-chip model allowed shear stress to be applied to the cell culture, which is a physiological stimulus in the renal tissue. After characterization of both models, different nephrotoxic compounds such as cisplatin, tacrolimus, and daunorubicin were used to study cell responses after treatment. The developed models in our study could be a valuable tool for pre-clinical nephrotoxic testing of drugs and new compounds.
Collapse
Affiliation(s)
- Alodia Lacueva-Aparicio
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, 50018 Zaragoza, Spain;
| | - Laura Martínez-Gimeno
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Institute for Health Sciences of Aragon (IACS), 50009 Zaragoza, Spain
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
| | - Pilar Torcal
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Institute for Health Sciences of Aragon (IACS), 50009 Zaragoza, Spain
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, 50018 Zaragoza, Spain;
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Ignacio Giménez
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Institute for Health Sciences of Aragon (IACS), 50009 Zaragoza, Spain
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Kroll KT, Homan KA, Uzel SGM, Mata MM, Wolf KJ, Rubins JE, Lewis JA. A perfusable, vascularized kidney organoid-on-chip model. Biofabrication 2024; 16:045003. [PMID: 38906132 DOI: 10.1088/1758-5090/ad5ac0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 06/23/2024]
Abstract
The ability to controllably perfuse kidney organoids would better recapitulate the native tissue microenvironment for applications ranging from drug testing to therapeutic use. Here, we report a perfusable, vascularized kidney organoid on chip model composed of two individually addressable channels embedded in an extracellular matrix (ECM). The channels are respectively seeded with kidney organoids and human umbilical vein endothelial cells that form a confluent endothelium (macrovessel). During perfusion, endogenous endothelial cells present within the kidney organoids migrate through the ECM towards the macrovessel, where they form lumen-on-lumen anastomoses that are supported by stromal-like cells. Once micro-macrovessel integration is achieved, we introduced fluorescently labeled dextran of varying molecular weight and red blood cells into the macrovessel, which are transported through the microvascular network to the glomerular epithelia within the kidney organoids. Our approach for achieving controlled organoid perfusion opens new avenues for generating other perfused human tissues.
Collapse
Affiliation(s)
- Katharina T Kroll
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
- Complex in vitro Systems, Safety Assessment, Genentech Inc, South San Francisco, CA, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems, Safety Assessment, Genentech Inc, South San Francisco, CA, United States of America
| | - Sebastien G M Uzel
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
| | - Mariana M Mata
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
| | - Kayla J Wolf
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
| | - Jonathan E Rubins
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
| | - Jennifer A Lewis
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
- Harvard Stem Cell Institute, Cambridge, MA, United States of America
| |
Collapse
|
15
|
Musah S, Bhattacharya R, Himmelfarb J. Kidney Disease Modeling with Organoids and Organs-on-Chips. Annu Rev Biomed Eng 2024; 26:383-414. [PMID: 38424088 PMCID: PMC11479997 DOI: 10.1146/annurev-bioeng-072623-044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.
Collapse
Affiliation(s)
- Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
- Developmental and Stem Cell Biology Program and Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Kidney Research Institute, and Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA;
| |
Collapse
|
16
|
Kumar D, Nadda R, Repaka R. Advances and challenges in organ-on-chip technology: toward mimicking human physiology and disease in vitro. Med Biol Eng Comput 2024; 62:1925-1957. [PMID: 38436835 DOI: 10.1007/s11517-024-03062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Organs-on-chips have been tissues or three-dimensional (3D) mini-organs that comprise numerous cell types and have been produced on microfluidic chips to imitate the complicated structures and interactions of diverse cell types and organs under controlled circumstances. Several morphological and physiological distinctions exist between traditional 2D cultures, animal models, and the growing popular 3D cultures. On the other hand, animal models might not accurately simulate human toxicity because of physiological variations and interspecies metabolic capability. The on-chip technique allows for observing and understanding the process and alterations occurring in metastases. The present study aimed to briefly overview single and multi-organ-on-chip techniques. The current study addresses each platform's essential benefits and characteristics and highlights recent developments in developing and utilizing technologies for single and multi-organs-on-chips. The study also discusses the drawbacks and constraints associated with these models, which include the requirement for standardized procedures and the difficulties of adding immune cells and other intricate biological elements. Finally, a comprehensive review demonstrated that the organs-on-chips approach has a potential way of investigating organ function and disease. The advancements in single and multi-organ-on-chip structures can potentially increase drug discovery and minimize dependency on animal models, resulting in improved therapies for human diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Rahul Nadda
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India.
| | - Ramjee Repaka
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| |
Collapse
|
17
|
Ugodnikov A, Persson H, Simmons CA. Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems. LAB ON A CHIP 2024; 24:3199-3225. [PMID: 38689569 DOI: 10.1039/d3lc01027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Biological barriers such as the blood-brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery - as such, it is important to create representative in vitro models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through in vitro barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.
Collapse
Affiliation(s)
- Alisa Ugodnikov
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Henrik Persson
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Craig A Simmons
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
18
|
Lapin B, Gropplero G, Vandensteen J, Mazloum M, Bienaimé F, Descroix S, Coscoy S. Decoupling shear stress and pressure effects in the biomechanics of autosomal dominant polycystic kidney disease using a perfused kidney-on-chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599137. [PMID: 38948811 PMCID: PMC11212944 DOI: 10.1101/2024.06.18.599137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Kidney tubular cells are submitted to two distinct mechanical forces generated by the urine flow: shear stress and hydrostatic pressure. In addition, the mechanical properties of the surrounding extracellular matrix modulate tubule deformation under constraints. These mechanical factors likely play a role in the pathophysiology of kidney diseases as exemplified by autosomal dominant polycystic kidney disease, in which pressure, flow and matrix stiffness have been proposed to modulate the cystic dilation of tubules with PKD1 mutations. The lack of in vitro systems recapitulating the mechanical environment of kidney tubules impedes our ability to dissect the role of these mechanical factors. Here we describe a perfused kidney-on-chip with tunable extracellular matrix mechanical properties and hydrodynamic constraints, that allows a decoupling of shear stress and flow. We used this system to dissect how these mechanical cues affect Pkd1 -/- tubule dilation. Our results show two distinct mechanisms leading to tubular dilation. For PCT cells (proximal tubule), overproliferation mechanically leads to tubular dilation, regardless of the mechanical context. For mIMCD-3 cells (collecting duct), tube dilation is associated with a squamous cell morphology but not with overproliferation and is highly sensitive to extracellular matrix properties and hydrodynamic constraints. Surprisingly, flow alone suppressed Pkd1 -/- mIMCD-3 tubule dilation observed in static conditions, while the addition of luminal pressure restored it. Our in vitro model emulating nephron geometrical and mechanical organization sheds light on the roles of mechanical constraints in ADPKD and demonstrates the importance of controlling intraluminal pressure in kidney tubule models.
