1
|
Zhao Q, Li W, Li W, Yang H, Wang X, Ding Z, Liu Z, Wang Z. Porphyromonas gingivalis-induced autophagy exacerbates abnormal lung homeostasis: An in vivo and in vitro study. Arch Oral Biol 2024; 169:106122. [PMID: 39486274 DOI: 10.1016/j.archoralbio.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of periodontal Porphyromonas gingivalis (P. gingivalis) infection on lung homeostasis and to explore the underlying mechanism. DESIGNS In in vivo experiments, twelve mice were divided into two groups. The P. gingivalis infection group received P. gingivalis around the maxillary second molar, and the control group was left untreated. After 12 weeks, the histopathological changes of the lung tissue and the autophagy and apoptosis in the lung tissue cells were detected. In in vitro experiments, alveolar epithelial cell A549 was co cultured with P. gingivalis and treated with autophagy inhibitor chloroquine (CQ). Western blot was then used to detect autophagic markers LC3 and P62, and mRFP-GFP-LC3 was used to observe autophagic flux. Cell viability and apoptosis were also detected. RESULTS For the in vivo experiments, pathological changes were observed in the lung tissue of the P. gingivalis infection group at 12 weeks, along with higher levels of autophagy and apoptosis in the lung tissue cells. For the in vitro experiments, infection of alveolar epithelial cells with P. gingivalis inhibited cell viability and promoted cell autophagy and apoptosis. Interestingly, we found that inhibiting P. gingivalis-activated autophagy significantly improved cell apoptosis and viability damage induced by P. gingivalis. CONCLUSION Periodontal P. gingivalis infection can cause pathological changes and abnormal homeostasis in lung tissue, and the up-regulation of autophagy induced by P. gingivalis may play a synergistic role in this process.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenyue Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongjia Yang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaoyue Ding
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Vaillancourt M, Aguilar D, Fernandes SE, Jorth PA. A chronic Pseudomonas aeruginosa mouse lung infection modeling the pathophysiology and inflammation of human cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617039. [PMID: 39416002 PMCID: PMC11482824 DOI: 10.1101/2024.10.07.617039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Investigation of chronic cystic fibrosis (CF) lung infections has been limited by a lack of murine models that reproduce obstructive lung pathology, chronicity of bacterial infections, and complex inflammation in human CF lung pathology. Three different approaches have been used separately to address these limitations, including using transgenic Scnn1b-Tg mice overexpressing a lung epithelial sodium channel to mimic the mucus-rich and hyperinflammatory CF lung environment, using synthetic CF sputum medium (SCFM) in an acute infection to induce bacterial phenotypes consistent with human CF, or using agar beads to promote chronic infections. Here, we combine these three models to establish a chronic Pseudomonas aeruginosa lung infection model using SCFM agar beads and Scnn1b-Tg mice (SCFM-Tg-mice) to recapitulate nutrients, mucus, and inflammation characteristic of the human CF lung environment. Like people with CF, SCFM-Tg-mice failed to clear bacterial infections. Lung function measurements showed that infected SCFM-Tg-mice had decreased inspiratory capacity and compliance, elevated airway resistance, and significantly reduced FVC and FEV0.1. Using spectral flow cytometry and multiplex cytokine arrays we show that, like people with CF, SCFM-Tg-mice developed inflammation characterized by eosinophil infiltration and Th2 lymphocytic cytokine responses. Chronically infected SCFM-Tg-mice developed an exacerbated mix of innate and Th1, Th2, and Th17-mediated inflammation, causing higher lung cellular damage, and elevated numbers of unusual Siglec F+ neutrophils. Thus, SCFM-Tg-mice represents a powerful tool to investigate bacterial pathogenesis and potential treatments for chronic CF lung infections and reveal a potential role for Siglec F+ neutrophils in CF inflammation.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Diane Aguilar
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sheryl E. Fernandes
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter A. Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
3
|
