1
|
Shen R, Yang X, Liu M, Wang L, Zhang L, Ma X, Zhu X, Tong L. Preparation of bovine serum albumin-arabinoxylan cold-set gels by glucono-δ-lactone and salt ions double induction. Int J Biol Macromol 2024; 277:133596. [PMID: 38960269 DOI: 10.1016/j.ijbiomac.2024.133596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
In order to investigate the effect of glucono-δ-lactone (GDL) and different salt ions (Na+ and Ca2+) induction on the cold-set gels of bovine serum albumin (BSA)-arabinoxylan (AX), the gel properties and structure of BSA-AX cold-set gels were evaluated by analyzing the gel strength, water-holding capacity, thermal properties, and Fourier Transform Infrared (FTIR) spectra. It was shown that the best gel strength (109.15 g) was obtained when the ratio of BSA to AX was 15:1. The addition of 1 % GDL significantly improved the water-holding capacity, gel strength and thermal stability of the cold-set gels (p < 0.05), and the microstructure was smoother. Low concentrations of Na+ (3 mM) and Ca2+ (6 mM) significantly enhanced the hydrophobic interaction and hydrogen bonding between BSA and AX after acid induction, and the Na+-induced formation of a denser microstructure with a higher water-holding capacity (75.51 %). However, the excess salt ions disrupted the stable network structure of the cold-set gels and reduced their thermal stability and crystalline structure. The results of this study contribute to the understanding of the interactions between BSA and AX induced by GDL and salt ions, and provide a basis for designing hydrogels with different properties.
Collapse
Affiliation(s)
- Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Mengying Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Liyuan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xiaopeng Zhu
- Gansu Wanhe Grass and Livestock Industry Technology Development Co., Ltd., Lanzhou, China
| | - Lin Tong
- Inner Mongolia Horqin Cattle Industry Co., Horqin, China
| |
Collapse
|
2
|
Liu G, Zhou J, Wu S, Fang S, Bilal M, Xie C, Wang P, Yin Y, Yang R. Novel strategy to raise the content of aglycone isoflavones in soymilk and gel: Effect of germination on the physicochemical properties. Food Res Int 2024; 186:114335. [PMID: 38729717 DOI: 10.1016/j.foodres.2024.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Germination holds the key to nutritional equilibrium in plant grains. In this study, the effect of soybean germination on the processing of soymilk (SM) and glucono-δ-lactone (GDL) induced soymilk gel (SG) was investigated. Germination promoted soybean sprout (SS) growth by activating the energy metabolism system. The energy metabolism was high during the three-day germination and was the most vigorous on the second day of germination. After germination, protein dissolution was improved in SM, and endogenous enzymes produced small molecule proteins. Small molecule proteins were more likely to aggregate to produce SM protein particles. Germination increased the water-holding capacity of SG induced by GDL but weakened the strength. Furthermore, the dynamic fluctuations in isoflavone content were closely monitored throughout the processing of soybean products, including SS, SM, and SG. Although the total amount of isoflavones in SM and SG processed from germinated soybeans decreased, a significant enrichment in the content of aglycone isoflavones was observed. The content of aglycone isoflavones in SG processed from germinated soybeans on the second day of germination was 736.17 ± 28.49 µg/g DW, which was 83.19 % higher than that of the control group. This study demonstrates that germination can enhance the nutritional value of soybean products, providing innovative opportunities for the development of health-promoting soybean-based products.
Collapse
Affiliation(s)
- Guannan Liu
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Zhou
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sijin Wu
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shijie Fang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Muhammad Bilal
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chong Xie
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China
| | - Pei Wang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China
| | - Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Runqiang Yang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China.
| |
Collapse
|
3
|
Shrestha S, van 't Hag L, Haritos V, Dhital S. Comparative study on molecular and higher-order structures of legume seed protein isolates: Lentil, mungbean and yellow pea. Food Chem 2023; 411:135464. [PMID: 36669335 DOI: 10.1016/j.foodchem.2023.135464] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Lentils and mungbean proteins are under-researched compared to pea and soybean. Lentils (green, red and black-lentils), mungbean and yellow pea protein isolates were obtained by alkaline extraction (pH 9)-isoelectric precipitation (pH 4.5) and investigated for molecular and higher-order structures using complementary and novel approaches. These extracted isolates showed comparable protein content but significantly greater nitrogen solubility index (NSI > 85 %) than commercial pea and soy protein isolates (NSI < 60 %). Based on molecular weight estimations from sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis, the soluble proteins of lentils and yellow pea were identified as legumin-like and vicilin-like, while mungbean was dominated by vicilin-like proteins. The soluble extracts were confirmed to be in native structural condition by size exclusion chromatography and nano-differential scanning calorimetry, unlike commercial extracts. Further differences in secondary structure were evident on circular dichroism spectra of the soluble extracts and deconvolution of the Amide I region (1700-1600 cm-1) from Fourier Transform Infrared of the total protein.
