1
|
Mahiny M, Lotfi H, Beigmohammadi M, Pooriraj M, Heydari M, Shirzad A, Mahfouzi H, Nazeeruddin MK, Mohd Yusoff ARB, Movla H. Pioneering non-thermal plasma as a defect passivator: a new Frontier in ambient metal halide perovskite synthesis. MATERIALS HORIZONS 2025; 12:1826-1844. [PMID: 39533822 DOI: 10.1039/d4mh01430h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Growing energy demands make cost-effective, high-performance perovskite solar cells (PSCs) desirable. However, their commercial applications are limited due to defect formation and instability. Passivation technologies help enhance their favorable traits. Herein, we propose a pioneering technique utilizing non-thermal plasma (NTP) synthesis for passivating inherent defects and optimizing the energy levels of perovskites. AC-NTP utilizes ionic charges and uniform electric fields to effectively neutralize defect-induced charge traps, acting as a field-effect passivator. This approach not only mitigates energetic defects, but also facilitates the transformation of NH4PbI3 into a CH3NH3PbI3 perovskite through a self-degassing mechanism. The perovskites synthesized using this method demonstrate notable advancements in their properties, as evidenced by X-ray diffraction, UV-vis spectroscopy, and scanning electron microscopy. These improvements include enhanced crystalline quality, superior optical characteristics, and precise nanoparticle size control, with an average size of 54 nm. In situ Rietveld refinement analysis reveals minimal PbI2 formation, resulting in fewer lead iodide inversion defects. Accordingly, the PSC fabricated by AC-NTP shows a PCE of 15.25%, significantly higher than that fabricated by the DC one (13.29%), which demonstrates improved stability under ambient conditions for over 160 hours. Hysteresis assessment, SCLC analysis, and Shockley diode modeling show our PSCs' low defect densities and high interface quality. Moreover, DFT was applied to indirectly analyze the effects of NTP on the perovskites, focusing on quantum confinement effects and lattice arrangement's influence on the optoelectronic characteristics of MAPbI3 nanoparticles. The findings confirm that NTP synthesis leads to more optimal PSCs, showing notable improvement in photovoltaics.
Collapse
Affiliation(s)
- Milad Mahiny
- Faculty of Physics, Universifty of Tabriz, 51666-14766, Tabriz, Iran.
- Research Institute for Applied Physics and Astronomy, University of Tabriz, 51666-14766, Tabriz, Iran
| | - Hossein Lotfi
- Research Institute for Applied Physics and Astronomy, University of Tabriz, 51666-14766, Tabriz, Iran
| | - Maryam Beigmohammadi
- Department of Optical & Laser Engineering, University of Bonab, 55517-61167, Bonab, Iran
| | - Mehdi Pooriraj
- Department of Semiconductors, Materials and Energy Research Center (MERC), 31787-316, Tehran, Iran
| | - Maryam Heydari
- Faculty of Physics, Universifty of Tabriz, 51666-14766, Tabriz, Iran.
- Western Plasma Technologies Inc., 2727 28 Ave SE, Calgary T2B0L4, Alberta, Canada.
| | - Alireza Shirzad
- Faculty of Physics, Universifty of Tabriz, 51666-14766, Tabriz, Iran.
- Western Plasma Technologies Inc., 2727 28 Ave SE, Calgary T2B0L4, Alberta, Canada.
| | - Hamidreza Mahfouzi
- Department of Biomechanics, Faculty of Biomechanics Engineering, Sahand University of Technology, 51335-1996, Tabriz, Iran
| | - Mohammad Khaja Nazeeruddin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland.
| | | | - Hossein Movla
- Faculty of Physics, Universifty of Tabriz, 51666-14766, Tabriz, Iran.
- Western Plasma Technologies Inc., 2727 28 Ave SE, Calgary T2B0L4, Alberta, Canada.
| |
Collapse
|
2
|
Liu YS, Xu ZK, Zhang JM, Chen XG, Qin Y, Wang ZX. Three-dimensional perchlorate-based alkali metal hybrid perovskite molecular ferroelastic crystals. Dalton Trans 2025; 54:4706-4714. [PMID: 39967565 DOI: 10.1039/d4dt03416c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Hybrid perovskites possessing structural diversity and solution processability have been extensively studied in numerous application scenarios and have attracted significant interest in the design of high-performance molecular ferroelectric and ferroelastic materials. However, reports on the construction of three-dimensional (3D) perchlorate-based alkali metal hybrid perovskite molecular ferroelastics are scarce. Herein, dual-site substitution was implemented on the 3D non-perovskite network (MDABCO)K(ClO4)3 (MDABCO = N-methyl-N'-diazabicyclo[2.2.2]octonium) to achieve a series of 3D perchlorate-based alkali metal perovskite ferroelastics (FMDABCO)M(ClO4)3 (FMDABCO = N-fluoromethyl-N'-diazabicyclo[2.2.2]octonium, M = K, Rb, and Cs). The H/F substitution on the organic motif of (MDABCO)K(ClO4)3 facilitates a significant structural transformation leading to a perovskite stacking of (FMDABCO)K(ClO4)3 accompanied by high-temperature structural phase transition and ferroelasticity. Through further substitutions on the alkali metals according to the fitted tolerance factor, (FMDABCO)Rb(ClO4)3 and (FMDABCO)Cs(ClO4)3 can not only maintain the 3D perovskite framework but also exhibit ferroelastic phase transitions at a higher temperature. Besides, (FMDABCO)Cs(ClO4)3 shows dual types of ferroelastic domain evolution with the Aizu notations of mmmF2/m and m3̄mFmmm. This work offers great inspiration for the design of ferroelastic materials through rational chemical strategies.
Collapse
Affiliation(s)
- Yu-Si Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Jia-Mei Zhang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Yan Qin
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, People's Republic of China
| |
Collapse
|
3
|
Brenes R, deQuilettes DW, Swartwout R, Alsalloum AY, Bakr OM, Bulović V. Mapping the Energy Carrier Diffusion Tensor in Perovskite Semiconductors. ACS NANO 2025; 19:4213-4221. [PMID: 39824598 DOI: 10.1021/acsnano.4c09366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Understanding energy transport in semiconductors is critical for the design of electronic and optoelectronic devices. Semiconductor material properties, such as charge carrier mobility or diffusion length, are commonly measured in bulk crystals and determined using models that describe transport behavior in homogeneous media, where structural boundary effects are minimal. However, most emerging semiconductors exhibit nano- and microscale heterogeneity. Therefore, experimental techniques with high spatial resolution paired with models that capture anisotropy and domain boundary behavior are needed. We develop a diffusion tensor-based framework to analyze experimental photoluminescence (PL) diffusion maps accounting for material nano- and microstructure. Specifically, we quantify both carrier transport and recombination in single crystal and polycrystalline lead halide perovskites by globally fitting diffusion maps with spatial, temporal, and PL intensity data. We reveal a 29% difference in principal diffusion coefficients and alignment between electronically coupled grains for CH3NH3PbI3 polycrystalline films. This framework allows for understanding and optimizing anisotropic energy transport in heterogeneous materials.
Collapse
Affiliation(s)
- Roberto Brenes
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dane W deQuilettes
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Richard Swartwout
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Abdullah Y Alsalloum
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vladimir Bulović
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Marin-Villa P, Gaboardi M, Joseph B, Alabarse F, Armstrong J, Drużbicki K, Fernandez-Alonso F. Methylammonium Lead Iodide across Physical Space: Phase Boundaries and Structural Collapse. J Phys Chem Lett 2025; 16:184-190. [PMID: 39711370 PMCID: PMC11726799 DOI: 10.1021/acs.jpclett.4c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Hybrid perovskites exhibit complex structures and phase behavior under different thermodynamic conditions and chemical environments, the understanding of which continues to be pivotally important for tailoring their properties toward improved operational stability. To this end, we present for the first time a comprehensive neutron and synchrotron diffraction investigation over the pressure-temperature phase diagram of the paradigmatic hybrid organic-inorganic perovskite methylammonium lead iodide (MAPbI3). This ambitious experimental campaign down to cryogenic temperatures and tens of kilobars was supported by extensive ab initio molecular dynamics simulations validated by the experimental data, to track the structural evolution of MAPbI3 under external physical stimuli at the atomic and molecular levels. These combined efforts enable us to identify the mechanisms underpinning structural phase transitions, including those exhibiting negative thermal expansion across the boundary between the cation-ordered low-temperature phase and the dynamically disordered high-pressure cubic phase. Our results bring to the fore how pronounced octahedral distortions at high pressures ultimately drive the structural collapse and amorphization of this material.
Collapse
Affiliation(s)
- Pelayo Marin-Villa
- Materials
Physics Center, CSIC-UPV/EHU, Paseo de Manuel Lardizabal, 5, 20018 Donostia - San Sebastian, Spain
| | - Mattia Gaboardi
- Materials
Physics Center, CSIC-UPV/EHU, Paseo de Manuel Lardizabal, 5, 20018 Donostia - San Sebastian, Spain
- C.S.G.I.
and Chemistry Department, University of
Pavia, Viale Taramelli
16, 27100 Pavia, Italy
| | - Boby Joseph
- Elettra
Sincrotrone Trieste S.C.p.A., Strada Statale 14, 163.5, Basovizza, 34149 Trieste, Italy
| | - Frederico Alabarse
- Elettra
Sincrotrone Trieste S.C.p.A., Strada Statale 14, 163.5, Basovizza, 34149 Trieste, Italy
| | - Jeff Armstrong
- ISIS
Neutron and Muon Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Kacper Drużbicki
- Polish
Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Felix Fernandez-Alonso
- Materials
Physics Center, CSIC-UPV/EHU, Paseo de Manuel Lardizabal, 5, 20018 Donostia - San Sebastian, Spain
- Donostia
International Physics Center (DIPC), Paseo de Manuel Lardizabal 4, 20018 Donostia - San Sebastian, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Burns R, Chiaro D, Davison H, Arendse CJ, King GM, Guha S. Stabilizing Metal Halide Perovskite Films via Chemical Vapor Deposition and Cryogenic Electron Beam Patterning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406815. [PMID: 39538997 DOI: 10.1002/smll.202406815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Halide perovskites are hailed as semiconductors of the 21st century. Chemical vapor deposition (CVD), a solvent-free method, allows versatility in the growth of thin films of 3- and 2D organic-inorganic halide perovskites. Using CVD grown methylammonium lead iodide (MAPbI3) films as a prototype, the impact of electron beam dosage under cryogenic conditions is evaluated. With 5 kV accelerating voltage, the dosage is varied between 50 and 50000 µC cm-2. An optimum dosage of 35 000 µC cm-2 results in a significant blue shift and enhancement of the photoluminescence peak. Concomitantly, a strong increase in the photocurrent is observed. A similar electron beam treatment on chlorine incorporated MAPbI3, where chlorine is known to passivate defects, shows a blue shift in the photoluminescence without improving the photocurrent properties. Low electron beam dosage under cryogenic conditions is found to damage CVD grown 2D phenylethlyammoinum lead iodide films. Monte Carlo simulations reveal differences in electron beam interaction with 3- and 2D halide perovskite films.