Collapse
Affiliation(s)
- Brice Lapin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Jessica Vandensteen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Manal Mazloum
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département ‘Croissance et Signalisation’, INSERM UMR1151, CNRS UMR 8253 Paris, France
| | - Frank Bienaimé
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département ‘Croissance et Signalisation’, INSERM UMR1151, CNRS UMR 8253 Paris, France
- Service de Physiologie Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Sylvie Coscoy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| |
Collapse
|
19
|
Couto M, Vasconcelos DP, Pereira CL, Neto E, Sarmento B, Lamghari M. Neuro-Immunomodulatory Potential of Nanoenabled 4D Bioprinted Microtissue for Cartilage Tissue Engineering. Adv Healthc Mater 2024:e2400496. [PMID: 38850170 DOI: 10.1002/adhm.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cartilage defects trigger post-traumatic inflammation, leading to a catabolic metabolism in chondrocytes and exacerbating cartilage degradation. Current treatments aim to relieve pain but fail to target the inflammatory process underlying osteoarthritis (OA) progression. Here, a human cartilage microtissue (HCM) nanoenabled with ibuprofen-loaded poly(lactic-co-glycolic acid) nanoparticles (ibu-PLGA NPs) is 4D-bioprinted to locally mitigate inflammation and impair nerve sprouting. Under an in vitro inflamed environment, the nanoenabled HCM exhibits chondroprotective potential by decreasing the interleukin (IL)1β and IL6 release, while sustaining extracellular matrix (ECM) production. In vivo, assessments utilizing the air pouch mouse model affirm the nanoenabled HCM non-immunogenicity. Nanoenabled HCM-derived secretomes do not elicit a systemic immune response and decrease locally the recruitment of mature dendritic cells and the secretion of multiple inflammatory mediators and matrix metalloproteinases when compared to inflamed HCM condition. Notably, the nanoenabled HCM secretome has no impact on the innervation profile of the skin above the pouch cavity, suggesting a potential to impede nerve growth. Overall, HCM nanoenabled with ibu-PLGA NPs emerges as a potent strategy to mitigate inflammation and protect ECM without triggering nerve growth, introducing an innovative and promising approach in the cartilage tissue engineering field.
Collapse
Affiliation(s)
- Marina Couto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto - ICBAS, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Daniela Pereira Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
| | - Catarina Leite Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
| | - Estrela Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, Porto, 4200-072, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- Instituto Universitário de Ciências da Saúde - IUCS-CESPU, Rua Central de Gandra, 1317, Gandra, 4585-116, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-125, Portugal
| |
Collapse
|
20
|
Du C, Liu J, Liu S, Xiao P, Chen Z, Chen H, Huang W, Lei Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. SMALL METHODS 2024:e2400436. [PMID: 38763918 DOI: 10.1002/smtd.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
21
|
Hansen SH. TruD technology for the study of epi- and endothelial tubes in vitro. PLoS One 2024; 19:e0301099. [PMID: 38728291 PMCID: PMC11086873 DOI: 10.1371/journal.pone.0301099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/11/2024] [Indexed: 05/12/2024] Open
Abstract
Beyond the smallest organisms, animals rely on tubes to transport cells, oxygen, nutrients, waste products, and a great variety of secretions. The cardiovascular system, lungs, gastrointestinal and genitourinary tracts, as well as major exocrine glands, are all composed of tubes. Paradoxically, despite their ubiquitous importance, most existing devices designed to study tubes are relatively complex to manufacture and/or utilize. The present work describes a simple method for generating tubes in vitro using nothing more than a low-cost 3D printer along with general lab supplies. The technology is termed "TruD", an acronym for true dimensional. Using this technology, it is readily feasible to cast tubes embedded in ECM with easy access to the lumen. The design is modular to permit more complex tube arrangements and to sustain flow. Importantly, by virtue of its simplicity, TruD technology enables typical molecular cell biology experiments where multiple conditions are assayed in replicate.
Collapse
Affiliation(s)
- Steen H. Hansen
- Department of Pediatrics, Division of Gastroenterology, GI Cell Biology Laboratory, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Tian H, Wu J, Hu Y, Chen X, Cai X, Wen Y, Chen H, Huang J, Wang S. Recent advances on enhancing 3D printing quality of protein-based inks: A review. Compr Rev Food Sci Food Saf 2024; 23:e13349. [PMID: 38638060 DOI: 10.1111/1541-4337.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
3D printing is an additive manufacturing technology that locates constructed models with computer-controlled printing equipment. To achieve high-quality printing, the requirements on rheological properties of raw materials are extremely restrictive. Given the special structure and high modifiability under external physicochemical factors, the rheological properties of proteins can be easily adjusted to suitable properties for 3D printing. Although protein has great potential as a printing material, there are many challenges in the actual printing process. This review summarizes the technical considerations for protein-based ink 3D printing. The physicochemical factors used to enhance the printing adaptability of protein inks are discussed. The post-processing methods for improving the quality of 3D structures are described, and the application and problems of fourth dimension (4D) printing are illustrated. The prospects of 3D printing in protein manufacturing are presented to support its application in food and cultured meat. The native structure and physicochemical factors of proteins are closely related to their rheological properties, which directly link with their adaptability for 3D printing. Printing parameters include extrusion pressure, printing speed, printing temperature, nozzle diameter, filling mode, and density, which significantly affect the precision and stability of the 3D structure. Post-processing can improve the stability and quality of 3D structures. 4D design can enrich the sensory quality of the structure. 3D-printed protein products can meet consumer needs for nutritional or cultured meat alternatives.
Collapse
Affiliation(s)
- Han Tian
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiajie Wu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yanyu Hu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xu Chen
- Qingyuan Innovation Laboratory, Quanzhou, China
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Cai
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Yaxin Wen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Huimin Chen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, Xiamen, China
- Anjoy Food Group Co. Ltd., Xiamen, China
| | - Shaoyun Wang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
23
|
Addario G, Eussen D, Djudjaj S, Boor P, Moroni L, Mota C. 3D Printed Tubulointerstitium Chip as an In Vitro Testing Platform. Macromol Biosci 2024; 24:e2300440. [PMID: 37997523 DOI: 10.1002/mabi.202300440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Chronic kidney disease (CKD) ranks as the twelfth leading cause of death worldwide with limited treatment options. The development of in vitro models replicating defined segments of the kidney functional units, the nephrons, in a physiologically relevant and reproducible manner can facilitate drug testing. The aim of this study was to produce an in vitro organ-on-a-chip platform with extrusion-based three-dimensional (3D) printing. The manufacturing of the tubular platform was produced by printing sacrificial fibers with varying diameters, providing a suitable structure for cell adhesion and proliferation. The chip platform was seeded with primary murine tubular epithelial cells and human umbilical vein endothelial cells. The effect of channel geometry, its reproducibility, coatings for cell adhesion, and specific cell markers were investigated. The developed chip presents single and dual channels, mimicking segments of a renal tubule and the capillary network, together with an extracellular matrix gel analogue placed in the middle of the two channels, envisioning the renal tubulointerstitium in vitro. The 3D printed platform enables perfusable circular cross-section channels with fully automated, rapid, and reproducible manufacturing processes at low costs. This kidney tubulointerstitium on-a-chip provides the first step toward the production of more complex in vitro models for drug testing.