Collapse
Affiliation(s)
- Smriti Shrestha
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Leonie van 't Hag
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Victoria Haritos
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Improved in vitro bioaccessibility of quercetin by nanocomplexation with high-intensity ultrasound treated soy protein isolate. Food Chem 2023; 406:135004. [PMID: 36481514 DOI: 10.1016/j.foodchem.2022.135004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/29/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
The health benefits of quercetin are limited by its low bioaccessibility. This could be improved by developing plant-based protein delivery systems. Encapsulating quercetin using untreated and high-intensity ultrasound treated (20 kHz at 139 W for 10, 15 and 20 min) soy protein isolate (SPI) produced composite nanoparticles at around 127-136 nm. Ultrasound treatments on SPI caused structural changes of proteins (e.g. around 6-fold increase of surface hydrophobicity and protein solubility) favorable to encapsulation. The encapsulation efficiency for quercetin complexed with 15 min ultrasound treated SPI (76.5 %) was around 10-fold of that with the native SPI (7.2 %). Quercetin was significantly more in vitro bioaccessible when complexed with the treated SPI (61.1 %-64.5 %), as compared to the free quercetin (10.5 %-13.0 %). Ultrasound treated SPI seems to be a promising nanocarrier to encapsulate hydrophobic bioactive ingredients with higher solubility, stability, and bioaccessibility.
Collapse
|
5
|
Liu L, Huang Y, Zhang X, Zeng J, Zou J, Zhang L, Gong P. Texture analysis and physicochemical characteristics of fermented soymilk gel by different lactic acid bacteria. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Shokrollahi Yanchemeh B, Varidi M, Razavi SMA, Sohbatzadeh F, Mohammadifar MA. Preparation and optimization of soy (Katul cultivar) protein isolate cold‐set gels induced by
CaCl
2
and transglutaminase. Food Sci Nutr 2022. [DOI: 10.1002/fsn3.3158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Mehdi Varidi
- Department of Food Science and Technology Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of Iran Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Basic Science University of Mazandaran Babolsar Iran
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute Technical University of Denmark Kongens Lyngby Denmark
| |
Collapse
|
7
|
Effects of Calcium Sulfate and Chitosan on Textural Modification and Microstructure of Tofu Made from Lentils (Lens culinaris). Processes (Basel) 2022. [DOI: 10.3390/pr10102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This study investigated calcium sulfate and chitosan on the textural modification and microstructure of tofu made from lentils. The addition of varying amounts of calcium sulfate (0–12 mM) and chitosan (0–1.0%) into lentil milk could affect the gel properties of lentil-based tofu. The gel properties, including the hardness and cohesiveness, of lentil-based tofu significantly increased with the addition of 12 mM calcium sulfate, exhibiting a slightly discontinuous network structure and a slightly regular pore network. However, the gel properties including hardness and cohesiveness significantly decreased with the addition of 1.0% chitosan, presenting a slightly continuous network structure with pores. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that the aggregation of the vicilin, legumin acidic unit and legumin basic unit proteins in lentil milk was induced both by 12 mM calcium sulfate and 1.0% chitosan. Our results suggested that calcium sulfate and chitosan could affect the gel properties, such as hardness and cohesiveness, of lentil-based tofu. Therefore, calcium sulfate and chitosan can be used as practical food additives for the development of texture-modified lentil-based tofu.