Collapse
Affiliation(s)
- Randy Burns
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Dylan Chiaro
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Harrison Davison
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher J Arendse
- Department of Physics and Astronomy, Nano-Micro Manufacturing Facility, University of the Western Cape, Bellville, 7535, South Africa
| | - Gavin M King
- Department of Physics and Astronomy, Department of Biochemistry, and MU Materials Science and Engineering Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Suchismita Guha
- Department of Physics and Astronomy and MU Materials Science and Engineering Institute, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
6
|
Hu JK, Lee YJ, Wu CC, Lee CH, Wu CM, Wu HC, Nawa K, Kinjo K, Sato TJ, Wei PC. Dual Crystal-Liquid Thermal Transport Behavior in MAPbCl 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408773. [PMID: 39629537 DOI: 10.1002/smll.202408773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Indexed: 01/30/2025]
Abstract
Phonon dynamics in organic-inorganic hybrid perovskites (OIHPs) exhibit inherent complexity driven by the intricate interactions between rotatable organic cations and dynamically disordered inorganic octahedra, mediated by hydrogen bonding. This study aims to address this complexity by investigating the thermal transport behavior of MAPbCl3 as a gateway to the OIHPs family. The results reveal that the ultralow thermal conductivity of MAPbCl3 arises from a synergistic interplay of exceptionally low phonon velocities, short phonon lifetimes, and phonon mean free paths approaching the Regel-Ioffe limit. Additionally, the thermal conductivity of MAPbCl3 approaches its theoretical amorphous limit across a broad temperature range, with its thermal transport behavior transitioning from crystal-like to more liquid-like during the orthorhombic-to-cubic phase transitions. Furthermore, a phonon drag effect is observed at 17 K, with Umklapp scattering serving as the predominant phonon resistive mechanism in the orthorhombic phase. In contrast, dynamic lattice distortions caused by the jumping rotation of MA+ cations become the primary factors influencing thermal transport in the cubic phase.
Collapse
Affiliation(s)
- Jia-Kai Hu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Ju Lee
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Cheng-Chieh Wu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chi-Hung Lee
- Department of Applied Physics, Tunghai University, Taichung, 407224, Taiwan
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Hung-Cheng Wu
- Department of Physics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Kazuhiro Nawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Katsuki Kinjo
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Taku J Sato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Pai-Chun Wei
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
7
|
Perez Franco JA, García Murillo A, Carrillo Romo FDJ, Romero Ibarra IC, Cervantes Tobón A. Identifying Crystal Structure of Halides of Strontium and Barium Perovskite Compounds with EXPO2014 Software. MATERIALS (BASEL, SWITZERLAND) 2024; 18:58. [PMID: 39795703 PMCID: PMC11722356 DOI: 10.3390/ma18010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
The synthesis of ethylamine-based perovskites has emerged to attempt to replace the lead in lead-based perovskites for the alkaline earth elements barium and strontium, introducing chloride halide to prepare the perovskites in solar cell technology. X-ray diffraction studies were conducted, and EXPO2014 software was utilized to resolve the structure. Chemical characterization was performed using Fourier transform infrared spectroscopy, photophysical properties were analyzed through ultraviolet-visible spectroscopy, and photoluminescence properties were determined to confirm the perovskite characteristics. The software employed can determine new crystal structures, as follows: orthorhombic for barium perovskite CH3CH2NH3BaCl3 and tetragonal for strontium perovskite CH3CH2NH3SrCl3. The ultraviolet-visible spectroscopy data demonstrated that a temperature increase (90-110 °C) contributed to reducing the band gap from 3.93 eV to 3.67 eV for barium perovskite and from 4.05 eV to 3.84 eV for strontium perovskite. The results exhibited that new materials can be obtained through gentle chemistry and specialized software like EXPO2014, both of which are capable of conducting reciprocal and direct space analyses for identifying crystal structures using powder X-ray diffraction.
Collapse
Affiliation(s)
- Jorge A. Perez Franco
- Instituto Politécnico Nacional CIITEC, Azcapotzalco, Mexico City 02250, Mexico (F.d.J.C.R.)
| | | | | | | | | |
Collapse
|
8
|
Ali BA, Yew S, Musgrave CB. Elucidating the Interplay between Symmetry Distortions in Passivated MAPbI 3 and the Rashba Splitting Effect. ACS NANO 2024; 18:32266-32276. [PMID: 39500516 DOI: 10.1021/acsnano.4c14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Hybrid organic-inorganic perovskites play a critical role in modern optoelectronic applications, particularly as single photon sources due to their unusual bright ground state. However, the presence of trap states resulting from surface dangling bonds hinders their widespread commercial application. This work uses density functional theory (DFT) to study the effects of various passivating ligands and their binding sites on Rashba splitting, a phenomenon directly linked to the bright ground state. Our results predict that X2- and X4-type ligands that adsorb at acidic oxygen binding sites and zwitterionic binding sites efficiently eliminate trap states introduced by surface iodine vacancies. Furthermore, our results show that distortions from the nominally symmetric cubic structure of the perovskite predominantly determine the presence and magnitude of the Rashba splitting. Specifically, the loss of more symmetry elements consistently leads to Rashba splitting in both the valence band (VB) and the conduction band (CB) with small Rashba splitting coefficients. Conversely, although inversion symmetry breaking alone fails to guarantee the presence of pure Rashba splitting in both the VB and the CB, it significantly increases the degree of splitting. The adsorption of ligands not only mitigates trap states but also plays a critical role in altering the local symmetry, thus influencing Rashba splitting. DFT predicts a distinct Rashba-Dresselhaus splitting in the CB with X2 ligands, causing the largest splitting. The presence of local electric fields causes consistent Rashba splitting of the VB across all studied systems except for the X4 zwitterionic passivated systems (sulfobetaine and lecithin). Electric fields are predicted to cause significant splitting of the CB, particularly for MAPbI3 and SH passivated MAPbI3 surfaces that possess freely rotating ligand binding sites. This study reveals that the wavelength, tunability of Rashba splitting through an applied electric field, and nature of Rashba-Dresselhaus splitting are influenced by the characteristics of the ligand binding site. On the other hand, pure Rashba splitting is predicted to exhibit a greater susceptibility to symmetry distortion than to specific ligand binding sites. These findings elucidate how surface passivating ligands and symmetry distortions influence Rashba splitting, shaping the optoelectronic properties of perovskite nanocrystals.
Collapse
Affiliation(s)
- Basant A Ali
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Suxuen Yew
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Charles B Musgrave
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
9
|
Liu L, Xu M, Xu X, Tao X, Gao Z. High Sensitivity X-Ray Detectors with Low Degradation Based on Deuterated Halide Perovskite Single Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406443. [PMID: 39279602 DOI: 10.1002/adma.202406443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Indexed: 09/18/2024]
Abstract
Methylammonium lead single crystal (MAPbI3 SC) possesses superior optoelectronic properties and low manufacturing cost, making it an ideal candidate for X-ray detection. However, the ionic migration of the perovskites usually leads to instability, dark current drift, and hysteresis of the detector, limiting their applications in well-established technologies. Here, a series of X-ray detectors of MAPbI3 SCs are reported with different degrees of deuteration (DxMAPbI3, x = 0, 0.15, 0.75, 0.99). By controlling the content of deuterium (D) in organic cations, the sensitivity, detection limits, ion migration, and resistivity of the detector can be controlled, thereby improving its performance. Due to stronger hydrogen bonds (N─D···I), the ion activation energy significantly increases to 886 meV. Consequently, the D0.99MAPbI3 SC detector shows more than five-fold enhancement, achieving a record-high mobility-lifetime (µτ) product of 5.39 × 10-2 cm2 V-1, with an ultrahigh sensitivity of 2.18 × 106 µC Gy-1 cm-2 under 120 keV hard X-ray and a low detection limit of 4.8 nGyair s-1, as well as long-term stability. The study provides a straightforward strategy for constructing ultrasensitive X-ray detection and imaging systems based on perovskite SCs.
Collapse
Affiliation(s)
- Lishan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Mingxia Xu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Xinguang Xu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Zeliang Gao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
10
|
Shentseva IA, Usoltsev AN, Korobeynikov NA, Sokolov MN, Adonin SA. Discrete Hexa- and Binuclear Heterometallic Iodobismuthate(III) Complexes with Cu(I) and Ag(I). Inorg Chem 2024; 63:18774-18780. [PMID: 39319510 DOI: 10.1021/acs.inorgchem.4c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The rare examples of discrete anionic halobismuthates(III) with group 11 elements were obtained. Those are (3-MePyH)6[Bi4Cu2I20] (1) and (3,5-MePyC6)3[BiAgI7]2 (2) (3-MePyH = 3-methylpyridinium cation, 3,5-MePyC6=1,6-bis(3,5-dimethylpyridinium)hexane dication). Both complexes were isolated as pure phases; the optical band gaps for 1 and 2 are 1.75 and 2.23 eV, respectively.
Collapse
Affiliation(s)
- Irina A Shentseva
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Andrey N Usoltsev
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | | | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Sergey A Adonin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Favorsky Irkutsk Institute of Chemistry SB RAS, Irkutsk 630090, Russia
| |
Collapse
|
11
|
Lee M, Wang L, Zhang D, Li J, Kim J, Yun JS, Seidel J. Scanning Probe Microscopy of Halide Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407291. [PMID: 39165039 DOI: 10.1002/adma.202407291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/29/2024] [Indexed: 08/22/2024]
Abstract
Scanning probe microscopy (SPM) has enabled significant new insights into the nanoscale and microscale properties of solar cell materials and underlying working principles of photovoltaic and optoelectronic technology. Various SPM modes, including atomic force microscopy, Kelvin probe force microscopy, conductive atomic force microscopy, piezoresponse force microscopy, and scanning near-field optical microscopy, can be used for the investigation of electrical, optical and chemical properties of associated functional materials. A large body of work has improved the understanding of solar cell device processing and synthesis in close synergy with SPM investigations in recent years. This review provides an overview of SPM measurement capabilities and attainable insight with a focus on recently widely investigated halide perovskite materials.
Collapse
Affiliation(s)
- Minwoo Lee
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lei Wang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Dawei Zhang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jincheol Kim
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jae Sung Yun
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Computer Science and Electronic Engineering, Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Jan Seidel
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
Minussi FB, Silva RM, Moraes JCS, Araújo EB. Organic cations in halide perovskite solid solutions: exploring beyond size effects. Phys Chem Chem Phys 2024; 26:20770-20784. [PMID: 39072678 DOI: 10.1039/d4cp02419b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Halide perovskites are a class of materials of consolidated optoelectronic and electrochemical applications, reaching efficiencies compared to established materials in respective fields. In this scenario, the design and understanding of composition-structure-property relations is imperative. In solid solutions containing mixed cations, some direct relations between the sizes of the substituents and the properties of perovskites are generally observed. However, in several cases, these relations are not observed, implying that other characteristics of these cations play a major role. Despite its importance, this understanding has not been comprehensively deepened. To address this issue, we synthesized and characterized the structure, electrical behavior, and stability of methylammonium lead iodide-based perovskites with equal amounts of the substituents guanidinium, ethylammonium, and acetamidinium. These three large organic cations have essentially equal sizes but other remarkably different characteristics, such as the number of N-H bonds, intrinsic dipole moment, and order of C-N bonds. Herein, we show that these cations have dramatically different effects over important fundamental and applied properties of resulting perovskites, including the orthorhombic-to-tetragonal and tetragonal-to-cubic phase transitions, microstructural development, ionic conductivity, I-V hysteresis, electronic carrier mobility, and stability against light-induced degradation. These effects are correlated with the characteristics of the large substituent cations and help pave the way for a better rational chemical design of halide perovskites.