Collapse
Affiliation(s)
- Gabriele Addario
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Daphne Eussen
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Sonja Djudjaj
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
- Division of Nephrology, RWTH University of Aachen, 52074, Aachen, Germany
- Electron Microscopy Facility, RWTH University of Aachen, 52074, Aachen, Germany
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
24
|
Klak M, Rachalewski M, Filip A, Dobrzański T, Berman A, Wszoła M. Bioprinting of Perfusable, Biocompatible Vessel-like Channels with dECM-Based Bioinks and Living Cells. Bioengineering (Basel) 2024; 11:439. [PMID: 38790306 PMCID: PMC11117567 DOI: 10.3390/bioengineering11050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing interest in the production of bioinks that on the one hand, are biocompatible and, on the other hand, have mechanical properties that allow for the production of stable constructs that can survive for a long time after transplantation. While the selection of the right material is crucial for bioprinting, there is another equally important issue that is currently being extensively researched-the incorporation of the vascular system into the fabricated scaffolds. Therefore, in the following manuscript, we present the results of research on bioink with unique physico-chemical and biological properties. In this article, two methods of seeding cells were tested using bioink B and seeding after bioprinting the whole model. After 2, 5, 8, or 24 h of incubation, the flow medium was used in the tested systems. At the end of the experimental trial, for each time variant, the canals were stored in formaldehyde, and immunohistochemical staining was performed to examine the presence of cells on the canal walls and roof. Cells adhered to both ways of fiber arrangement; however, a parallel bioprint with the 5 h incubation and the intermediate plating of cells resulted in better adhesion efficiency. For this test variant, the percentage of cells that adhered was at least 20% higher than in the other analyzed variants. In addition, it was for this variant that the lowest percentage of viable cells was found that were washed out of the tested model. Importantly, hematoxylin and eosin staining showed that after 8 days of culture, the cells were evenly distributed throughout the canal roof. Our study clearly shows that neovascularization-promoting cells effectively adhere to ECM-based pancreatic bioink. Summarizing the presented results, it was demonstrated that the proposed bioink compositions can be used for bioprinting bionic organs with a vascular system formed by endothelial cells and fibroblasts.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| | - Michał Rachalewski
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | - Anna Filip
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | | | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| |
Collapse
|
25
|
Janssen R, Benito-Zarza L, Cleijpool P, Valverde MG, Mihăilă SM, Bastiaan-Net S, Garssen J, Willemsen LEM, Masereeuw R. Biofabrication Directions in Recapitulating the Immune System-on-a-Chip. Adv Healthc Mater 2024:e2304569. [PMID: 38625078 DOI: 10.1002/adhm.202304569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Ever since the implementation of microfluidics in the biomedical field, in vitro models have experienced unprecedented progress that has led to a new generation of highly complex miniaturized cell culture platforms, known as Organs-on-a-Chip (OoC). These devices aim to emulate biologically relevant environments, encompassing perfusion and other mechanical and/or biochemical stimuli, to recapitulate key physiological events. While OoCs excel in simulating diverse organ functions, the integration of the immune organs and immune cells, though recent and challenging, is pivotal for a more comprehensive representation of human physiology. This comprehensive review covers the state of the art in the intricate landscape of immune OoC models, shedding light on the pivotal role of biofabrication technologies in bridging the gap between conceptual design and physiological relevance. The multifaceted aspects of immune cell behavior, crosstalk, and immune responses that are aimed to be replicated within microfluidic environments, emphasizing the need for precise biomimicry are explored. Furthermore, the latest breakthroughs and challenges of biofabrication technologies in immune OoC platforms are described, guiding researchers toward a deeper understanding of immune physiology and the development of more accurate and human predictive models for a.o., immune-related disorders, immune development, immune programming, and immune regulation.
Collapse
Affiliation(s)
- Robine Janssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Laura Benito-Zarza
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Pim Cleijpool
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Marta G Valverde
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Silvia M Mihăilă
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Danone Global Research & Innovation Center, Danone Nutricia Research B.V., Utrecht, 3584 CT, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
26
|
Jin H, Xue Z, Liu J, Ma B, Yang J, Lei L. Advancing Organoid Engineering for Tissue Regeneration and Biofunctional Reconstruction. Biomater Res 2024; 28:0016. [PMID: 38628309 PMCID: PMC11018530 DOI: 10.34133/bmr.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue damage and functional abnormalities in organs have become a considerable clinical challenge. Organoids are often applied as disease models and in drug discovery and screening. Indeed, several studies have shown that organoids are an important strategy for achieving tissue repair and biofunction reconstruction. In contrast to established stem cell therapies, organoids have high clinical relevance. However, conventional approaches have limited the application of organoids in clinical regenerative medicine. Engineered organoids might have the capacity to overcome these challenges. Bioengineering-a multidisciplinary field that applies engineering principles to biomedicine-has bridged the gap between engineering and medicine to promote human health. More specifically, bioengineering principles have been applied to organoids to accelerate their clinical translation. In this review, beginning with the basic concepts of organoids, we describe strategies for cultivating engineered organoids and discuss the multiple engineering modes to create conditions for breakthroughs in organoid research. Subsequently, studies on the application of engineered organoids in biofunction reconstruction and tissue repair are presented. Finally, we highlight the limitations and challenges hindering the utilization of engineered organoids in clinical applications. Future research will focus on cultivating engineered organoids using advanced bioengineering tools for personalized tissue repair and biofunction reconstruction.
Collapse
Affiliation(s)
- Hairong Jin
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
- Ningxia Medical University, Ningxia 750004, China
| | - Zengqi Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinnv Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Binbin Ma
- Department of Biology,
The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jianfeng Yang
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
27
|
Shukla M, Malik S, Pandya A. Lab on chip for testing of repurposed drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:71-90. [PMID: 38789187 DOI: 10.1016/bs.pmbts.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The lab-on-chip technique broadly comprises of microfluidics and aims to progress multidimensionally by changing the outlook of medicine and pharmaceuticals as it finds it roots in miniaturization. Moreover, microfluidics facilitates precise physiological simulation and possesses biological system-mimicking capabilities for drug development and repurposing. Thus, organs on chip could pave a revolutionary pathway in the field of drug development and repurposing by reducing animal testing and improving drug repurposing.