Collapse
|
8
|
Chao PW, Yang KM, Chiang YC, Chiang PY. The formulation and the release of low–methoxyl pectin liquid-core beads containing an emulsion of soybean isoflavones. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Influence of Chitosan and Glucono-δ-Lactone on the Gel Properties, Microstructural and Textural Modification of Pea-Based Tofu-Type Product. Processes (Basel) 2022. [DOI: 10.3390/pr10081639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This study investigated the effects of the addition of chitosan (0–1.0%) or glucono-δ-lactone (GDL) (0–60 mM) on the gel properties, microstructure, and texture of pea-based tofu-type product. Following the addition of 0.5% chitosan or 20 mM GDL, we observed a significant decrease in the hardness and cohesiveness of the tofu, resulting in a slightly discontinuous network structure with pores smaller than those in samples without chitosan or GDL. SDS-PAGE analysis revealed the induced aggregation of pea legumin (11S) and vicilin (7S) subunits (30, 34, and 50 kDa), legumin α subunit (40 kDa), and legumin β subunit (20 kDa) by chitosan or GDL. It appears that chitosan and GDL could potentially be used as food additives for the development of texture-modified pea-based tofu-type products.
Collapse
|
10
|
Zaeim D, Liu W, Han J, Wilde PJ. Effect of non-starch polysaccharides on the in vitro gastric digestion of soy-based milk alternatives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Huang Z, Liu H, Zhao L, He W, Zhou X, Chen H, Zhou X, Zhou J, Liu Z. Evaluating the effect of different processing methods on fermented soybean whey-based tofu quality, nutrition, and flavour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Ishtikhar M, Siddiqui Z, Ahmad A, Ashraf JM, Arshad M, Doctor N, Al-Kheraif AA, Zamzami MA, Al-Thawadi SM, Kim J, Khan RH. Phytochemical thymoquinone prevents hemoglobin glycoxidation and protofibrils formation: A biophysical aspect. Int J Biol Macromol 2021; 190:508-519. [PMID: 34481855 DOI: 10.1016/j.ijbiomac.2021.08.202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/16/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022]
Abstract
d-ribose, a reducing sugar, in diabetic hyperglycemia provokes non-enzymatic glycoxidation of hemoglobin (Hb), an abundant protein of red blood cells (RBCs). Different types of intermediates adduct formation occur during glycoxidation, such as advanced glycation end-products (AGEs) which lead to amyloid formation due to structural and conformational alterations in protein. Therefore, the study of these intermediate adducts plays a pivotal role to discern their relationship with diabetes mellitus and related disorders. Here, we investigated the interaction mechanism of d-ribose with Hb, and Hb prebound phytochemical thymoquinone (TQ). Our investigation reveals that the interaction of TQ with histidine residues of Hb interferes with the interaction of d-ribose with glycine residues at the glycation-site. Based on that, we had performed a time-based (21-days) in-vitro glycoxidation study at 37 °C to investigate the structural perturbation mechanism of Hb at different time-intervals in absence/presence of TQ. We found that prolonged glycoxidation induces amyloid formation in absence of TQ but in its presence, the process was prohibited. In summary, this study examined and characterized biophysically different intermediate-states of protein carrying glycoxidation-modification. Our findings suggested that TQ potentially affects interaction of d-ribose with Hb that prevents glycoxidation and protofibril formation, which establishes TQ as a potential therapeutic agent.
Collapse
Affiliation(s)
- Mohd Ishtikhar
- Department of Chemistry, Indian Institute of Technology-Bombay, Mumbai 400076, India.
| | - Zeba Siddiqui
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Sciences, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Jalaluddin Mohammad Ashraf
- Department of Medical Laboratory Technology, Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Arshad
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P. O. Box: 10219, Riyadh 11433, Saudi Arabia
| | - Ninad Doctor
- Department of Chemistry, East Carolina University, NC 27834-4354, USA
| | - Abdulaziz A Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P. O. Box: 10219, Riyadh 11433, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Sciences, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | | | - Jihoe Kim
- Department of Medical Biotechnology and Reasech Institute of Cell Culture, YeungNam University, Gyeongsan 38541, Korea
| | - Rizwan Hassan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
13
|
Influence of ohmic heating on the structural and immunoreactive properties of soybean proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Huang Z, He W, Zhao L, Liu H, Zhou X. Processing technology optimization for tofu curded by fermented yellow whey using response surface methodology. Food Sci Nutr 2021; 9:3701-3711. [PMID: 34262729 PMCID: PMC8269558 DOI: 10.1002/fsn3.2331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/11/2022] Open
Abstract
The technological applications utilized for tofu processing are diverse and complex, resulting in different yields and quality characteristics of tofu. The current study investigated the gel-forming principle of soybean protein coagulated using fermented yellow whey (FYW) to produce tofu. The effects of several processing parameters (soybean-to-water ratio, boiling temperature, boiling time, and FYW content) on the yield and protein content of tofu produced by the boiling-to-filtering method (BFM) were studied and optimized using response surface methodology. Results indicated significant differences in yield and protein content of tofu using different processing parameters, with FYW content being the most significant (p < .05). Optimum processing parameters of the BFM were found to be: soybean-to-water ratio of 1:5 (kg:kg), boiling time 6.1 min, boiling temperature 105°C, and FYW content of 26%. Under optimum conditions, tofu's yield and protein content were 235.17 g/100 g and 10.60%, respectively, and these were 47.93 g/100 g and 4.16% higher than those before optimization. This study provides practical technical support and a theoretical basis for the standardized industrial production of high-yield and high-protein tofu.