Collapse
Affiliation(s)
- F B Minussi
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil.
| | - R M Silva
- Department of Electrical Engineering, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil
| | - J C S Moraes
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil.
| | - E B Araújo
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil.
| |
Collapse
|
13
|
Bystrický R, Tiwari SK, Hutár P, Sýkora M. Thermal Stability of Chalcogenide Perovskites. Inorg Chem 2024; 63:12826-12838. [PMID: 38951510 DOI: 10.1021/acs.inorgchem.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Chalcogenide perovskites (CPs) have recently attracted interest as a class of materials with practical potential in optoelectronics and have been suggested as a more thermally stable alternative to intensely studied halide perovskites (HPs). Here we report a comparative study of the thermal stability of representative HPs, MAPbI3 (MA = CH3NH3+, methylammonium) and CsPbI3, and a series of CPs with compositions BaZrS3, β-SrZrS3, BaHfS3, SrHfS3. Changes in the crystal structure, chemical composition, and optical properties upon heating in air up to 800 °C were studied using thermogravimetric analysis, temperature-dependent X-ray diffraction, energy-dispersive X-ray spectroscopy, and diffuse reflectance spectroscopy. While HPs undergo phase transitions and thermally decompose at temperatures below 300 °C, the CPs show no changes in crystal phase or composition when heated up to at least 450 °C. At 500 °C CPs oxidize on time scales of several hours, forming oxides and sulfates. The structural origins of the higher thermal and phase stability of the CPs are discussed.
Collapse
Affiliation(s)
- Roman Bystrický
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Center for Advanced Materials Applications, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Sameer Kumar Tiwari
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Peter Hutár
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Milan Sýkora
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
14
|
Yuan Y, Yang M, Kloß SD, Attfield JP. A New Family of High Oxidation State Antiperovskite Nitrides: La 3MN 5 (M=Cr, Mn and Mo). Angew Chem Int Ed Engl 2024; 63:e202405498. [PMID: 38651652 DOI: 10.1002/anie.202405498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Three new nitrides La3MN5 (M=Cr, Mn, and Mo) have been synthesized using a high pressure azide route. These are the first examples of ternary Cs3CoCl5-type nitrides, and show that this (MN4)NLa3 antiperovskite structure type may be used to stabilise high oxidation-state transition metals in tetrahedral molecular [MN4]n- nitridometallate anions. Magnetic measurements confirm that Cr and Mo are in the M6+ state, but the M=Mn phase has an anomalously small paramagnetic moment and large cell volume. Neutron powder diffraction data are fitted using an anion-excess La3MnN5.30 model (space group I4/mcm, a=6.81587(9) Å and c=11.22664(18) Å at 200 K) in which Mn is close to the +7 state. Excess-anion incorporation into Cs3CoCl5-type materials has not been previously reported, and this or other substitution mechanisms may enable many other high oxidation state transition metal nitrides to be prepared.
Collapse
Affiliation(s)
- Yao Yuan
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, China
| | - Simon D Kloß
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, UK
| |
Collapse
|
15
|
Simenas M, Gagor A, Banys J, Maczka M. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chem Rev 2024; 124:2281-2326. [PMID: 38421808 PMCID: PMC10941198 DOI: 10.1021/acs.chemrev.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX3 structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking. The goal of this review is to summarize the current state of knowledge on mixing effects on the structural phase transitions, crystal symmetry, cation and lattice dynamics, and phase diagrams of three- and low-dimensional lead halide perovskites. This review analyzes different mixing recipes and ingredients providing a comprehensive picture of mixing effects and their relation to the attractive properties of these materials.
Collapse
Affiliation(s)
- Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Anna Gagor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| | - Juras Banys
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Miroslaw Maczka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| |
Collapse
|
16
|
Kirstein E, Zhukov EA, Yakovlev DR, Kopteva NE, Yalcin E, Akimov IA, Hordiichuk O, Dirin DN, Kovalenko MV, Bayer M. Coherent Carrier Spin Dynamics in FAPbBr 3 Perovskite Crystals. J Phys Chem Lett 2024:2893-2903. [PMID: 38448798 DOI: 10.1021/acs.jpclett.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Coherent spin dynamics of electrons and holes are studied in hybrid organic-inorganic lead halide perovskite FAPbBr3 bulk single crystals using the time-resolved Kerr ellipticity technique at cryogenic temperatures. The Larmor spin precession of the carrier spins in a magnetic field is monitored to measure the Landé g-factors of electrons (+2.44) and holes (+0.41). These g-factors are highly isotropic. The measured spin dephasing times amount to a few nanoseconds, and the longitudinal hole spin relaxation time is 470 ns. The important role of the strong hyperfine interaction between carrier spins and nuclear spins is demonstrated via dynamic nuclear polarization. At low temperatures, electron and hole spin relaxation predominantly occurs via the hyperfine interaction, whose importance significantly decreases at temperatures above 12 K. We overview the spin dynamics in various lead halide perovskite crystals and polycrystalline films and conclude on their common features provided by charge carrier localization at cryogenic temperatures.
Collapse
Affiliation(s)
- Erik Kirstein
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Evgeny A Zhukov
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Dmitri R Yakovlev
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Nataliia E Kopteva
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Eyüp Yalcin
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Ilya A Akimov
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Oleh Hordiichuk
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, CH-8093 Zürich,Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Dmitry N Dirin
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, CH-8093 Zürich,Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, CH-8093 Zürich,Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Manfred Bayer
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| |
Collapse
|
17
|
Roy M, Sykora M, Aslam M. Chemical Aspects of Halide Perovskite Nanocrystals. Top Curr Chem (Cham) 2024; 382:9. [PMID: 38430313 DOI: 10.1007/s41061-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
Halide perovskite nanocrystals (HPNCs) are currently among the most intensely investigated group of materials. Structurally related to the bulk halide perovskites (HPs), HPNCs are nanostructures with distinct chemical, optical, and electronic properties and significant practical potential. One of the keys to the effective exploitation of the HPNCs in advanced technologies is the development of controllable, reproducible, and scalable methods for preparation of materials with desired compositions, phases, and shapes and low defect content. Another important condition is a quantitative understanding of factors affecting the chemical stability and the optical and electronic properties of HPNCs. Here we review important recent developments in these areas. Following a brief historical prospective, we provide an overview of known chemical methods for preparation of HPNCs and approaches used to control their composition, phase, size, and shape. We then review studies of the relationship between the chemical composition and optical properties of HPNCs, degradation mechanisms, and effects of charge injection. Finally, we provide a short summary and an outlook. The aim of this review is not to provide a comprehensive summary of all relevant literature but rather a selection of highlights, which, in the subjective view of the authors, provide the most significant recent observations and relevant analyses.
Collapse
Affiliation(s)
- Mrinmoy Roy
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - Milan Sykora
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - M Aslam
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
18
|
Minussi FB, Silva RM, Araújo EB. Composition-Property Relations for GA x FA y MA 1- x - y PbI 3 Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305054. [PMID: 37803390 DOI: 10.1002/smll.202305054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Halide perovskites are materials for diverse optoelectronic applications owing to a combination of factors, including their compositional flexibility. A major source of this diversity of compositions comes from the use of mixed organic cations in the A-site of such compounds to form solid solutions. Many organic cations are possible for this purpose. Although significant progress is made over years of intensive research, the determination of systematic relationships between the compositions and properties of halide perovskites is not exploited accordingly. Using the MAPbI3 prototype, a wide range of compositions substituted by formamidinium (FA+ ) and guanidinium (GA+ ) cations are studied. From a detailed collection of experimental data and results reported in the literature, heat maps correlating the composition of GAx FAy MA1- x - y PbI3 solid solutions with phase transition temperatures, dielectric permittivity, and activation energies are constructed. Considering the characteristics of organic cations, namely their sizes, dipole moments, and the number of N─H bonds, it is possible to interpret the heat maps as consequences of these characteristics. This work brings a systematization of how obtaining specific properties of halide perovskites might be possible by customizing the characteristics of the A-site organic cations.
Collapse
Affiliation(s)
- Fernando Brondani Minussi
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, SP, 15385-000, Brazil
| | - Rogério Marcos Silva
- Department of Electrical Engineering, São Paulo State University, Ilha Solteira, SP, 15385-000, Brazil
| | - Eudes Borges Araújo
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, SP, 15385-000, Brazil
| |
Collapse
|
19
|
Pecoraro A, Muñoz-García AB, Sannino GV, Veneri PD, Pavone M. Exotic hexagonal NaCl atom-thin layer on methylammonium lead iodide perovskite: new hints for perovskite solar cells from first-principles calculations. Phys Chem Chem Phys 2024; 26:1602-1607. [PMID: 38165025 DOI: 10.1039/d3cp02712k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Alkali halides are simple inorganic compounds extensively used as surface modifiers in optoelectronic devices. In perovskite solar cells (PSCs), they act as interlayers between the light absorber material and the charge selective layers improving their contact quality. They introduce surface dipoles that enable the fine tuning of the relative band alignment and passivate surface defects, a well-known drawback of hybrid organic-inorganic perovskites, that is responsible for most of the issues hampering the long-term performances. Reducing the thickness of such salt-based insulating layer might be beneficial in terms of charge transfer between the perovskite and the electron/hole transport layers. In this context, here we apply density functional theory (DFT) to characterize the structure and the electronic features of atom-thin layers of NaCl adsorbed on the methylammonium lead iodide (MAPI) perovskite. We analyze two different models of MAPI surface terminations and find unexpected structural reconstructions arising at the interface. Unexpectedly, we find an exotic honeycomb-like structuring of the salt, also recently observed in experiments on a diamond substrate. We also investigate how the salt affects the perovskite electronic properties that are key to control the charge dynamics at the interface. Moreover, we also assess the salt ability to improve the defect tolerance of the perovskite surface. With these results, we derive new hints regarding the potential benefits of using an atom-thin layer of alkali halides in PSCs.
Collapse
Affiliation(s)
- Adriana Pecoraro
- Department of Physics "E. Pancini", University of Naples Federico II, Napoli, Italy.
- INSTM-GISEL, National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy.
| | - Ana B Muñoz-García
- Department of Physics "E. Pancini", University of Naples Federico II, Napoli, Italy.
- INSTM-GISEL, National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy.
| | - Gennaro V Sannino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici (NA), Italy
| | - Paola Delli Veneri
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici (NA), Italy
| | - Michele Pavone
- INSTM-GISEL, National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy.