Collapse
Affiliation(s)
- Malvika Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Saloni Malik
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Alok Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India; Department of Nanoengineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
28
|
Huang W, Chen YY, He FF, Zhang C. Revolutionizing nephrology research: expanding horizons with kidney-on-a-chip and beyond. Front Bioeng Biotechnol 2024; 12:1373386. [PMID: 38605984 PMCID: PMC11007038 DOI: 10.3389/fbioe.2024.1373386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Organs-on-a-chip (OoC) is a microengineered three-dimensional cell culture system developed for decades. Utilizing microfluidic technology, OoC cultivates cells on perfusable channels to construct in vitro organ models, enabling the simulation of organ-level functions under physiological and pathophysiological conditions. The superior simulation capabilities compared to traditional animal experiments and two-dimensional cell cultures, making OoC a valuable tool for in vitro research. Recently, the application of OoC has extended to the field of nephrology, where it replicates various functional units, including glomerulus-on-a-chip, proximal tubule-on-a-chip, distal tubule-on-a-chip, collecting duct-on-a-chip, and even the entire nephron-on-a-chip to precisely emulate the structure and function of nephrons. Moreover, researchers have integrated kidney models into multi-organ systems, establishing human body-on-a-chip platforms. In this review, the diverse functional kidney units-on-a-chip and their versatile applications are outlined, such as drug nephrotoxicity screening, renal development studies, and investigations into the pathophysiological mechanisms of kidney diseases. The inherent advantages and current limitations of these OoC models are also examined. Finally, the synergy of kidney-on-a-chip with other emerging biomedical technologies are explored, such as bioengineered kidney and bioprinting, and a new insight for chip-based renal replacement therapy in the future are prospected.
Collapse
Affiliation(s)
| | | | | | - Chun Zhang
- *Correspondence: Fang-Fang He, ; Chun Zhang,
| |
Collapse
|
29
|
Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J, Zhou X, Yang B, Chen Z. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci 2024; 12:1425-1448. [PMID: 38374788 DOI: 10.1039/d3bm01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
To date, organ transplantation remains an effective method for treating end-stage diseases of various organs. In recent years, despite the continuous development of organ transplantation technology, a variety of problems restricting its progress have emerged one after another, and the shortage of donors is at the top of the list. Bioprinting is a very useful tool that has huge application potential in many fields of life science and biotechnology, among which its use in medicine occupies a large area. With the development of bioprinting, advances in medicine have focused on printing cells and tissues for tissue regeneration and reconstruction of viable human organs, such as the heart, kidneys, and bones. In recent years, with the development of organ transplantation, three-dimensional (3D) bioprinting has played an increasingly important role in this field, giving rise to many unsolved problems, including a shortage of organ donors. This review respectively introduces the development of 3D bioprinting as well as its working principles and main applications in the medical field, especially in the applications, and advancements and challenges of 3D bioprinting in organ transplantation. With the continuous update and progress of printing technology and its deeper integration with the medical field, many obstacles will have new solutions, including tissue repair and regeneration, organ reconstruction, etc., especially in the field of organ transplantation. 3D printing technology will provide a better solution to the problem of donor shortage.
Collapse
Affiliation(s)
- Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhiping Hu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
30
|
Park S, Laskow TC, Chen J, Guha P, Dawn B, Kim D. Microphysiological systems for human aging research. Aging Cell 2024; 23:e14070. [PMID: 38180277 PMCID: PMC10928588 DOI: 10.1111/acel.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Recent advances in microphysiological systems (MPS), also known as organs-on-a-chip (OoC), enable the recapitulation of more complex organ and tissue functions on a smaller scale in vitro. MPS therefore provide the potential to better understand human diseases and physiology. To date, numerous MPS platforms have been developed for various tissues and organs, including the heart, liver, kidney, blood vessels, muscle, and adipose tissue. However, only a few studies have explored using MPS platforms to unravel the effects of aging on human physiology and the pathogenesis of age-related diseases. Age is one of the risk factors for many diseases, and enormous interest has been devoted to aging research. As such, a human MPS aging model could provide a more predictive tool to understand the molecular and cellular mechanisms underlying human aging and age-related diseases. These models can also be used to evaluate preclinical drugs for age-related diseases and translate them into clinical settings. Here, we provide a review on the application of MPS in aging research. First, we offer an overview of the molecular, cellular, and physiological changes with age in several tissues or organs. Next, we discuss previous aging models and the current state of MPS for studying human aging and age-related conditions. Lastly, we address the limitations of current MPS and present future directions on the potential of MPS platforms for human aging research.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Thomas C. Laskow
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jingchun Chen
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Prasun Guha
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
- School of Life SciencesUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Deok‐Ho Kim
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
31
|
Song SS, Park HJ, Kim YK, Kang SW. Revolutionizing biomedical research: The imperative need for heart-kidney-connected organoids. APL Bioeng 2024; 8:010902. [PMID: 38420624 PMCID: PMC10901547 DOI: 10.1063/5.0190840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Organoids significantly advanced our comprehension of organ development, function, and disease modeling. This Perspective underscores the potential of heart-kidney-connected organoids in understanding the intricate relationship between these vital organs, notably the cardiorenal syndrome, where dysfunction in one organ can negatively impact the other. Conventional models fall short in replicating this complexity, necessitating an integrated approach. By co-culturing heart and kidney organoids, combined with microfluidic and 3D bioprinting technologies, a more accurate representation of in vivo conditions can be achieved. Such interconnected systems could revolutionize our grasp of multi-organ diseases, drive drug discovery by evaluating therapeutic agents on both organs simultaneously, and reduce the need for animal models. In essence, heart-kidney-connected organoids present a promising avenue to delve deeper into the pathophysiology underlying cardiorenal disorders, bridging existing knowledge gaps, and advancing biomedical research.
Collapse
|
32
|
Lee SJ. Personalized Reconstruction with Three-dimensional Printed Urological Tissue Constructs. Eur Urol Focus 2024; 10:259-262. [PMID: 38326119 DOI: 10.1016/j.euf.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Three-dimensional (3D) bioprinting technology has emerged as a cutting-edge tool for the development of precise and reproducible patient-specific, personalized urological tissue constructs. This capability effectively addresses the existing translational limitations of biomanufacturing and offers extensive potential for urological applications. The revolutionary impact of this technology is poised to transform the treatment landscape for various urological conditions. To fully harness the potential of bioprinted tissue constructs in urological tissue engineering applications, it is essential to prioritize thorough investigations, proactively address potential challenges, and establish robust protocols. By addressing these issues, we can instill confidence in the viability and numerous benefits of bioprinting for urology and ultimately pave the way for better patient outcomes and personalized treatments. PATIENT SUMMARY: Three-dimensional (3D) printing using biological materials (bioprinting) is a revolutionary technology for tissue engineering therapies. This review highlights the latest advances in bioprinting of urological tissue constructs and their potential for application in patient-specific treatments.