Collapse
Affiliation(s)
- Zhanrui Huang
- College of Food and Chemical EngineeringHunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangChina
| | - Wanying He
- College of Food and Chemical EngineeringHunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangChina
| | - Liangzhong Zhao
- College of Food and Chemical EngineeringHunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangChina
| | - Haiyu Liu
- College of Food and Chemical EngineeringHunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangChina
| | - Xiaojie Zhou
- College of Food and Chemical EngineeringHunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangChina
| |
Collapse
|
15
|
Direct comparison of the tofu-like precipitate formation by adding different coagulants: magnesium chloride and glucono-δ-lactone. Heliyon 2021; 7:e07239. [PMID: 34189298 PMCID: PMC8215186 DOI: 10.1016/j.heliyon.2021.e07239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/02/2022] Open
Abstract
Tofu is produced by adding a coagulant such as MgCl2 and glucono-δ-lactone (GDL) in soymilk. However, the molecular mechanism of tofu formation by adding these coagulants has been compared between the results obtained under different conditions. In this study, the formation of a tofu-like precipitate (TLP) by adding GDL was directly compared with that formed by adding MgCl2 under the same conditions except for the coagulants. The effects of both the coagulants were almost the same on the changes in the precipitate weight, supernatant protein concentration, and urea-soluble protein concentration, indicating that a common contributing factor induces TLP formation. However, the effects of the coagulants on pH were largely different, suggesting that pH reduction is not an absolute requirement in TLP formation induced by adding MgCl2. Moreover, the findings of this study revealed that the decrease in the surface charge of soymilk proteins is a common initiation factor for TLP formation, whereas the intermolecular hydrophobic interaction is an important factor for the formation of urea-insoluble precipitates. Overall, these findings will be useful in discovering new coagulants to enhance the quality characteristics of tofu.
Collapse
|
16
|
Ningtyas DW, Tam B, Bhandari B, Prakash S. Effect of different types and concentrations of fat on the physico-chemical properties of soy protein isolate gel. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Marinea M, Ellis A, Golding M, Loveday SM. Soy Protein Pressed Gels: Gelation Mechanism Affects the In Vitro Proteolysis and Bioaccessibility of Added Phenolic Acids. Foods 2021; 10:foods10010154. [PMID: 33450925 PMCID: PMC7828434 DOI: 10.3390/foods10010154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
In this study, a model system of firm tofu (pressed gel) was prepared to study how the coagulation mechanism-acidification with glucono δ-lactone (GDL) or coagulation with magnesium sulphate (MgSO4)-affected the physical properties of the gels along with their in vitro proteolysis (or extent of proteolysis). The two types of gels were also fortified with 3.5 mM protocatechuic (PCA) and coumaric acid (CMA) to test whether they can be used as bioactive delivery systems. Texture analysis showed that all MgSO4-induced gels (fortified and control) had a higher hydration capacity and a weaker texture than the GDL-induced gels (p < 0.05). MgSO4 gels had almost double proteolysis percentages throughout the in vitro digestion and showed a significantly higher amino acid bioaccessibility than the GDL gels (essential amino acid bioaccessibility of 56% versus 31%; p < 0.05). Lastly, both gel matrices showed a similar phenolic acid release profile, on a percentage basis (~80% for PCA and ~100% for CMA). However, GDL gels delivered significantly higher masses of bioactives under simulated intestinal conditions because they could retain more of the bioactives in the gel after pressing. It was concluded that the coagulation mechanism affects both the macro- and microstructure of the soy protein pressed gels and as a result their protein digestibility. Both pressed gel matrices are promising delivery systems for bioactive phenolic acids.