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
20
|
Drużbicki K, Gila-Herranz P, Marin-Villa P, Gaboardi M, Armstrong J, Fernandez-Alonso F. Cation Dynamics as Structure Explorer in Hybrid Perovskites-The Case of MAPbI 3. CRYSTAL GROWTH & DESIGN 2024; 24:391-404. [PMID: 38188269 PMCID: PMC10768891 DOI: 10.1021/acs.cgd.3c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024]
Abstract
Hybrid organic-inorganic perovskites exhibit remarkable potential as cost-effective and high-efficiency materials for photovoltaic applications. Their exceptional chemical tunability opens further routes for optimizing their optical and electronic properties through structural engineering. Nevertheless, the extraordinary softness of the lattice, stemming from its interconnected organic-inorganic composition, unveils formidable challenges in structural characterization. Here, by focusing on the quintessential methylammonium lead triiodide, MAPbI3, we combine first-principles modeling with high-resolution neutron scattering data to identify the key stationary points on its shallow potential energy landscape. This combined experimental and computational approach enables us to benchmark the performance of a collection of semilocal exchange-correlation functionals and to track the local distortions of the perovskite framework, hallmarked by the inelastic neutron scattering response of the organic cation. By conducting a thorough examination of structural distortions, we introduce the IKUR-PVP-1 structural data set. This data set contains nine mechanically stable structural models, each manifesting a distinct vibrational response. IKUR-PVP-1 constitutes a valuable resource for assessing thermal behavior in the low-temperature perovskite phase. In addition, it paves the way for the development of accurate force fields, enabling a comprehensive understanding of the interplay between the structure and dynamics in MAPbI3 and related hybrid perovskites.
Collapse
Affiliation(s)
- Kacper Drużbicki
- Materials
Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain
- Polish
Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, Lodz 90-363, Poland
| | - Pablo Gila-Herranz
- Materials
Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain
| | - Pelayo Marin-Villa
- Materials
Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain
| | - Mattia Gaboardi
- Materials
Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain
- C.S.G.I.
& Chemistry Department, University of
Pavia, Viale Taramelli,
16, Pavia 27100, Italy
| | - Jeff Armstrong
- ISIS
Neutron and Muon Facility, Rutherford Appleton
Laboratory, Didcot OX11 0QX, U.K.
| | - Felix Fernandez-Alonso
- Materials
Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastian 20018, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San
Sebastian 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
21
|
Kempf MA, Moser P, Tomoscheit M, Schröer J, Blancon JC, Schwartz R, Deb S, Mohite A, Stier AV, Finley JJ, Korn T. Rapid Spin Depolarization in the Layered 2D Ruddlesden-Popper Perovskite (BA)(MA)PbI. ACS NANO 2023; 17:25459-25467. [PMID: 38095325 DOI: 10.1021/acsnano.3c09001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
We report temperature-dependent spectroscopy on the layered (n = 4) two-dimensional (2D) Ruddlesden-Popper perovskite (BA)(MA)PbI. Helicity-resolved steady-state photoluminescence (PL) reveals no optical degree of polarization. Time-resolved PL shows a photocarrier lifetime on the order of nanoseconds. From simultaneously recorded time-resolved differential reflectivity (TRΔR) and time-resolved Kerr ellipticity (TRKE), a photocarrier lifetime of a few nanoseconds and a spin relaxation time on the order of picoseconds was found. This stark contrast in lifetimes clearly explains the lack of spin polarization in steady-state PL. While we observe clear temperature-dependent effects on the PL dynamics that can be related to structural dynamics, spin relaxation is nearly T-independent. Our results highlight that spin relaxation in 2D (BA)(MA)PbI occurs at time scales faster than the exciton recombination time, which poses a bottleneck for applications aiming to utilize this degree of freedom.
Collapse
Affiliation(s)
| | - Philipp Moser
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | | | - Julian Schröer
- Institute of Physics, Rostock University, 18059 Rostock, Germany
| | - Jean-Christophe Blancon
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005-1827, United States
| | - Rico Schwartz
- Institute of Physics, Rostock University, 18059 Rostock, Germany
| | - Swarup Deb
- Institute of Physics, Rostock University, 18059 Rostock, Germany
| | - Aditya Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005-1827, United States
| | - Andreas V Stier
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Jonathan J Finley
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Tobias Korn
- Institute of Physics, Rostock University, 18059 Rostock, Germany
| |
Collapse
|
22
|
Marjanowska A, El Karout H, Guichaoua D, Sahraoui B, Płóciennik P, Zawadzka A. Topography and Nonlinear Optical Properties of Thin Films Containing Iodide-Based Hybrid Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:50. [PMID: 38202504 PMCID: PMC10780914 DOI: 10.3390/nano14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
This article covers selected properties of organic-inorganic thin films of hybrid perovskites with the summary formulas CH3NH3MI3, where M = Pb, Cd, Ge, Sn, Zn. The paper discusses not only the history, general structure, applications of perovskites and the basics of the theory of nonlinear optics, but also the results of experimental research on their structural, spectroscopic, and nonlinear optical properties. The samples used in all presented studies were prepared in the physical vapor deposition process by using co-deposition from two independent thermal sources containing the organic and inorganic parts of individual perovskites. Ultimately, thin layers with a thickness of the order of nanometers were obtained on glass and crystalline substrates. Their structural properties were characterized by atomic force microscopy imaging. Spectroscopic tests were used to confirm the tested films' transmission quality and determine previously unknown physical parameters, such as the absorption coefficient and refractive index. Experimental results of the nonlinear optical properties were obtained by studying the second and third harmonic generation processes and using initial sample polarization in the so-called Corona poling process. The obtained experimental results allowed us to determine the second- and third-order nonlinear optical susceptibility of the tested materials.
Collapse
Affiliation(s)
- Agnieszka Marjanowska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
- LPhiA, SFR Matrix, University of Angers, Bd Lavoisier 2, 49045 Angers CEDEX 2, France; (H.E.K.); (D.G.); (B.S.)
| | - Houda El Karout
- LPhiA, SFR Matrix, University of Angers, Bd Lavoisier 2, 49045 Angers CEDEX 2, France; (H.E.K.); (D.G.); (B.S.)
- MOLTECH-Anjou-UMR CNRS 6200, SFR MATRIX, University of Angers, 49000 Angers, France
| | - Dominique Guichaoua
- LPhiA, SFR Matrix, University of Angers, Bd Lavoisier 2, 49045 Angers CEDEX 2, France; (H.E.K.); (D.G.); (B.S.)
| | - Bouchta Sahraoui
- LPhiA, SFR Matrix, University of Angers, Bd Lavoisier 2, 49045 Angers CEDEX 2, France; (H.E.K.); (D.G.); (B.S.)
| | - Przemysław Płóciennik
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Anna Zawadzka
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
| |
Collapse
|
23
|
Samsonova AY, Mikheleva AY, Bulanin KM, Selivanov NI, Mazur AS, Tolstoy PM, Stoumpos CC, Kapitonov YV. Internal Vibrations of Pyridinium Cation in One-Dimensional Halide Perovskites and the Corresponding Halide Salts. Molecules 2023; 29:78. [PMID: 38202667 PMCID: PMC10780259 DOI: 10.3390/molecules29010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
We investigate vibrations of the pyridinium cation PyH+ = C5H5NH+ in one-dimensional lead halide perovskites PyPbX3 and pyridinium halide salts PyHX (X- = I-, Br-), combining infrared absorption and Raman scattering methods at room temperature. Internal vibrations of the cation were assigned based on density functional theory modeling. Some of the vibrational bands are sensitive to perovskite or the salt environment in the solid state, while halide substitution has only a minor effect on them. These findings have been confirmed by 1H, 13C and 207Pb solid-state nuclear magnetic resonance (NMR) experiments. Narrower vibrational bands in perovskites indicate less disorder in these materials. The splitting of NH-group vibrational bands in perovskites can be rationalized the presence of nonequivalent crystal sites for cations or by more exotic phenomena such as quantum tunneling transition between two molecular orientations. We have shown how organic cations in hybrid organic-inorganic crystals could be used as spectators of the crystalline environment that affects their internal vibrations.
Collapse
Affiliation(s)
- Anna Yu. Samsonova
- Photonics of Crystals Laboratory, Saint Petersburg State University, Ulyanovskaya d.1, 198504 St. Petersburg, Russia
| | - Alena Yu. Mikheleva
- Photonics of Crystals Laboratory, Saint Petersburg State University, Ulyanovskaya d.1, 198504 St. Petersburg, Russia
| | - Kirill M. Bulanin
- Photonics of Crystals Laboratory, Saint Petersburg State University, Ulyanovskaya d.1, 198504 St. Petersburg, Russia
| | - Nikita I. Selivanov
- Photonics of Crystals Laboratory, Saint Petersburg State University, Ulyanovskaya d.1, 198504 St. Petersburg, Russia
| | - Anton S. Mazur
- Magnetic Resonance Research Center, Saint Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia;
| | - Peter M. Tolstoy
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia
| | - Constantinos C. Stoumpos
- Photonics of Crystals Laboratory, Saint Petersburg State University, Ulyanovskaya d.1, 198504 St. Petersburg, Russia
- Department of Materials Science and Technology, University of Crete, Voutes, GR-70013 Heraklion, Greece
| | - Yury V. Kapitonov
- Photonics of Crystals Laboratory, Saint Petersburg State University, Ulyanovskaya d.1, 198504 St. Petersburg, Russia
| |
Collapse
|
24
|
Mączka M, Ptak M, Gągor A, Zaręba JK, Liang X, Balčiu̅nas S, Semenikhin OA, Kucheriv OI, Gural’skiy IA, Shova S, Walsh A, Banys J, Šimėnas M. Phase Transitions, Dielectric Response, and Nonlinear Optical Properties of Aziridinium Lead Halide Perovskites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9725-9738. [PMID: 38047186 PMCID: PMC10687860 DOI: 10.1021/acs.chemmater.3c02200] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Hybrid organic-inorganic lead halide perovskites are promising candidates for next-generation solar cells, light-emitting diodes, photodetectors, and lasers. The structural, dynamic, and phase-transition properties play a key role in the performance of these materials. In this work, we use a multitechnique experimental (thermal, X-ray diffraction, Raman scattering, dielectric, nonlinear optical) and theoretical (machine-learning force field) approach to map the phase diagrams and obtain information on molecular dynamics and mechanism of the structural phase transitions in novel 3D AZRPbX3 perovskites (AZR = aziridinium; X = Cl, Br, I). Our work reveals that all perovskites undergo order-disorder phase transitions at low temperatures, which significantly affect the structural, dielectric, phonon, and nonlinear optical properties of these compounds. The desirable cubic phases of AZRPbX3 remain stable at lower temperatures (132, 145, and 162 K for I, Br, and Cl) compared to the methylammonium and formamidinium analogues. Similar to other 3D-connected hybrid perovskites, the dielectric response reveals a rather high dielectric permittivity, an important feature for defect tolerance. We further show that AZRPbBr3 and AZRPbI3 exhibit strong nonlinear optical absorption. The high two-photon brightness of AZRPbI3 emission stands out among lead perovskites emitting in the near-infrared region.