Cui G, Moustafa DA, Zhao S, Cegla AV, Lyles JT, Goldberg JB, Chandler JD, McCarty NA. Chronic hyperglycemia aggravates lung function in a Scnn1b-Tg murine model. Am J Physiol Lung Cell Mol Physiol 2024; 327:L473-L486. [PMID: 39010826 PMCID: PMC11482466 DOI: 10.1152/ajplung.00279.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/02/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Cystic fibrosis-related diabetes (CFRD), the most common comorbidity in cystic fibrosis (CF), leads to increased mortality by accelerating the decline in lung function. Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel β subunit exhibit spontaneous CF-like lung disease, including airway mucus obstruction and chronic inflammation. Here, we established a chronic CFRD-like model using Scnn1b-Tg mice made diabetic by injection of streptozotocin (STZ). In Ussing chamber recordings of the trachea, Scnn1b-Tg mice exhibited larger amiloride-sensitive currents and forskolin-activated currents, without a difference in adenosine triphosphate (ATP)-activated currents compared with wild-type (WT) littermates. Both diabetic WT (WT-D) and diabetic Scnn1b-Tg (Scnn1b-Tg-D) mice on the same genetic background exhibited substantially elevated blood glucose at 8 wk; glucose levels also were elevated in bronchoalveolar lavage fluid (BALF). Bulk lung RNA-seq data showed significant differences between WT-D and Scnn1b-Tg-D mice. Neutrophil counts in BALF were substantially increased in Scnn1b-Tg-D lungs compared with controls (Scnn1b-Tg-con) and compared with WT-D lungs. Lung histology data showed enhanced parenchymal destruction, alveolar wall thickening, and neutrophilic infiltration in Scnn1b-Tg-D mice compared with WT-D mice, consistent with the development of a spontaneous lung infection. We intranasally administered Pseudomonas aeruginosa to induce lung infection in these mice for 24 h, which led to severe lung leukocytic infiltration and an increase in pro-inflammatory cytokine levels in the BALF. In summary, we established a chronic CFRD-like lung mouse model using the Scnn1b-Tg mice. The model can be used for future studies toward understanding the mechanisms underlying the lung pathophysiology associated with CFRD and developing novel therapeutics.NEW & NOTEWORTHY We established a chronic CFRD-like mouse model using the Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel β subunit made diabetic by injection of streptozotocin. The results underscore the urgent need to develop novel therapeutics for CF lung disease.
Collapse
Affiliation(s)
- Guiying Cui
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Dina A Moustafa
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Analia Vazquez Cegla
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - James T Lyles
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Joanna B Goldberg
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Joshua D Chandler
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Nael A McCarty
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| |
Collapse
|
4
|
Saleh A, Abdelkader DH, El-Masry TA, Eliwa D, Alotaibi B, Negm WA, Elekhnawy E. Antiviral and antibacterial potential of electrosprayed PVA/PLGA nanoparticles loaded with chlorogenic acid for the management of coronavirus and Pseudomonas aeruginosa lung infection. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:255-267. [PMID: 37154794 DOI: 10.1080/21691401.2023.2207606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Respiratory tract infections are a common cause of morbidity and mortality globally. The current paper aims to treat this respiratory disorder. Therefore, we elucidated the phytochemical profile of Euphorbia milii flowers and isolated chlorogenic acid (CGA) for the first time. The electrospraying technique was utilized to prepare CGA nanoparticles in polyvinyl alcohol (PVA)/PLGA polymeric matrix. Complete in vitro characterizations were performed to determine particle size, polydispersity index (PDI), zeta potential, loading efficiency (LE), scanning electron microscopy and in vitro release study. The optimum formula (F2) with a particle size (454.36 ± 36.74 nm), a surface charge (-4.56 ± 0.84 mV), % of LE (80.23 ± 5.74), an initial burst (29.46 ± 4.79) and % cumulative release (97.42 ± 4.72) were chosen for further activities. In the murine lung infection model, PVA/PLGA NPs loaded with CGA (F2) demonstrated in vivo antibacterial activity against Pseudomonas aeruginosa. Using a plaque assay, the in vitro antiviral activity was investigated. The F2 exhibited antiviral activity against coronavirus (HCoV-229E) and (Middle East respiratory syndrome coronavirus (MERS-CoV), NRCEHKU270). The IC50 of F2 against HCoV-229E and MERS-CoV was 170 ± 1.1 and 223 ± 0.88 µg/mL, respectively. The values of IC50 of F2 were significantly lower (p < .05) than that of free CGA. Therefore, the encapsulation of CGA into electrospray PVA/PLGA NPs would be a promising tool as an antimicrobial agent.