Collapse
Affiliation(s)
- Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
33
|
Valencia LJ, Tseng M, Chu ML, Yu L, Adedeji AO, Kiyota T. Zoledronic acid and ibandronate-induced nephrotoxicity in 2D and 3D proximal tubule cells derived from human and rat. Toxicol Sci 2024; 198:86-100. [PMID: 38059598 DOI: 10.1093/toxsci/kfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Drug-induced proximal tubule (PT) injury remains a serious safety concern throughout drug development. Traditional in vitro 2-dimensional (2D) and preclinical in vivo models often fail to predict drug-related injuries presented in clinical trials. Various 3-dimensional (3D) microphysiological systems (MPSs) have been developed to mimic physiologically relevant properties, enabling them to be more predictive toward nephrotoxicity. To explore the capabilities of an MPS across species, we compared cytotoxicity in hRPTEC/TERT1s and rat primary proximal tubular epithelial cells (rPPTECs) following exposure to zoledronic acid and ibandronate (62.5-500 µM), and antibiotic polymyxin B (PMB) (50 and 250 µM, respectively). For comparison, we investigated cytotoxicity using 2D cultured hRPTEC/TERT1s and rPPTECs following exposure to the same drugs, including overlapping concentrations, as their 3D counterparts. Regardless of the in vitro model, bisphosphonate-exposed rPPTECs exhibited cytotoxicity quicker than hRPTEC/TERT1s. PMB was less sensitive toward nephrotoxicity in rPPTECs than hRPTEC/TERT1s, demonstrating differences in species sensitivity within both 3D and 2D models. Generally, 2D cultured cells experienced faster drug-induced cytotoxicity compared to the MPSs, suggesting that MPSs can be advantageous for longer-term drug-exposure studies, if warranted. Furthermore, ibandronate-exposed hRPTEC/TERT1s and rPPTECs produced higher levels of inflammatory and kidney injury biomarkers compared to zoledronic acid, indicating that ibandronate induces acute kidney injury, but also a potential protective response since ibandronate is less toxic than zoledronic acid. Our study suggests that the MPS model can be used for preclinical screening of compounds prior to animal studies and human clinical trials.
Collapse
Affiliation(s)
- Leslie J Valencia
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Min Tseng
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Mei-Lan Chu
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Lanlan Yu
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Adeyemi O Adedeji
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Tomomi Kiyota
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| |
Collapse
|
34
|
Stokar-Regenscheit N, Bell L, Berridge B, Rudmann D, Tagle D, Hargrove-Grimes P, Schaudien D, Hahn K, Kühnlenz J, Ashton RS, Tseng M, Reichelt M, Laing ST, Kiyota T, Chamanza R, Sura R, Tomlinson L. Complex In Vitro Model Characterization for Context of Use in Toxicologic Pathology: Use Cases by Collaborative Teams of Biologists, Bioengineers, and Pathologists. Toxicol Pathol 2024; 52:123-137. [PMID: 38888280 DOI: 10.1177/01926233241253811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Complex in vitro models (CIVMs) offer the potential to increase the clinical relevance of preclinical efficacy and toxicity assessments and reduce the reliance on animals in drug development. The European Society of Toxicologic Pathology (ESTP) and Society for Toxicologic Pathology (STP) are collaborating to highlight the role of pathologists in the development and use of CIVM. Pathologists are trained in comparative animal medicine which enhances their understanding of mechanisms of human and animal diseases, thus allowing them to bridge between animal models and humans. This skill set is important for CIVM development, validation, and data interpretation. Ideally, diverse teams of scientists, including engineers, biologists, pathologists, and others, should collaboratively develop and characterize novel CIVM, and collectively assess their precise use cases (context of use). Implementing a morphological CIVM evaluation should be essential in this process. This requires robust histological technique workflows, image analysis techniques, and needs correlation with translational biomarkers. In this review, we demonstrate how such tissue technologies and analytics support the development and use of CIVM for drug efficacy and safety evaluations. We encourage the scientific community to explore similar options for their projects and to engage with health authorities on the use of CIVM in benefit-risk assessment.
Collapse
Affiliation(s)
- Nadine Stokar-Regenscheit
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Luisa Bell
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Danilo Tagle
- National Center for Advancing Translational Sciences/National Institutes of Health, Bethesda, Maryland, USA
| | - Passley Hargrove-Grimes
- National Center for Advancing Translational Sciences/National Institutes of Health, Bethesda, Maryland, USA
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Kerstin Hahn
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Julia Kühnlenz
- Bayer SAS, CropScience, Pathology & Mechanistic Toxicology, Sophia Antipolis, France
| | - Randolph S Ashton
- University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurosetta LLC, Madison, Wisconsin, USA
| | - Min Tseng
- Genentech, South San Francisco, California, USA
| | | | | | | | | | | | - Lindsay Tomlinson
- Pfizer Inc., Drug Safety Research and Development, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Zhang S, Xu G, Wu J, Liu X, Fan Y, Chen J, Wallace G, Gu Q. Microphysiological Constructs and Systems: Biofabrication Tactics, Biomimetic Evaluation Approaches, and Biomedical Applications. SMALL METHODS 2024; 8:e2300685. [PMID: 37798902 DOI: 10.1002/smtd.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Indexed: 10/07/2023]
Abstract
In recent decades, microphysiological constructs and systems (MPCs and MPSs) have undergone significant development, ranging from self-organized organoids to high-throughput organ-on-a-chip platforms. Advances in biomaterials, bioinks, 3D bioprinting, micro/nanofabrication, and sensor technologies have contributed to diverse and innovative biofabrication tactics. MPCs and MPSs, particularly tissue chips relevant to absorption, distribution, metabolism, excretion, and toxicity, have demonstrated potential as precise, efficient, and economical alternatives to animal models for drug discovery and personalized medicine. However, current approaches mainly focus on the in vitro recapitulation of the human anatomical structure and physiological-biochemical indices at a single or a few simple levels. This review highlights the recent remarkable progress in MPC and MPS models and their applications. The challenges that must be addressed to assess the reliability, quantify the techniques, and utilize the fidelity of the models are also discussed.