Collapse
Affiliation(s)
- Marina Marinea
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
- Correspondence:
| | - Ashling Ellis
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Matt Golding
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Simon M. Loveday
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- Food and Bio-Based Products Group, AgResearch Limited, Palmerston North 4442, New Zealand
| |
Collapse
|
18
|
Arii Y, Nishizawa K. Honey-mediated aggregation of soymilk proteins. Heliyon 2020; 6:e03673. [PMID: 32322706 PMCID: PMC7160432 DOI: 10.1016/j.heliyon.2020.e03673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/27/2019] [Accepted: 03/23/2020] [Indexed: 11/15/2022] Open
Abstract
Gluconic acid, the major organic acid in honey, is a partial hydrolysate of glucono-δ-lactone, typically used as a coagulant in preparing tofu. The present study aimed to examine the coagulation potential of five different types of honey at different concentrations, upon addition to soymilk. In some samples, aggregates formed in the upper layer at a higher honey concentration, while in others, aggregates precipitated at an intermediate honey concentration. Both phenomena were reproduced by adding different mixtures of glucono-δ-lactone and glucose, indicating that gluconic acid concentration and total sugar content of honey can trigger soymilk coagulation. Interestingly, honeys with a high concentration of gluconic acid showed a low total sugar content. Furthermore, in a trial product, the mixture of blended honey with soymilk was determined to be pasty. Our results indicate that honey can coagulate soymilk, which may provide a new and convenient method to prepare soymilk-based industrial products.
Collapse
Affiliation(s)
- Yasuhiro Arii
- Department of Food Science and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan
| | - Kaho Nishizawa
- Department of Food Science and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan
| |
Collapse
|
19
|
Chen XM, Yuan JL, Li RX, Kang X. Characterization and embedding potential of bovine serum albumin cold-set gel induced by glucono-δ-lactone and sodium chloride. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Xu Y, Ye Q, Zhang H, Yu Y, Li X, Zhang Z, Zhang L. Naturally Fermented Acid Slurry of Soy Whey: High-Throughput Sequencing-Based Characterization of Microbial Flora and Mechanism of Tofu Coagulation. Front Microbiol 2019; 10:1088. [PMID: 31139176 PMCID: PMC6527785 DOI: 10.3389/fmicb.2019.01088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/30/2019] [Indexed: 01/14/2023] Open
Abstract
Tofu processing generates large quantities of whey as waste water. Although naturally fermented whey serves as a coagulant, the critical constituents remain unknown. High-throughput sequencing identified predominant Lactobacillus in the naturally fermented acid slurry. Lactobacillus casei YQ336 with high coagulating ability and lactic acid production was isolated and its soy protein coagulating mechanism was determined. The acid in YQ336 fermented acid slurry lowered soy milk pH and reduced negatively charged groups of denatured soy protein, leading to coagulation. Acid slurry metal ions also promoted pH decline; moreover, YQ336-produced protease might partially hydrolyse soy protein, further promoting coagulation. Thus, organic acids, metal ions, and enzymes together promote coagulation, with the former acting as the main contributing factor. This study will pave the way for future industrial application of L. casei YQ336 in acid slurry tofu processing and food manufacturing, thereby potentially reducing resource waste and environmental pollution.
Collapse
Affiliation(s)
- Yunhe Xu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Qing Ye
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Huajiang Zhang
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Yu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Xiaona Li
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhen Zhang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Lili Zhang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
21
|
Ahn S, Chantre CO, Gannon AR, Lind JU, Campbell PH, Grevesse T, O'Connor BB, Parker KK. Soy Protein/Cellulose Nanofiber Scaffolds Mimicking Skin Extracellular Matrix for Enhanced Wound Healing. Adv Healthc Mater 2018; 7:e1701175. [PMID: 29359866 PMCID: PMC6481294 DOI: 10.1002/adhm.201701175] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/22/2017] [Indexed: 02/01/2023]
Abstract