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland
| | - Maciej Ptak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland
| | - Anna Gągor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland
| | - Jan K. Zaręba
- Institute
of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Xia Liang
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | | | - Oleksandr A. Semenikhin
- Department
of Chemistry, Taras Shevchenko National
University of Kyiv, 64 Volodymyrska St., Kyiv 01601, Ukraine
| | - Olesia I. Kucheriv
- Department
of Chemistry, Taras Shevchenko National
University of Kyiv, 64 Volodymyrska St., Kyiv 01601, Ukraine
| | - Il’ya A. Gural’skiy
- Department
of Chemistry, Taras Shevchenko National
University of Kyiv, 64 Volodymyrska St., Kyiv 01601, Ukraine
| | - Sergiu Shova
- Department
of Inorganic Polymers, Petru Poni Institute
of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
| | - Aron Walsh
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Ju̅ras Banys
- Faculty
of Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Mantas Šimėnas
- Faculty
of Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
25
|
Ardimas, Pakornchote T, Sukmas W, Chatraphorn S, Clark SJ, Bovornratanaraks T. Phase transformations and vibrational properties of hybrid organic-inorganic perovskite MAPbI 3 bulk at high pressure. Sci Rep 2023; 13:16854. [PMID: 37803050 PMCID: PMC10558557 DOI: 10.1038/s41598-023-43020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
The structural stability and internal properties of hybrid organic-inorganic perovskites (HOIPs) have been widely investigated over the past few years. The interplay between organic cations and inorganic framework is one of the prominent features. Herein we report the evolution of Raman modes under pressure in the hybrid organic-inorganic perovskite MAPbI[Formula: see text] by combining the experimental approach with the first-principles calculations. A bulk MAPbI[Formula: see text] single crystal was synthesized via inverse temperature crystallization (ITC) technique and characterized by Raman spectroscopy, while the diamond anvil cells (DACs) was employed to compress the sample. The classification and behaviours of their Raman modes are presented. At ambient pressure, the vibrations of inorganic PbI[Formula: see text] octahedra and organic MA dominate at a low-frequency range (60-760 cm[Formula: see text]) and a fingerprint range (900-1500 cm[Formula: see text]), respectively. The applied pressure exhibits two significant changes in the Raman spectrum and indicates of phase transition. The results obtained from both experiment and calculations of the second phase at 3.26 GPa reveal that the internal vibration intensity of the PbI[Formula: see text] octahedra (< 110 cm[Formula: see text]) reduces as absences of MA libration (150-270 cm[Formula: see text]) and internal vibration of MA (450-750 cm[Formula: see text]). Furthermore, the hydrogen interactions around 1300 cm[Formula: see text] remain strong high pressure up to 5.34 GPa.
Collapse
Affiliation(s)
- Ardimas
- Department of Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Extreme Conditions Physics Research Laboratory (ECPRL) and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerachote Pakornchote
- Extreme Conditions Physics Research Laboratory (ECPRL) and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand
| | - Wiwittawin Sukmas
- Extreme Conditions Physics Research Laboratory (ECPRL) and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Sojiphong Chatraphorn
- Extreme Conditions Physics Research Laboratory (ECPRL) and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand
| | - Stewart J Clark
- Department of Physics, Faculty of Science, Durham University, Durham, DH1 3LE, UK
| | - Thiti Bovornratanaraks
- Department of Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
- Extreme Conditions Physics Research Laboratory (ECPRL) and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand.
| |
Collapse
|
26
|
Jung Y, Lee W, Han S, Kim BS, Yoo SJ, Jang H. Thermal Transport Properties of Phonons in Halide Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204872. [PMID: 36036368 DOI: 10.1002/adma.202204872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Halide perovskites have emerged as promising candidates for various applications, such as photovoltaic, optoelectronic and thermoelectric applications. The knowledge of the thermal transport of halide perovskites is essential for enhancing the device performance for these applications and improving the understanding of heat transport in complicated material systems with atomic disorders. In this work, the current understanding of the experimentally and theoretically obtained thermal transport properties of halide perovskites is reviewed. This study comprehensively examines the reported thermal conductivity of methylammonium lead iodide, which is a prototype material, and provides theoretical frameworks for its lattice vibrational properties. The frameworks and discussions are extended to other halide perovskites and derivative structures. The implications for device applications, such as solar cells and thermoelectrics, are discussed.
Collapse
Affiliation(s)
- Yoonseong Jung
- Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, South Korea
| | - Wonsik Lee
- Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, South Korea
| | - Seungbin Han
- Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, South Korea
| | - Beom-Soo Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, South Korea
| | - Seung-Jun Yoo
- Future Technology, LG Chem, Seoul, 07796, South Korea
| | - Hyejin Jang
- Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
27
|
Liang X, Klarbring J, Baldwin WJ, Li Z, Csányi G, Walsh A. Structural Dynamics Descriptors for Metal Halide Perovskites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19141-19151. [PMID: 37791100 PMCID: PMC10544022 DOI: 10.1021/acs.jpcc.3c03377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Indexed: 10/05/2023]
Abstract
Metal halide perovskites have shown extraordinary performance in solar energy conversion technologies. They have been classified as "soft semiconductors" due to their flexible corner-sharing octahedral networks and polymorphous nature. Understanding the local and average structures continues to be challenging for both modeling and experiments. Here, we report the quantitative analysis of structural dynamics in time and space from molecular dynamics simulations of perovskite crystals. The compact descriptors provided cover a wide variety of structural properties, including octahedral tilting and distortion, local lattice parameters, molecular orientations, as well as their spatial correlation. To validate our methods, we have trained a machine learning force field (MLFF) for methylammonium lead bromide (CH3NH3PbBr3) using an on-the-fly training approach with Gaussian process regression. The known stable phases are reproduced, and we find an additional symmetry-breaking effect in the cubic and tetragonal phases close to the phase-transition temperature. To test the implementation for large trajectories, we also apply it to 69,120 atom simulations for CsPbI3 based on an MLFF developed using the atomic cluster expansion formalism. The structural dynamics descriptors and Python toolkit are general to perovskites and readily transferable to more complex compositions.
Collapse
Affiliation(s)
- Xia Liang
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Johan Klarbring
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
| | - William J. Baldwin
- Department
of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K.
| | - Zhenzhu Li
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Gábor Csányi
- Department
of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K.
| | - Aron Walsh
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Physics, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
28
|
Zhang H, Zhai Z, Bi Z, Gao H, Ye M, Xu Y, Tan H, Yang L. Spin Coherence and Spin Relaxation in Hybrid Organic-Inorganic Lead and Mixed Lead-Tin Perovskites. NANO LETTERS 2023; 23:7914-7920. [PMID: 37642561 DOI: 10.1021/acs.nanolett.3c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Metal halide perovskites make up a promising class of materials for semiconductor spintronics. Here we report a systematic investigation of coherent spin precession, spin dephasing and spin relaxation of electrons and holes in two hybrid organic-inorganic perovskites MA0.3FA0.7PbI3 and MA0.3FA0.7Pb0.5Sn0.5I3 using time-resolved Faraday rotation spectroscopy. With applied in-plane magnetic fields, we observe robust Larmor spin precession of electrons and holes that persists for hundreds of picoseconds. The spin dephasing and relaxation processes are likely to be sensitive to the defect levels. Temperature-dependent measurements give further insights into the spin relaxation channels. The extracted electron Landé g-factors (3.75 and 4.36) are the biggest among the reported values in inorganic or hybrid perovskites. Both the electron and hole g-factors shift dramatically with temperature, which we propose to originate from thermal lattice vibration effects on the band structure. These results lay the foundation for further design and use of lead- and tin-based perovskites for spintronic applications.
Collapse
Affiliation(s)
- Haochen Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Zehua Zhai
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhixuan Bi
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Han Gao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Meng Ye
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Yong Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, China
| | - Luyi Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
29
|
Frenzel M, Cherasse M, Urban JM, Wang F, Xiang B, Nest L, Huber L, Perfetti L, Wolf M, Kampfrath T, Zhu XY, Maehrlein SF. Nonlinear terahertz control of the lead halide perovskite lattice. SCIENCE ADVANCES 2023; 9:eadg3856. [PMID: 37224256 PMCID: PMC10208573 DOI: 10.1126/sciadv.adg3856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Lead halide perovskites (LHPs) have emerged as an excellent class of semiconductors for next-generation solar cells and optoelectronic devices. Tailoring physical properties by fine-tuning the lattice structures has been explored in these materials by chemical composition or morphology. Nevertheless, its dynamic counterpart, phonon-driven ultrafast material control, as contemporarily harnessed for oxide perovskites, has not yet been established. Here, we use intense THz electric fields to obtain direct lattice control via nonlinear excitation of coherent octahedral twist modes in hybrid CH3NH3PbBr3 and all-inorganic CsPbBr3 perovskites. These Raman-active phonons at 0.9 to 1.3 THz are found to govern the ultrafast THz-induced Kerr effect in the low-temperature orthorhombic phase and thus dominate the phonon-modulated polarizability with potential implications for dynamic charge carrier screening beyond the Fröhlich polaron. Our work opens the door to selective control of LHP's vibrational degrees of freedom governing phase transitions and dynamic disorder.
Collapse
Affiliation(s)
- Maximilian Frenzel
- Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Berlin, Germany
| | - Marie Cherasse
- Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Berlin, Germany
- LSI, CEA/DRF/IRAMIS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Joanna M. Urban
- Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Berlin, Germany
| | - Feifan Wang
- Department of Chemistry, Columbia University, New York City, NY, USA
| | - Bo Xiang
- Department of Chemistry, Columbia University, New York City, NY, USA
| | - Leona Nest
- Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Berlin, Germany
| | - Lucas Huber
- Department of Chemistry, Columbia University, New York City, NY, USA
| | - Luca Perfetti
- LSI, CEA/DRF/IRAMIS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Martin Wolf
- Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Berlin, Germany
| | - Tobias Kampfrath
- Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - X.-Y. Zhu
- Department of Chemistry, Columbia University, New York City, NY, USA
| | - Sebastian F. Maehrlein
- Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Berlin, Germany
| |
Collapse
|
30
|
Yang LJ, Xuan W, Webster D, Jagadamma LK, Li T, Miller DN, Cordes DB, Slawin AMZ, Turnbull GA, Samuel IDW, Chen HYT, Lightfoot P, Dyer MS, Payne JL. Manipulation of the Structure and Optoelectronic Properties through Bromine Inclusion in a Layered Lead Bromide Perovskite. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3801-3814. [PMID: 37251101 PMCID: PMC10210243 DOI: 10.1021/acs.chemmater.2c03125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/03/2023] [Indexed: 05/31/2023]
Abstract
One of the great advantages of organic-inorganic metal halides is that their structures and properties are highly tuneable and this is important when optimizing materials for photovoltaics or other optoelectronic devices. One of the most common and effective ways of tuning the electronic structure is through anion substitution. Here, we report the inclusion of bromine into the layered perovskite [H3N(CH2)6NH3]PbBr4 to form [H3N(CH2)6NH3]PbBr4·Br2, which contains molecular bromine (Br2) intercalated between the layers of corner-sharing PbBr6 octahedra. Bromine intercalation in [H3N(CH2)6NH3]PbBr4·Br2 results in a decrease in the band gap of 0.85 eV and induces a structural transition from a Ruddlesden-Popper-like to Dion-Jacobson-like phase, while also changing the conformation of the amine. Electronic structure calculations show that Br2 intercalation is accompanied by the formation of a new band in the electronic structure and a significant decrease in the effective masses of around two orders of magnitude. This is backed up by our resistivity measurements that show that [H3N(CH2)6NH3]PbBr4·Br2 has a resistivity value of one order of magnitude lower than [H3N(CH2)6NH3]PbBr4, suggesting that bromine inclusion significantly increases the mobility and/or carrier concentration in the material. This work highlights the possibility of using molecular inclusion as an alternative tool to tune the electronic properties of layered organic-inorganic perovskites, while also being the first example of molecular bromine inclusion in a layered lead halide perovskite. By using a combination of crystallography and computation, we show that the key to this manipulation of the electronic structure is the formation of halogen bonds between the Br2 and Br in the [PbBr4]∞ layers, which is likely to have important effects in a range of organic-inorganic metal halides.