Collapse
Affiliation(s)
- Shuyu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guoshi Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Juan Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Xiao Liu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| |
Collapse
|
36
|
Yu P, Zhu H, Bosholm CC, Beiner D, Duan Z, Shetty AK, Mou SS, Kramer PA, Barroso LF, Liu H, Cheng K, Ihnat M, Gorris MA, Aloi JA, Woldemichael JA, Bleyer A, Zhang Y. Precision nephrotoxicity testing using 3D in vitro models. Cell Biosci 2023; 13:231. [PMID: 38129901 PMCID: PMC10740310 DOI: 10.1186/s13578-023-01187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Nephrotoxicity is a significant concern during the development of new drugs or when assessing the safety of chemicals in consumer products. Traditional methods for testing nephrotoxicity involve animal models or 2D in vitro cell cultures, the latter of which lack the complexity and functionality of the human kidney. 3D in vitro models are created by culturing human primary kidney cells derived from urine in a 3D microenvironment that mimics the fluid shear stresses of the kidney. Thus, 3D in vitro models provide more accurate and reliable predictions of human nephrotoxicity compared to existing 2D models. In this review, we focus on precision nephrotoxicity testing using 3D in vitro models with human autologous urine-derived kidney cells as a promising approach for evaluating drug safety.
Collapse
Affiliation(s)
- Pengfei Yu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- The Fourth Department of Liver Disease, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Hainan Zhu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Carol Christine Bosholm
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Daniella Beiner
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Zhongping Duan
- The Fourth Department of Liver Disease, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Avinash K Shetty
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steve S Mou
- Department of Anesthesiology and Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Philip Adam Kramer
- Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Luis F Barroso
- Internal Medicine/Infectious Diseases, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Hongbing Liu
- Department of Pediatrics and The Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, Tulane Avenue, New Orleans, LA, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Michael Ihnat
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthew A Gorris
- Division of Endocrinology and Metabolism at Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Joseph A Aloi
- Division of Endocrinology and Metabolism at Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Jobira A Woldemichael
- Division of Nephrology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Anthony Bleyer
- Division of Nephrology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
37
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
38
|
Wu Y, Qin M, Yang X. Organ bioprinting: progress, challenges and outlook. J Mater Chem B 2023; 11:10263-10287. [PMID: 37850299 DOI: 10.1039/d3tb01630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Bioprinting, as a groundbreaking technology, enables the fabrication of biomimetic tissues and organs with highly complex structures, multiple cell types, mechanical heterogeneity, and diverse functional gradients. With the growing demand for organ transplantation and the limited number of organ donors, bioprinting holds great promise for addressing the organ shortage by manufacturing completely functional organs. While the bioprinting of complete organs remains a distant goal, there has been considerable progress in the development of bioprinted transplantable tissues and organs for regenerative medicine. This review article recapitulates the current achievements of organ 3D bioprinting, primarily encompassing five important organs in the human body (i.e., the heart, kidneys, liver, pancreas, and lungs). Challenges from cellular techniques, biomanufacturing technologies, and organ maturation techniques are also deliberated for the broad application of organ bioprinting. In addition, the integration of bioprinting with other cutting-edge technologies including machine learning, organoids, and microfluidics is envisioned, which strives to offer the reader the prospect of bioprinting in constructing functional organs.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
39
|
Vanslambrouck JM, Tan KS, Mah S, Little MH. Generation of proximal tubule-enhanced kidney organoids from human pluripotent stem cells. Nat Protoc 2023; 18:3229-3252. [PMID: 37770563 DOI: 10.1038/s41596-023-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/26/2023] [Indexed: 09/30/2023]
Abstract
Kidney organoids derived from human pluripotent stem cells (hPSCs) are now being used as models of renal disease and nephrotoxicity screening. However, the proximal tubules (PTs), which are responsible for most kidney reabsorption functions, remain immature in kidney organoids with limited expression of critical transporters essential for nephron functionality. Here, we describe a protocol for improved specification of nephron progenitors from hPSCs that results in kidney organoids with elongated proximalized nephrons displaying improved PT maturity compared with those generated using standard kidney organoid protocols. We also describe a methodology for assessing the functionality of the PTs within the organoids and visualizing maturation markers via immunofluorescence. Using these assays, PT-enhanced organoids display increased expression of a range of critical transporters, translating to improved functionality measured by substrate uptake and transport. This protocol consists of an extended (13 d) monolayer differentiation phase, during which time hPSCs are exposed to nephron progenitor maintenance media (CDBLY2), better emulating human metanephric progenitor specification in vivo. Following nephron progenitor specification, the cells are aggregated and cultured as a three-dimensional micromass on an air-liquid interface to facilitate further differentiation and segmentation into proximalized nephrons. Experience in culturing hPSCs is required to conduct this protocol and expertise in kidney organoid generation is advantageous.
Collapse
Affiliation(s)
- Jessica M Vanslambrouck
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ker Sin Tan
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sophia Mah
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Melissa H Little
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Sun L, Bian F, Xu D, Luo Y, Wang Y, Zhao Y. Tailoring biomaterials for biomimetic organs-on-chips. MATERIALS HORIZONS 2023; 10:4724-4745. [PMID: 37697735 DOI: 10.1039/d3mh00755c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Organs-on-chips are microengineered microfluidic living cell culture devices with continuously perfused chambers penetrating to cells. By mimicking the biological features of the multicellular constructions, interactions among organs, vascular perfusion, physicochemical microenvironments, and so on, these devices are imparted with some key pathophysiological function levels of living organs that are difficult to be achieved in conventional 2D or 3D culture systems. In this technology, biomaterials are extremely important because they affect the microstructures and functionalities of the organ cells and the development of the organs-on-chip functions. Thus, herein, we provide an overview on the advances of biomaterials for the construction of organs-on-chips. After introducing the general components, structures, and fabrication techniques of the biomaterials, we focus on the studies of the functions and applications of these biomaterials in the organs-on-chips systems. Applications of the biomaterial-based organs-on-chips as alternative animal models for pharmaceutical, chemical, and environmental tests are described and highlighted. The prospects for exciting future directions and the challenges of biomaterials for realizing the further functionalization of organs-on-chips are also presented.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
41
|
Christou CD, Vasileiadou S, Sotiroudis G, Tsoulfas G. Three-Dimensional Printing and Bioprinting in Renal Transplantation and Regenerative Medicine: Current Perspectives. J Clin Med 2023; 12:6520. [PMID: 37892658 PMCID: PMC10607284 DOI: 10.3390/jcm12206520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
For patients with end-stage kidney disease (ESKD), renal transplantation is the treatment of choice, constituting the most common solid organ transplantation. This study aims to provide a comprehensive review regarding the application of three-dimensional (3D) printing and bioprinting in renal transplantation and regenerative medicine. Specifically, we present studies where 3D-printed models were used in the training of surgeons through renal transplantation simulations, in patient education where patients acquire a higher understanding of their disease and the proposed operation, in the preoperative planning to facilitate decision-making, and in fabricating customized, tools and devices. Three-dimensional-printed models could transform how surgeons train by providing surgical rehearsal platforms across all surgical specialties, enabling training with tissue realism and anatomic precision. The use of 3D-printed models in renal transplantations has shown a positive impact on surgical outcomes, including the duration of the operation and the intraoperative blood loss. Regarding 3D bioprinting, the technique has shown promising results, especially in the field of microfluidic devices, with the development of tissue demonstrating proximal tubules, glomerulus, and tubuloinerstitium function, and in renal organoid development. Such models can be applied for renal disease modeling, drug development, and renal regenerative medicine.