Historically, soy protein and extracts have been used extensively in foods due to their high protein and mineral content. More recently, soy protein has received attention for a variety of its potential health benefits, including enhanced skin regeneration. It has been reported that soy protein possesses bioactive molecules similar to extracellular matrix (ECM) proteins and estrogen. In wound healing, oral and topical soy has been heralded as a safe and cost-effective alternative to animal protein and endogenous estrogen. However, engineering soy protein-based fibrous dressings, while recapitulating ECM microenvironment and maintaining a moist environment, remains a challenge. Here, the development of an entirely plant-based nanofibrous dressing comprised of cellulose acetate (CA) and soy protein hydrolysate (SPH) using rotary jet spinning is described. The spun nanofibers successfully mimic physicochemical properties of the native skin ECM and exhibit a high water retaining capability. In vitro, CA/SPH nanofibers promote fibroblast proliferation, migration, infiltration, and integrin β1 expression. In vivo, CA/SPH scaffolds accelerate re-epithelialization and epidermal thinning as well as reduce scar formation and collagen anisotropy in a similar fashion to other fibrous scaffolds, but without the use of animal proteins or synthetic polymers. These results affirm the potential of CA/SPH nanofibers as a novel wound dressing.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St. Pierce Hall, Rm 321, Cambridge, MA, 02138, USA
| | - Christophe O Chantre
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St. Pierce Hall, Rm 321, Cambridge, MA, 02138, USA
| | - Alanna R Gannon
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St. Pierce Hall, Rm 321, Cambridge, MA, 02138, USA
| | - Johan U Lind
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St. Pierce Hall, Rm 321, Cambridge, MA, 02138, USA
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St. Pierce Hall, Rm 321, Cambridge, MA, 02138, USA
| | - Thomas Grevesse
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St. Pierce Hall, Rm 321, Cambridge, MA, 02138, USA
| | - Blakely B O'Connor
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St. Pierce Hall, Rm 321, Cambridge, MA, 02138, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St. Pierce Hall, Rm 321, Cambridge, MA, 02138, USA
| |
Collapse
|
22
|
Wang Z, Zhao S, Song R, Zhang W, Zhang S, Li J. The synergy between natural polyphenol-inspired catechol moieties and plant protein-derived bio-adhesive enhances the wet bonding strength. Sci Rep 2017; 7:9664. [PMID: 28852023 PMCID: PMC5575018 DOI: 10.1038/s41598-017-10007-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
Novel soybean meal-based biomimetic (STP) adhesives were fabricated via soybean meal (SM) and enhanced by tannic acid (TA) and polyetheylenimine (PEI) (TAPI) co-crosslinking network based on natural polyphenol-inspired chemistry. The multiple physico-chemical interactions (including intermolecular H-bonding and covalent bonding) between the TAPI co-crosslinking system and SM matrices were examined by the Fourier transform infrared spectroscopy, solid-state 13C nuclear magnetic resonance, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The results showed that a dense, robust, and water-resistant adhesive layer was constructed between network-bound catechol moieties in the TAPI and SM system, endowing the STP adhesive with high wet bonding strength for plywood. As expected, TAPI-modified SM adhesives showed a 156.1% increase in wet bonding strength compared to the control SM adhesive. The adhesion meets standard requirements for interior-use plywood. Both the solid content and residual mass analysis also confirmed that the enhancement in the STP adhesive was attributable to the network crosslinking density and stiffness after integrating the TAPI system. Moreover, the thermal stability of the resultant STP adhesive exhibited a significant improvement. The proposed STP adhesive may be a promising cost-effective and wet-resistant bio-adhesive for the application in the wood composites industry.
Collapse
Affiliation(s)
- Zhong Wang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shujun Zhao
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ruyuan Song
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Zhang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jianzhang Li
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
23
|
Abstract
In this study, the chitosan-induced coacervation of soy protein-isoflavone complexes in soymilk was investigated. Most of the soymilk proteins, including β-conglycinin (7S), glycinin (11S), and isoflavones, were found to coacervate into the soymilk pellet fraction (SPF) following the addition of 0.5% chitosan. The total protein in the soymilk supernatant fraction (SSF) decreased from 18.1 ± 0.3 mg/mL to 1.6 ± 0.1 mg/mL, and the pH values decreased slightly, from 6.6 ± 0.0 to 6.0 ± 0.0. The results of SDS-PAGE revealed that the 7S α’, 7S α, 7S β, 11S A3, and 11S acidic subunits, as well as the 11S basic proteins in the SSF, decreased to 0.7 ± 0.5%, 0.2 ± 0.1%, 0.1 ± 0.0%, 0.2 ± 0.2%, 0.2 ± 0.2% and 0.3 ± 0.2%, respectively. We also found that isoflavones in the SSF, including daidzein, glycitein, and genistein, decreased to 9.6 ± 2.3%, 5.7 ± 0.9% and 5.9 ± 1.5%, respectively. HPLC analysis indicated that isoflavones mixed with soy proteins formed soy protein-isoflavone complexes and were precipitated into the SPF by 0.5% chitosan.
Collapse
|