Collapse
Affiliation(s)
- Lin-jie Yang
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Wenye Xuan
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
- Materials
Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom
- Department
of Engineering and System Science, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - David Webster
- Organic
Semiconductor Centre, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Fife, United Kingdom
| | - Lethy Krishnan Jagadamma
- Organic
Semiconductor Centre, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Fife, United Kingdom
| | - Teng Li
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - David N. Miller
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - David B. Cordes
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Alexandra M. Z. Slawin
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Graham A. Turnbull
- Organic
Semiconductor Centre, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Fife, United Kingdom
| | - Ifor D. W. Samuel
- Organic
Semiconductor Centre, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Fife, United Kingdom
| | - Hsin-Yi Tiffany Chen
- Department
of Engineering and System Science, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Philip Lightfoot
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| | - Matthew S. Dyer
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
- Materials
Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom
| | - Julia L. Payne
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Fife, United Kingdom
| |
Collapse
|
31
|
Kingsford RL, Jackson SR, Bloxham LC, Bischak CG. Controlling Phase Transitions in Two-Dimensional Perovskites through Organic Cation Alloying. J Am Chem Soc 2023; 145:11773-11780. [PMID: 37191616 DOI: 10.1021/jacs.3c02956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We demonstrate control over the phase transition temperature of Ruddlesden-Popper two-dimensional (2D) perovskites by alloying alkyl organic cations of varying lengths. By blending hexylammonium with pentylammonium or heptylammonium cations in different ratios, we continuously tune the phase transition temperature of 2D perovskites from approximately 40 to -80 °C in both crystalline powders and thin films. Correlating temperature-dependent grazing incidence wide-angle X-ray scattering and photoluminescence spectroscopy, we also demonstrate that the phase transition in the organic layer couples to the inorganic lattice, impacting PL intensity and wavelength. We take advantage of changes in PL intensity to image the dynamics of this phase transition and show asymmetric phase growth at the microscale. Our findings provide the necessary design principles to precisely control phase transitions in 2D perovskites for applications such as solid-solid phase change materials and barocaloric cooling.
Collapse
Affiliation(s)
- Rand L Kingsford
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Seth R Jackson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Leo C Bloxham
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Connor G Bischak
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
32
|
Bonadio A, Sabino FP, Freitas ALM, Felez MR, Dalpian GM, Souza JA. Comparing the Cubic and Tetragonal Phases of MAPbI 3 at Room Temperature. Inorg Chem 2023; 62:7533-7544. [PMID: 37126785 DOI: 10.1021/acs.inorgchem.3c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stability and maintenance of the crystal structure are the main drawbacks of the application of organic-inorganic perovskites in photovoltaic devices. The ΔT = 62 K robust shift of the structural phase transition observed here allows us to conduct a comprehensive study at room temperature of the tetragonal versus cubic phase on MAPbI3. The absence of the shift in the cubic transition for all-inorganic CsPbI3 samples confirms the importance of both orientation and dynamics of the organic cations. Our results provide a unique opportunity to evaluate the physical properties of both cubic and tetragonal phases of MAPbI3 at the same temperature, eliminating different phonon effects as possible causes for different properties. Besides higher electrical resistivity, the perovskite cubic phase presents a faster charge carrier lifetime than the tetragonal phase and partial PL quenching, pointing toward increased trap-assisted nonradiative recombination. The light absorption coefficient in the cubic phase is larger than the absorption in the tetragonal phase in the green region.
Collapse
Affiliation(s)
- Ariany Bonadio
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fernando P Sabino
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - André L M Freitas
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| | - Marissol R Felez
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| | - Gustavo M Dalpian
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| | - Jose A Souza
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
33
|
Kim TJ, Lee S, Lee E, Seo C, Kim J, Joo J. Far-Red Interlayer Excitons of Perovskite/Quantum-Dot Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207653. [PMID: 36938849 PMCID: PMC10190583 DOI: 10.1002/advs.202207653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Interlayer excitons (IXs) at the interface of heterostructures (HSs) with a staggered band alignment are fascinating quantum quasi-particles with light-emitting and long-lifetime characteristics. In this study, the energy band alignments (EBAs) of the HS of MAPbI3 perovskite thin sheets with CdSe-ZnS core-shell quantum dot (QD) layers are modulated by using different diameters of the QDs. Far-red IX emission is observed at 1.42 eV from the HS of MAPbI3 /CdSe-ZnS-QD (λem = 645 nm) with type-II EBA owing to charge transfer. The lifetime of the far-red IXs is estimated to be 5.68 µs, which is considerably longer than that (0.715 ns) of the intralayer excitons from CdSe-ZnS-QD. With increasing incident excitation power, the PL peak and its intensity of IXs are blue-shifted and linearly increased, respectively, indicating a strong dipole alignment of far-red IXs at the heterojunction. Back focal plane imaging suggests that the directions of dipole moments of the IXs are relatively out-of-plane compared to those of the intralayer excitons (MAPbI3 and CdSe-ZnS-QD). Notably, the abnormal behavior of the optical characteristics is observed near the phase transition temperature (90 K) of MAPbI3 . MAPbI3 /CdSe-ZnS-QD HS photodetectors show the increase in photocurrent and detectivity compared to MAPbI3 at IX excitation.
Collapse
Affiliation(s)
- Taek Joon Kim
- Department of PhysicsKorea UniversitySeoul02841Republic of Korea
| | - Sang‐hun Lee
- Department of PhysicsKorea UniversitySeoul02841Republic of Korea
| | - Eunji Lee
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Changwon Seo
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Physics and Energy Harvest‐Storage Research CenterUniversity of UlsanUlsan44610Republic of Korea
| | - Jeongyong Kim
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jinsoo Joo
- Department of PhysicsKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
34
|
Wu J, Chen J, Wang H. Phase Transition Kinetics of MAPbI 3 for Tetragonal-to-Orthorhombic Evolution. JACS AU 2023; 3:1205-1212. [PMID: 37124306 PMCID: PMC10131189 DOI: 10.1021/jacsau.3c00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Despite the commonly observed phase-instability-induced photovoltaic degradation of MAPbI3, the phase transition kinetics at the atomic level remains elusive. Herein, by developing a stepwise NEB method, we clarify a nonsynergistic minimum-energy pathway for the tetragonal-to-orthorhombic phase transition. It is kinetically driven by the tilting of PbI6 4- that induces a spontaneous small rotation of adjoining MA+ and ends with stepwise ∼110° reorientations of two nonadjacent MA+ enabled by the cavity expansion. Compared to the common concerted mechanism, this process gives a low barrier of 0.08 eV/unit, demonstrating the easiness of the transition at extremely low temperatures and the importance of rotational entropies in regulating transition at elevated temperatures. With an explicit phase transition mechanism, we explore the structure-induced property response and reveal that introducing even low content of large-sized organic cations could help maintain the quasi-stable low-temperature performance of MAPbI3 solar cells.
Collapse
Affiliation(s)
| | | | - Haifeng Wang
- Key Laboratory for Advanced
Materials, Center for Computational Chemistry and Research Institute
of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
35
|
Manzi M, Pica G, De Bastiani M, Kundu S, Grancini G, Saidaminov MI. Ferroelectricity in Hybrid Perovskites. J Phys Chem Lett 2023; 14:3535-3552. [PMID: 37017277 DOI: 10.1021/acs.jpclett.3c00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ferroelectric ceramics such as PbZrxTi1-xO3 (PZT) are widely applied in many fields, from medical to aerospace, because of their dielectric, piezoelectric, and pyroelectric properties. In the past few years, hybrid organic-inorganic halide perovskites have gradually attracted attention for their optical and electronic properties, including ferroelectricity, and for their low fabrication costs. In this Review, we first describe techniques that are used to quantify ferroelectric figures of merit of a material. We then discuss ferroelectricity in hybrid perovskites, starting from controversies in methylammonium iodoplumbate perovskites and then focusing on low-dimensional perovskites that offer an unambiguous platform to obtain ferroelectricity. Finally, we provide examples of the application of perovskite ferroelectrics in solar cells, LEDs, and X-ray detectors. We conclude that the vast structure-property tunability makes low-dimensional hybrid perovskites promising, but they have yet to offer ferroelectric figures of merit (e.g., saturated polarization) and thermal stability (e.g., Curie temperature) competitive with those of conventional oxide perovskite ferroelectric materials.
Collapse
Affiliation(s)
| | - Giovanni Pica
- Department of Chemistry, University of Pavia, Via T. Taramelli 14, 27100 Pavia, Italy
| | - Michele De Bastiani
- Department of Chemistry, University of Pavia, Via T. Taramelli 14, 27100 Pavia, Italy
| | | | - Giulia Grancini
- Department of Chemistry & INSTM, University of Pavia, Via T. Taramelli 14, 27100 Pavia, Italy
| | | |
Collapse
|
36
|
Yang CQ, Zhi R, Rothmann MU, Xu YY, Li LQ, Hu ZY, Pang S, Cheng YB, Van Tendeloo G, Li W. Unveiling the Intrinsic Structure and Intragrain Defects of Organic-Inorganic Hybrid Perovskites by Ultralow Dose Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211207. [PMID: 36780501 DOI: 10.1002/adma.202211207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Indexed: 05/17/2023]
Abstract
Transmission electron microscopy (TEM) is a powerful tool for unveiling the structural, compositional, and electronic properties of organic-inorganic hybrid perovskites (OIHPs) at the atomic to micrometer length scales. However, the structural and compositional instability of OIHPs under electron beam radiation results in misunderstandings of the microscopic structure-property-performance relationship in OIHP devices. Here, ultralow dose TEM is utilized to identify the mechanism of the electron-beam-induced changes in OHIPs and clarify the cumulative electron dose thresholds (critical dose) of different commercially interesting state-of-the-art OIHPs, including methylammonium lead iodide (MAPbI3 ), formamidinium lead iodide (FAPbI3 ), FA0.83 Cs0.17 PbI3 , FA0.15 Cs0.85 PbI3 , and MAPb0.5 Sn0.5 I3 . The critical dose is related to the composition of the OIHPs, with FA0.15 Cs0.85 PbI3 having the highest critical dose of ≈84 e Å-2 and FA0.83 Cs0.17 PbI3 having the lowest critical dose of ≈4.2 e Å-2 . The electron beam irradiation results in the formation of a superstructure with ordered I and FA vacancies along <110>c , as identified from the three major crystal axes in cubic FAPbI3 , <100>c , <110>c , and <111>c . The intragrain planar defects in FAPbI3 are stable, while an obvious modification is observed in FA0.83 Cs0.17 PbI3 under continuous electron beam exposure. This information can serve as a guide for ensuring a reliable understanding of the microstructure of OIHP optoelectronic devices by TEM.