Collapse
Affiliation(s)
- Chrysanthos D. Christou
- Department of Transplantation Surgery, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (S.V.); (G.S.); (G.T.)
| | | | | | | |
Collapse
|
42
|
Zhang F, Lin DSY, Rajasekar S, Sotra A, Zhang B. Pump-Less Platform Enables Long-Term Recirculating Perfusion of 3D Printed Tubular Tissues. Adv Healthc Mater 2023; 12:e2300423. [PMID: 37543836 PMCID: PMC11469154 DOI: 10.1002/adhm.202300423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/13/2023] [Indexed: 08/07/2023]
Abstract
The direction and pattern of fluid flow affect vascular structure and function, in which vessel-lining endothelial cells exhibit variable cellular morphologies and vessel remodeling by mechanosensing. To recapitulate this microenvironment, some approaches have been reported to successfully apply unidirectional flow on endothelial cells in organ-on-a-chip systems. However, these platforms encounter drawbacks such as the dependency on pumps or confinement to closed microfluidic channels. These constraints impede their synergy with advanced biofabrication techniques like 3D bioprinting, thereby curtailing the potential to introduce greater complexity into engineered tissues. Herein, a pumpless recirculating platform (UniPlate) that enables unidirectional media recirculation through 3D printed tubular tissues, is demonstrated.The device is made of polystyrene via injection molding in combination with 3D printed sacrifical gelatin templates. Tubular blood vessels with unidirectional perfusion are firstly engineered. Then the design is expanded to incorporate duo-recirculating flow for culturing vascularized renal proximal tubules with glucose reabsorption function. In addition to media recirculation, human monocyte recirculation in engineered blood vessels is also demonstrated for over 24 h, with minimal loss of cells, cell viability, and inflammatory activation. UniPlate can be a valuable tool to more precisely control the cellular microenvironment of organ-on-a-chip systems for drug discovery.
Collapse
Affiliation(s)
- Feng Zhang
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Dawn S. Y. Lin
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | | | - Alexander Sotra
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Boyang Zhang
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| |
Collapse
|
43
|
Frankowski J, Kurzątkowska M, Sobczak M, Piotrowska U. Utilization of 3D bioprinting technology in creating human tissue and organoid models for preclinical drug research - State-of-the-art. Int J Pharm 2023; 644:123313. [PMID: 37579828 DOI: 10.1016/j.ijpharm.2023.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Rapid development of tissue engineering in recent years has increased the importance of three-dimensional (3D) bioprinting technology as novel strategy for fabrication functional 3D tissue and organoid models for pharmaceutical research. 3D bioprinting technology gives hope for eliminating many problems associated with traditional cell culture methods during drug screening. However, there is a still long way to wider clinical application of this technology due to the numerous difficulties associated with development of bioinks, advanced printers and in-depth understanding of human tissue architecture. In this review, the work associated with relatively well-known extrusion-based bioprinting (EBB), jetting-based bioprinting (JBB), and vat photopolymerization bioprinting (VPB) is presented and discussed with the latest advances and limitations in this field. Next we discuss state-of-the-art research of 3D bioprinted in vitro models including liver, kidney, lung, heart, intestines, eye, skin as well as neural and bone tissue that have potential applications in the development of new drugs.
Collapse
Affiliation(s)
- Joachim Frankowski
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Matylda Kurzątkowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
| |
Collapse
|
44
|
Singh NK, Kim JY, Jang J, Kim YK, Cho DW. 3D Cell Printing of Advanced Vascularized Proximal Tubule-on-a-Chip for Drug Induced Nephrotoxicity Advancement. ACS APPLIED BIO MATERIALS 2023; 6:3750-3758. [PMID: 37606916 DOI: 10.1021/acsabm.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Renal dysfunction due to drug-induced nephrotoxicity (DIN) affects >20% of the adult population worldwide. The vascularized proximal tubule is a complex structure that is often the primary site of drug-induced kidney injury. Herein, a vascularized proximal tubule-on-a-chip (Vas-POAC) was fabricated, demonstrating improved physiological emulation over earlier single-cell proximal tubule models. A perfusable model of vascularized proximal tubules permits the growth and proliferation of renal proximal tubule cells and adjacent endothelial cells under various conditions. An in vitro Vas-POAC showed mature expressions of the tubule and endothelial cell markers in the mature epithelium and endothelium lumens after 7 days of culture. Expression in the mature proximal tubule epithelium resembled the polarized expression of sodium-glucose cotransporter-2 and the de novo synthesis of ECM proteins. These perfusable Vas-POACs display significantly improved functional properties relative to the proximal tubules-on-a-chip (POAC), which lacks vascular components. Furthermore, the developed Vas-POAC model evaluated the cisplatin-induced nephrotoxicity and revealed enhanced drug receptivity compared to POAC. We further evaluated the capability of the developed proximal tubule model to act as a functional platform that targets screening drug doses that can cause renal proximal tubule injury in adults. Thus, our cell-printed models may prove valuable for screening, thoughtful mechanistic investigations of DIN, and discovery of drugs that interfere with tubule formation.
Collapse
Affiliation(s)
- Narendra K Singh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University (OHSU), Portland, Oregon 97201, United States
- Cancer Early Detection Advanced Research Center (CEDAR), OHSU-Knight Cancer Institute, Portland, Oregon 97201, United States
| | - Jae Yun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong Kyun Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent's Hospital, Suwon 16247, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
45
|
Khalil NN, Petersen AP, Song CJ, Chen Y, Takamoto K, Kellogg AC, Chen EZ, McMahon AP, McCain ML. User-friendly microfluidic system reveals native-like morphological and transcriptomic phenotypes induced by shear stress in proximal tubule epithelium. APL Bioeng 2023; 7:036106. [PMID: 37584027 PMCID: PMC10424157 DOI: 10.1063/5.0143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Drug-induced nephrotoxicity is a leading cause of drug attrition, partly due to the limited relevance of pre-clinical models of the proximal tubule. Culturing proximal tubule epithelial cells (PTECs) under fluid flow to mimic physiological shear stress has been shown to improve select phenotypes, but existing flow systems are expensive and difficult to implement by non-experts in microfluidics. Here, we designed and fabricated an accessible and modular flow system for culturing PTECs under physiological shear stress, which induced native-like cuboidal morphology, downregulated pathways associated with hypoxia, stress, and injury, and upregulated xenobiotic metabolism pathways. We also compared the expression profiles of shear-dependent genes in our in vitro PTEC tissues to that of ex vivo proximal tubules and observed stronger clustering between ex vivo proximal tubules and PTECs under physiological shear stress relative to PTECs under negligible shear stress. Together, these data illustrate the utility of our user-friendly flow system and highlight the role of shear stress in promoting native-like morphological and transcriptomic phenotypes in PTECs in vitro, which is critical for developing more relevant pre-clinical models of the proximal tubule for drug screening or disease modeling.