Collapse
Affiliation(s)
- Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, College of Pharmacy, Tanta University, Tanta, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Duaa Eliwa
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Grandy S, Scur M, Dolan K, Nickerson R, Cheng Z. Using model systems to unravel host-Pseudomonas aeruginosa interactions. Environ Microbiol 2023; 25:1765-1784. [PMID: 37290773 DOI: 10.1111/1462-2920.16440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen Dolan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Rodgers AM, Lindsay J, Monahan A, Dubois AV, Faniyi AA, Plant BJ, Mall MA, Ekkelenkamp MB, Elborn S, Ingram RJ. Biologically Relevant Murine Models of Chronic Pseudomonas aeruginosa Respiratory Infection. Pathogens 2023; 12:1053. [PMID: 37624013 PMCID: PMC10458525 DOI: 10.3390/pathogens12081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen and the leading cause of infection in patients with cystic fibrosis (CF). The ability of P. aeruginosa to evade host responses and develop into chronic infection causes significant morbidity and mortality. Several mouse models have been developed to study chronic respiratory infections induced by P. aeruginosa, with the bead agar model being the most widely used. However, this model has several limitations, including the requirement for surgical procedures and high mortality rates. Herein, we describe novel and adapted biologically relevant models of chronic lung infection caused by P. aeruginosa. Three methods are described: a clinical isolate infection model, utilising isolates obtained from patients with CF; an incomplete antibiotic clearance model, leading to bacterial bounce-back; and the establishment of chronic infection; and an adapted water bottle chronic infection model. These models circumvent the requirement for a surgical procedure and, importantly, can be induced with clinical isolates of P. aeruginosa and in wild-type mice. We also demonstrate successful induction of chronic infection in the transgenic βENaC murine model of CF. We envisage that the models described will facilitate the investigations of host and microbial factors, and the efficacy of novel antimicrobials, during chronic P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Aoife M. Rodgers
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Jaime Lindsay
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Avril Monahan
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Alice V. Dubois
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Aduragbemi A. Faniyi
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Barry J. Plant
- Cork Centre for Cystic Fibrosis (3CF), Cork University Hospital, University College Cork, T12 E8YV Cork, Ireland
- The HRB Funded Clinical Research Facility, University College Cork, T12 E8YV Cork, Ireland
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—University of Medicine Berlin, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 10117 Berlin, Germany
- Berlin Institute of Health at Charité—University of Medicine Berlin, 10117 Berlin, Germany
| | - Miquel B. Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Stuart Elborn
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| |
Collapse
|
7
|
Park S, Kim M, Park M, Jin Y, Lee SJ, Lee H. Specific upregulation of extracellular miR-6238 in particulate matter-induced acute lung injury and its immunomodulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130466. [PMID: 36455323 DOI: 10.1016/j.jhazmat.2022.130466] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases characterized by a severe inflammatory response and the destruction of alveolar epithelium and endothelium. ALI/ARDS is caused by pathogens and toxic environmental stimuli, such as particulate matter (PM). However, the general symptoms of ALI/ARDS are similar, and determining the cause of lung injury is often challenging. In this study, we investigated whether there is a critical miRNA that characterizes PM-induced ALI. We found that the expression of miR-6238 is specifically upregulated in lung tissue and lung-derived extracellular vesicles (EVs) in response to PM exposure. Notably, bacterial endotoxin (Lipopolysaccharide; LPS or peptidoglycan; PTG) does not induce the expression of miR-6238 in the lung. Instead, the expression of miR-155 is dramatically increased in LPS-induced ALI. We further demonstrated that human lung epithelial cells and macrophages predominantly produce miR-6238 and miR-155, respectively. Mechanistically, EV-miR-6238 is effectively internalized into alveolar macrophages (AMs) and regulates inflammatory responses in vivo. CXCL3 is a main target of miR-6238 in AMs and modulates neutrophil infiltration into the lung alveoli. Collectively, our findings suggest that miR-6238 is a novel regulator of pulmonary inflammation and a putative biomarker that distinguishes PM-induced ALI from endotoxin (LPS/PTG)-mediated ALI.
Collapse
Affiliation(s)
- Sujeong Park
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Miji Kim
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Minkyung Park
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, South Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Seon-Jin Lee
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, South Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea.
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea.
| |
Collapse
|
8
|
Reyne N, McCarron A, Cmielewski P, Parsons D, Donnelley M. To bead or not to bead: A review of Pseudomonas aeruginosa lung infection models for cystic fibrosis. Front Physiol 2023; 14:1104856. [PMID: 36824474 PMCID: PMC9942929 DOI: 10.3389/fphys.2023.1104856] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterised by recurring bacterial infections resulting in inflammation, lung damage and ultimately respiratory failure. Pseudomonas aeruginosa is considered one of the most important lung pathogens in those with cystic fibrosis. While multiple cystic fibrosis animal models have been developed, many fail to mirror the cystic fibrosis lung disease of humans, including the colonisation by opportunistic environmental pathogens. Delivering bacteria to the lungs of animals in different forms is a way to model cystic fibrosis bacterial lung infections and disease. This review presents an overview of previous models, and factors to consider when generating a new P. aeruginosa lung infection model. The future development and application of lung infection models that more accurately reflect human cystic fibrosis lung disease has the potential to assist in understanding the pathophysiology of cystic fibrosis lung disease and for developing treatments.