Collapse
Affiliation(s)
- Chen-Quan Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
- Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
| | - Rui Zhi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Mathias Uller Rothmann
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Yue-Yu Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Li-Qi Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
| | - Shuping Pang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 458500, P. R. China
| | - Yi-Bing Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Gustaaf Van Tendeloo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Wei Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
- Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
| |
Collapse
|
37
|
Hsu C, Wang H, Hayashi M. The effects of the lattice modulation on the intermolecular motions of the
MA
cations of the tetragonal
MAPbI
3
phase. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
38
|
Leonard AA, Diroll BT, Flanders NC, Panuganti S, Brumberg A, Kirschner MS, Cuthriell SA, Harvey SM, Watkins NE, Yu J, Wasielewski MR, Kanatzidis MG, Dichtel WR, Zhang X, Chen LX, Schaller RD. Light-Induced Transient Lattice Dynamics and Metastable Phase Transition in CH 3NH 3PbI 3 Nanocrystals. ACS NANO 2023; 17:5306-5315. [PMID: 36916650 DOI: 10.1021/acsnano.2c06950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methylammonium lead iodide (MAPbI3) perovskite nanocrystals (NCs) offer desirable optoelectronic properties with prospective utility in photovoltaics, lasers, and light-emitting diodes (LEDs). Structural rearrangements of MAPbI3 in response to photoexcitation, such as lattice distortions and phase transitions, are of particular interest, as these engender long carrier lifetime and bolster carrier diffusion. Here, we use variable temperature X-ray diffraction (XRD) and synchrotron-based transient X-ray diffraction (TRXRD) to investigate lattice response following ultrafast optical excitation. MAPbI3 NCs are found to slowly undergo a phase transition from the tetragonal to a pseudocubic phase over the course of 1 ns under 0.02-4.18 mJ/cm2 fluence photoexcitation, with apparent nonthermal lattice distortions attributed to polaron formation. Lattice recovery exceeds time scales expected for both carrier recombination and thermal dissipation, indicating meta-stability likely due to the proximal phase transition, with symmetry-breaking along equatorial and axial directions. These findings are relevant for fundamental understanding and applications of structure-function properties.
Collapse
Affiliation(s)
- Ariel A Leonard
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Nathan C Flanders
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shobhana Panuganti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alexandra Brumberg
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew S Kirschner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shelby A Cuthriell
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samantha M Harvey
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicolas E Watkins
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jin Yu
- X-ray Sciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiaoyi Zhang
- X-ray Sciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Szostak R, de Souza Gonçalves A, de Freitas JN, Marchezi PE, de Araújo FL, Tolentino HCN, Toney MF, das Chagas Marques F, Nogueira AF. In Situ and Operando Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chem Rev 2023; 123:3160-3236. [PMID: 36877871 DOI: 10.1021/acs.chemrev.2c00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The performance and stability of metal halide perovskite solar cells strongly depend on precursor materials and deposition methods adopted during the perovskite layer preparation. There are often a number of different formation pathways available when preparing perovskite films. Since the precise pathway and intermediary mechanisms affect the resulting properties of the cells, in situ studies have been conducted to unravel the mechanisms involved in the formation and evolution of perovskite phases. These studies contributed to the development of procedures to improve the structural, morphological, and optoelectronic properties of the films and to move beyond spin-coating, with the use of scalable techniques. To explore the performance and degradation of devices, operando studies have been conducted on solar cells subjected to normal operating conditions, or stressed with humidity, high temperatures, and light radiation. This review presents an update of studies conducted in situ using a wide range of structural, imaging, and spectroscopic techniques, involving the formation/degradation of halide perovskites. Operando studies are also addressed, emphasizing the latest degradation results for perovskite solar cells. These works demonstrate the importance of in situ and operando studies to achieve the level of stability required for scale-up and consequent commercial deployment of these cells.
Collapse
Affiliation(s)
- Rodrigo Szostak
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Agnaldo de Souza Gonçalves
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), 13083-859 Campinas, SP, Brazil
| | - Jilian Nei de Freitas
- Center for Information Technology Renato Archer (CTI), 13069-901 Campinas, SP, Brazil
| | - Paulo E Marchezi
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden
| | - Francineide Lopes de Araújo
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Hélio Cesar Nogueira Tolentino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Michael F Toney
- Department of Chemical & Biological Engineering, and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | | | - Ana Flavia Nogueira
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
40
|
Morana M, Wiktor J, Coduri M, Chiara R, Giacobbe C, Bright EL, Ambrosio F, De Angelis F, Malavasi L. Cubic or Not Cubic? Combined Experimental and Computational Investigation of the Short-Range Order of Tin Halide Perovskites. J Phys Chem Lett 2023; 14:2178-2186. [PMID: 36808992 PMCID: PMC9986956 DOI: 10.1021/acs.jpclett.3c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Tin-based metal halide perovskites with a composition of ASnX3 (where A= MA or FA and X = I or Br) have been investigated by means of X-ray total scattering techniques coupled to pair distribution function (PDF) analysis. These studies revealed that that none of the four perovskites has a cubic symmetry at the local scale and that a degree of increasing distortion is always present, in particular when the cation size is increased, i.e., from MA to FA, and the hardness of the anion is increased, i.e., from Br- to I-. Electronic structure calculations provided good agreement with experimental band gaps for the four perovskites when local dynamical distortions were included in the calculations. The averaged structure obtained from molecular dynamics simulations was consistent with experimental local structures determined via X-ray PDF, thus highlighting the robustness of computational modeling and strengthening the correlation between experimental and computational results.
Collapse
Affiliation(s)
- Marta Morana
- Department
of Earth Sciences, University of Firenze, Via G. La Pira 4, 50121 Firenze, Italy
| | - Julia Wiktor
- Department
of Physics, Chalmers University of Technology, 412 96 Goteborg, Sweden
| | - Mauro Coduri
- Department
of Chemistry and INSTM, Viale Taramelli 16, 27100 Pavia, Italy
| | - Rossella Chiara
- Department
of Chemistry and INSTM, Viale Taramelli 16, 27100 Pavia, Italy
| | | | | | - Francesco Ambrosio
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Dipartimento
di Scienze, University of Basilicata, Viale dell’Ateno Lucano,
10, 85100 Potenza, Italy
| | - Filippo De Angelis
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce
di Sotto 8, 06123 Perugia, Italy
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Department
of Natural Sciences & Mathematics, College of Sciences & Human
Studies, Prince Mohammad Bin Fahd University, Dhahran 34754, Saudi Arabia
| | - Lorenzo Malavasi
- Department
of Chemistry and INSTM, Viale Taramelli 16, 27100 Pavia, Italy
| |
Collapse
|
41
|
Wei Q, Liang H, Haruta Y, Saidaminov M, Mi Q, Saliba M, Cui G, Ning Z. From tetragonal to cubic: perovskite phase structure evolution for high-performance solar cells. Sci Bull (Beijing) 2023; 68:141-145. [PMID: 36653213 DOI: 10.1016/j.scib.2023.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qi Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen 200441, China
| | - Hao Liang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuki Haruta
- Department of Chemistry and Department of Electrical & Computer Engineering and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
| | - Makhsud Saidaminov
- Department of Chemistry and Department of Electrical & Computer Engineering and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Michael Saliba
- Institute for Photovoltaics, University of Stuttgart, Stuttgart 70569, Germany
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
42
|
Mishra A, Hope MA, Grätzel M, Emsley L. A Complete Picture of Cation Dynamics in Hybrid Perovskite Materials from Solid-State NMR Spectroscopy. J Am Chem Soc 2023; 145:978-990. [PMID: 36580303 PMCID: PMC9853870 DOI: 10.1021/jacs.2c10149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 12/30/2022]
Abstract
The organic cations in hybrid organic-inorganic perovskites rotate rapidly inside the cuboctahedral cavities formed by the inorganic lattice, influencing optoelectronic properties. Here, we provide a complete quantitative picture of cation dynamics for formamidinium-based perovskites and mixed-cation compositions, which are the most widely used and promising absorber layers for perovskite solar cells today. We use 2H and 14N quadrupolar solid-state NMR relaxometry under magic-angle spinning to determine the activation energy (Ea) and correlation time (τc) at room temperature for rotation about each principal axis of a series of organic cations. Specifically, we investigate methylammonium (MA+), formamidinium (FA+), and guanidinium (GUA+) cations in current state-of-the-art single- and multi-cation perovskite compositions. We find that MA+, FA+, and GUA+ all have at least one component of rotation that occurs on the picosecond timescale at room temperature, with MA+ and GUA+ also exhibiting faster and slower components, respectively. The cation dynamics depend on the symmetry of the inorganic lattice but are found to be insensitive to the degree of cation substitution. In particular, the FA+ rotation is invariant across all compositions studied here, when sufficiently above the phase transition temperature. We further identify an unusual relaxation mechanism for the 2H of MA+ in mechanosynthesized FAxMA1-xPbI3, which was found to result from physical diffusion to paramagnetic defects. This precise picture of cation dynamics will enable better understanding of the relationship between the organic cations and the optoelectronic properties of perovskites, guiding the design principles for more efficient perovskite solar cells in the future.
Collapse
Affiliation(s)
- Aditya Mishra
- Institut des Sciences et Ingéniere
Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Michael A. Hope
- Institut des Sciences et Ingéniere
Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Michael Grätzel
- Institut des Sciences et Ingéniere
Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingéniere
Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| |
Collapse
|
43
|
Jiang N, Zhou J, Hao XL, Li J, Zhang D, Bacsa J, Choi ES, Ramanathan A, Baumbach RE, Li H, Brédas JL, Han Y, La Pierre HS. Ground-State Spin Dynamics in d1 Kagome-Lattice Titanium Fluorides. J Am Chem Soc 2023; 145:207-215. [PMID: 36534963 DOI: 10.1021/jacs.2c09633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many quantum magnetic materials suffer from structural imperfections. The effects of structural disorder on bulk properties are difficult to assess systematically from a chemical perspective due to the complexities of chemical synthesis. The recently reported S = 1/2 kagome lattice antiferromagnet, (CH3NH3)2NaTi3F12, 1-Ti, with highly symmetric kagome layers and disordered interlayer methylammonium cations, shows no magnetic ordering down to 0.1 K. To study the impact of structural disorder in the titanium fluoride kagome compounds, (CH3NH3)2KTi3F12, 2-Ti, was prepared. It presents no detectable structural disorder and only a small degree of distortion of the kagome lattice. The methylammonium disorder model of 1-Ti and order in 2-Ti were confirmed by atomic-resolution transmission electron microscopy. The antiferromagnetic interactions and band structures of both compounds were calculated based on spin-polarized density functional theory and support the magnetic structure analysis. Three spin-glass-like (SGL) transitions were observed in 2-Ti at 0.5, 1.4, and 2.3 K, while a single SGL transition can be observed in 1-Ti at 0.8 K. The absolute values of the Curie-Weiss temperatures of both 1-Ti (-139.5(7) K) and 2-Ti (-83.5(7) K) are larger than the SGL transition temperatures, which is indicative of geometrically frustrated spin glass (GFSG) states. All the SGL transitions are quenched with an applied field >0.1 T, which indicates novel magnetic phases emerge under small applied magnetic fields. The well-defined structure and the lack of structural disorder in 2-Ti suggest that 2-Ti is an ideal model compound for studying GFSG states and the potential transitions between spin liquid and GFSG states.