Collapse
Affiliation(s)
- Natalie N. Khalil
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Andrew P. Petersen
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Yibu Chen
- USC Libraries Bioinformatics Service, University of Southern California, Los Angeles, California 90089, USA
| | - Kaelyn Takamoto
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Austin C. Kellogg
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Elaine Zhelan Chen
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Megan L. McCain
- Author to whom correspondence should be addressed:. Tel.: +1 2138210791. URL:https://livingsystemsengineering.usc.edu
| |
Collapse
|
46
|
Ibi Y, Nishinakamura R. Kidney Bioengineering for Transplantation. Transplantation 2023; 107:1883-1894. [PMID: 36717963 DOI: 10.1097/tp.0000000000004526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The kidney is an important organ for maintenance of homeostasis in the human body. As renal failure progresses, renal replacement therapy becomes necessary. However, there is a chronic shortage of kidney donors, creating a major problem for transplantation. To solve this problem, many strategies for the generation of transplantable kidneys are under investigation. Since the first reports describing that nephron progenitors could be induced from human induced pluripotent stem cells, kidney organoids have been attracting attention as tools for studying human kidney development and diseases. Because the kidney is formed through the interactions of multiple renal progenitors, current studies are investigating ways to combine these progenitors derived from human induced pluripotent stem cells for the generation of transplantable kidney organoids. Other bioengineering strategies, such as decellularization and recellularization of scaffolds, 3-dimensional bioprinting, interspecies blastocyst complementation and progenitor replacement, and xenotransplantation, also have the potential to generate whole kidneys, although each of these strategies has its own challenges. Combinations of these approaches will lead to the generation of bioengineered kidneys that are transplantable into humans.
Collapse
Affiliation(s)
- Yutaro Ibi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
47
|
Tabury K, Rehnberg E, Baselet B, Baatout S, Moroni L. Bioprinting of Cardiac Tissue in Space: Where Are We? Adv Healthc Mater 2023; 12:e2203338. [PMID: 37312654 PMCID: PMC11469151 DOI: 10.1002/adhm.202203338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/18/2023] [Indexed: 06/15/2023]
Abstract
Bioprinting in space is the next frontier in tissue engineering. In the absence of gravity, novel opportunities arise, as well as new challenges. The cardiovascular system needs particular attention in tissue engineering, not only to develop safe countermeasures for astronauts in future deep and long-term space missions, but also to bring solutions to organ transplantation shortage. In this perspective, the challenges encountered when using bioprinting techniques in space and current gaps that need to be overcome are discussed. The recent developments that have been made in the bioprinting of heart tissues in space and an outlook on potential future bioprinting opportunities in space are described.
Collapse
Affiliation(s)
- Kevin Tabury
- Radiology UnitBelgian Nuclear Research CenterBoeretang 200Mol2400Belgium
- Department of Biomedical EngineeringCollege of Engineering and ComputingUniversity of South CarolinaColumbiaSC29208USA
| | - Emil Rehnberg
- Radiology UnitBelgian Nuclear Research CenterBoeretang 200Mol2400Belgium
- Department of Molecular BiotechnologyGhent UniversityGhent9000Belgium
| | - Bjorn Baselet
- Radiology UnitBelgian Nuclear Research CenterBoeretang 200Mol2400Belgium
| | - Sarah Baatout
- Radiology UnitBelgian Nuclear Research CenterBoeretang 200Mol2400Belgium
- Department of Molecular BiotechnologyGhent UniversityGhent9000Belgium
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
48
|
Juste-Lanas Y, Hervas-Raluy S, García-Aznar JM, González-Loyola A. Fluid flow to mimic organ function in 3D in vitro models. APL Bioeng 2023; 7:031501. [PMID: 37547671 PMCID: PMC10404142 DOI: 10.1063/5.0146000] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Many different strategies can be found in the literature to model organ physiology, tissue functionality, and disease in vitro; however, most of these models lack the physiological fluid dynamics present in vivo. Here, we highlight the importance of fluid flow for tissue homeostasis, specifically in vessels, other lumen structures, and interstitium, to point out the need of perfusion in current 3D in vitro models. Importantly, the advantages and limitations of the different current experimental fluid-flow setups are discussed. Finally, we shed light on current challenges and future focus of fluid flow models applied to the newest bioengineering state-of-the-art platforms, such as organoids and organ-on-a-chip, as the most sophisticated and physiological preclinical platforms.
Collapse
Affiliation(s)
| | - Silvia Hervas-Raluy
- Department of Mechanical Engineering, Engineering Research Institute of Aragón (I3A), University of Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
49
|
Syed Mohamed SMD, Welsh GI, Roy I. Renal tissue engineering for regenerative medicine using polymers and hydrogels. Biomater Sci 2023; 11:5706-5726. [PMID: 37401545 DOI: 10.1039/d3bm00255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Chronic Kidney Disease (CKD) is a growing worldwide problem, leading to end-stage renal disease (ESRD). Current treatments for ESRD include haemodialysis and kidney transplantation, but both are deemed inadequate since haemodialysis does not address all other kidney functions, and there is a shortage of suitable donor organs for transplantation. Research in kidney tissue engineering has been initiated to take a regenerative medicine approach as a potential treatment alternative, either to develop effective cell therapy for reconstruction or engineer a functioning bioartificial kidney. Currently, renal tissue engineering encompasses various materials, mainly polymers and hydrogels, which have been chosen to recreate the sophisticated kidney architecture. It is essential to address the chemical and mechanical aspects of the materials to ensure they can support cell development to restore functionality and feasibility. This paper reviews the types of polymers and hydrogels that have been used in kidney tissue engineering applications, both natural and synthetic, focusing on the processing and formulation used in creating bioactive substrates and how these biomaterials affect the cell biology of the kidney cells used.
Collapse
Affiliation(s)
| | - Gavin I Welsh
- Renal Bristol, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S37HQ, UK.
| |
Collapse
|
50
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|