Collapse
Affiliation(s)
- Ningxin Jiang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332-0400, United States
| | - Jinfei Zhou
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Xue-Li Hao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332-0400, United States
| | - Jingwei Li
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332-0400, United States
| | - Eun Sang Choi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida32310, United States
| | - Arun Ramanathan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332-0400, United States
| | - Ryan E Baumbach
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida32306, United States
| | - Hong Li
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, Arizona85721-0088, United States
| | - Jean-Luc Brédas
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, Arizona85721-0088, United States
| | - Yu Han
- Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332-0400, United States.,Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia30332-0400, United States
| |
Collapse
|
44
|
Finkler JA, Goedecker S. Experimental absence of the non-perovskite ground state phases of MaPbI 3 explained by a Funnel Hopping Monte Carlo study based on a neural network potential. MATERIALS ADVANCES 2023; 4:184-194. [PMID: 36685989 PMCID: PMC9812259 DOI: 10.1039/d2ma00958g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Methylammonium lead iodide is a material known for its exceptional opto-electronic properties that make it a promising candidate for many high performance applications, such as light emitting diodes or solar cells. A recent computational structure search revealed two previously unknown non-perovskite polymorphs, that are lower in energy than the experimentally observed perovskite phases. To investigate the elusiveness of the non-perovskite phases in experimental studies, we extended our Funnel Hopping Monte Carlo (FHMC) method to periodic systems and performed extensive MC simulations driven by a machine learned potential. FHMC simulations that also include these newly discovered non-perovskite phases show that above temperatures of 200 K the perovskite phases are thermodynamically preferred. A comparison with the quasi-harmonic approximation highlights the importance of anharmonic effects captured by FHMC.
Collapse
Affiliation(s)
- Jonas A Finkler
- Department of Physics, University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| | - Stefan Goedecker
- Department of Physics, University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| |
Collapse
|
45
|
Tian J, Adamo G, Liu H, Wu M, Klein M, Deng J, Ang NSS, Paniagua-Domínguez R, Liu H, Kuznetsov AI, Soci C. Phase-Change Perovskite Microlaser with Tunable Polarization Vortex. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207430. [PMID: 36321337 DOI: 10.1002/adma.202207430] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Metasurfaces supporting optical bound states in the continuum (BICs) are emerging as simple and compact optical cavities to realize polarization-vortex lasers. The winding of the polarization around the singularity defines topological charges which are generally set by the cavity design and cannot be altered without changing geometrical parameters. Here, a subwavelength-thin phase-change halide perovskite BIC metasurface functioning as a tunable polarization vortex microlaser is demonstrated. Upon the perovskite structural phase transitions, both its refractive index and gain vary substantially, inducing reversible and bistable switching between distinct polarization vortexes underpinned by opposite topological charges. Dynamic tuning and switching of the resulting vector beams may find use in microscopy imaging, particle trapping and manipulation, and optical data storage.
Collapse
Affiliation(s)
- Jingyi Tian
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Giorgio Adamo
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hailong Liu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Mengfei Wu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Maciej Klein
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jie Deng
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Norman Soo Seng Ang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Ramón Paniagua-Domínguez
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Arseniy I Kuznetsov
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Cesare Soci
- Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
46
|
Gushchina I, Trepalin V, Zaitsev E, Ruth A, Kuno M. Excitation Intensity- and Size-Dependent Halide Photosegregation in CsPb(I 0.5Br 0.5) 3 Perovskite Nanocrystals. ACS NANO 2022; 16:21636-21644. [PMID: 36468911 DOI: 10.1021/acsnano.2c10781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although broad consensus exists that photoirradiation of mixed-halide lead perovskites leads to anion segregation, no model today fully rationalizes all aspects of this near ubiquitous phenomenon. Here, we quantitatively compare experimental, CsPb(I0.5Br0.5)3 nanocrystal (NC) terminal anion photosegregation stoichiometries and excitation intensity thresholds to a band gap-based, thermodynamic model of mixed-halide perovskite photosegregation. Mixed-halide NCs offer strict tests of theory given physical sizes, which dictate local photogenerated carrier densities. We observe that mixed-anion perovskite NCs exhibit significant robustness to photosegregation, with photosegregation propensity decreasing with decreasing NC size. Observed size- and excitation intensity-dependent photosegregation data agree with model predicted size- and excitation intensity-dependent terminal halide stoichiometries. Established correspondence between experiment and theory, in turn, suggests that mixed-halide perovskite photostabilities can be predicted a priori using local gradients of (empirical) Vegard's law expressions of composition-dependent band gaps.
Collapse
Affiliation(s)
- Irina Gushchina
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Vadim Trepalin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Evgenii Zaitsev
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Anthony Ruth
- CubicPV, 1807 Ross Avenue, STE 333, Dallas, Texas75201, United States
| | - Masaru Kuno
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
- Department of Physics, University of Notre Dame, Notre Dame, Indiana46556, United States
| |
Collapse
|
47
|
De Souza RA, Kemp D, Wolf MJ, Ramadan AHH. Caution! Static Supercell Calculations of Defect Migration in Higher Symmetry ABX3 Perovskite Halides May Be Unreliable: A Case Study of Methylammonium Lead Iodide. J Phys Chem Lett 2022; 13:11363-11368. [PMID: 36454641 DOI: 10.1021/acs.jpclett.2c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Activation energies of defect migration in ABX3 perovskite halides are widely obtained through static supercell calculations with the nudged-elastic-band method. Taking methylammonium lead iodide (CH3NH3PbI3, MAPbI3) as an example, we demonstrate that such calculations are unreliable for the higher symmetry structures adopted by the material at temperatures relevant to device operation (tetragonal and cubic MAPbI3) because, in addition to ion relaxation around the point defects, local structural modifications characteristic of the ground-state (orthorhombic) structure occur. In this way, we offer a simple explanation of why calculated activation energies of defect migration in MAPbI3 suffer from surprisingly large scatter. We propose a robust test to determine whether static supercell calculations of point-defect processes in ABX3 perovskite systems are reliable.
Collapse
Affiliation(s)
- Roger A De Souza
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Dennis Kemp
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Matthew J Wolf
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Amr H H Ramadan
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
48
|
Immanuel PN, Huang SJ, Danchuk V, Sedova A, Prilusky J, Goldreich A, Shalom H, Musin A, Yadgarov L. Improving the Stability of Halide Perovskite Solar Cells Using Nanoparticles of Tungsten Disulfide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4454. [PMID: 36558307 PMCID: PMC9784750 DOI: 10.3390/nano12244454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Halide perovskites-based solar cells are drawing significant attention due to their high efficiency, versatility, and affordable processing. Hence, halide perovskite solar cells have great potential to be commercialized. However, the halide perovskites (HPs) are not stable in an ambient environment. Thus, the instability of the perovskite is an essential issue that needs to be addressed to allow its rapid commercialization. In this work, WS2 nanoparticles (NPs) are successfully implemented on methylammonium lead iodide (MAPbI3) based halide perovskite solar cells. The main role of the WS2 NPs in the halide perovskite solar cells is as stabilizing agent. Here the WS2 NPs act as heat dissipater and charge transfer channels, thus allowing an effective charge separation. The electron extraction by the WS2 NPs from the adjacent MAPbI3 is efficient and results in a higher current density. In addition, the structural analysis of the MAPbI3 films indicates that the WS2 NPs act as nucleation sites, thus promoting the formation of larger grains of MAPbI3. Remarkably, the absorption and shelf life of the MAPbI3 layers have increased by 1.7 and 4.5-fold, respectively. Our results demonstrate a significant improvement in stability and solar cell characteristics. This paves the way for the long-term stabilization of HPs solar cells by the implementation of WS2 NPs.
Collapse
Affiliation(s)
- Philip Nathaniel Immanuel
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Song-Jeng Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Viktor Danchuk
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Anastasiya Sedova
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Johnathan Prilusky
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Achiad Goldreich
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Hila Shalom
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Albina Musin
- Physics Department, Faculty of Natural Sciences, Ariel University, Ariel 4076414, Israel
| | - Lena Yadgarov
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| |
Collapse
|
49
|
Hong D, Zhang Y, Pan S, Liu H, Mao W, Lu Z, Tian Y. Moisture-Dependent Blinking of Individual CsPbBr 3 Nanocrystals Revealed by Single-Particle Spectroscopy. J Phys Chem Lett 2022; 13:10751-10758. [PMID: 36374491 DOI: 10.1021/acs.jpclett.2c03159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
All-inorganic metal halide perovskite nanocrystals (NCs) have been exceptional candidates for high-performance solution-processed optoelectronic and photonic devices compared with organometal halide perovskite NCs due to their superior stability. However, the interactions between all-inorganic perovskite NCs and moisture, which is an acknowledged detrimental factor, are still under debate, and detailed investigations to uncover such fundamentals remain to be performed. Herein, with wide-field fluorescence microscopy, the burst photoluminescence blinking responses of CsPbBr3 NCs were observed in ambient air, and moisture rather than oxygen was verified to be the key factor that leads to the enhanced PL intensity and reduced OFF duration. This behavior is rationalized through an effective passivation effect of the adsorbed water molecules on the surface halide vacancies on CsPbBr3 NCs. This work validates that ∼40% humidity atmospheres are helpful for better utilizing the all-inorganic perovskites, which is evidence of their promising prospect for application.
Collapse
Affiliation(s)
- Daocheng Hong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu224051, China
- Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Shuhan Pan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Hanyu Liu
- Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210023, China
| | - Wei Mao
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yuxi Tian
- Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210023, China
| |
Collapse
|
50
|
Ramya K, Mondal A, Gupta DS, Mukhopadhyay DS. Asymmetrical Electrical Performance across Different Planes of Solution-Grown MAPbBr 3 Crystals of mm Dimensions. ACS OMEGA 2022; 7:42138-42145. [PMID: 36440177 PMCID: PMC9685599 DOI: 10.1021/acsomega.2c04681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Throughout a few years, carrier transport studies across HaP single crystals have gained enormous importance for current generation photovoltaic and photodetector research with their superior optoelectronic properties compared to commercially available polycrystalline materials. Utilizing the room-temperature solution-grown method, we synthesized MAPbBr3 crystals and examined their electrical transport properties. Although the X-ray diffraction reveals the cubical nature of the crystals, we have observed anisotropy in the electrical transport behavior and variation in dielectric constant across the three opposite faces of the crystals of mm dimensions. The face with a higher dielectric constant depicts improved parameters from electrical characteristics such as lower trap densities and higher mobility values. We further explore the origin of its anisotropic nature by performing X-ray diffraction on three opposite faces of crystals. Our studies define the specific faces of cuboid-shaped MAPbBr3 crystals for efficient electrical contact in the fabrication of optoelectronic devices.
Collapse
Affiliation(s)
- Kunchanapalli Ramya
- Department
of Physics, SRM University—Andhra
Pradesh, Andhra Pradesh522240, India
| | - Arindam Mondal
- Department
of Chemistry, Indian Institute of Technology, Bhilai492015, India
| | - Dr. Satyajit Gupta
- Department
of Chemistry, Indian Institute of Technology, Bhilai492015, India
| | | |
Collapse
|