Collapse
Affiliation(s)
- Nicole Reyne
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia,*Correspondence: Nicole Reyne,
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Patricia Cmielewski
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| |
Collapse
|
9
|
Chiu YH, Chiu HP, Lin MY. Synergistic effect of probiotic and postbiotic on attenuation of PM2.5-induced lung damage and allergic response. J Food Sci 2023; 88:513-522. [PMID: 36463413 DOI: 10.1111/1750-3841.16398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
To date, few studies have been conducted on the relationship between postbiotics and air pollution, and there is limited knowledge if postbiotic and probiotic have synergistic effects. Therefore, we created a PM-induced lung inflammation mice model and demonstrated the effect of probiotic, postbiotic, and their combination treatment on attenuation of PM2.5-induced lung damage and allergic response. The mice were intratracheally given PM2.5 triggering conditions of acute lung damage and allergic response. Our results showed that individual treatment of probiotic and postbiotic reduced body weight loss by 47.1% and 48.9%, but the results did not show any effect on polarizing IFN-γ/IL-4 ratio. In addition, PM2.5-induced overactive expression of IgE treated by probiotic and postbiotic was reduced by 33.2% and 30.4%, respectively. While combination treatment of probiotic and postbiotic exerted a synergistic effect, especially considerably on improving IgE reduction by 57.1%, body weight loss by 78.3%, and IFN-γ/IL-4 ratio boost by 87.5%. To sum up the above functionality, these research findings may help establish a novel platform for postbiotic application, formulation, and mechanistic selection with regard to PM2.5-induced lung injury. PRACTICAL APPLICATION: Allergic inflammation caused by PM2.5 is not like common allergens (ex. Pollens, ovalbumin, dust mites), which simply skewing Th1/Th2 polarization to Th2. Thus using probiotics screened by Th1-skewing criteria might not be the best choice to treat on PM2.5-induced symptoms. This research proposed a combination of probiotics and postbiotics on modulating immunity homeostasis, and consequently attenuating complications of PM2.5-induced lung damage. These research findings may help establish a novel platform for postbiotic application, formulation and mechanistic selection with regard to PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Yi-Heng Chiu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, ROC, Taiwan.,Chambio Co., Ltd., Taichung, ROC, Taiwan
| | | | - Meei-Yn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, ROC, Taiwan
| |
Collapse
|
10
|
Pseudomonas aeruginosa Strains from Both Clinical and Environmental Origins Readily Adopt a Stable Small-Colony-Variant Phenotype Resulting from Single Mutations in c-di-GMP Pathways. J Bacteriol 2022; 204:e0018522. [PMID: 36102640 PMCID: PMC9578426 DOI: 10.1128/jb.00185-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subpopulation of small-colony variants (SCVs) is a frequently observed feature of Pseudomonas aeruginosa isolates obtained from colonized cystic fibrosis lungs. Since most SCVs have until now been isolated from clinical samples, it remains unclear how widespread the ability of P. aeruginosa strains to develop this phenotype is and what the genetic mechanism(s) behind the emergence of SCVs are according to the origin of the isolate. In the present work, we investigated the ability of 22 P. aeruginosa isolates from various environmental origins to spontaneously adopt an SCV-like smaller alternative morphotype distinguishable from that of the ancestral parent strain under laboratory culture conditions. We found that all the P. aeruginosa strains tested could adopt an SCV phenotype, regardless of their origin. Whole-genome sequencing of SCVs obtained from clinical and environmental sources revealed single mutations exclusively in two distinct c-di-GMP signaling pathways, the Wsp and YfiBNR pathways. We conclude that the ability to switch to an SCV phenotype is a conserved feature of P. aeruginosa and results from the acquisition of a stable genetic mutation, regardless of the origin of the strain. IMPORTANCE P. aeruginosa is an opportunistic pathogen that thrives in many environments. It poses a significant health concern, notably because this bacterium is the most prevalent pathogen found in the lungs of people with cystic fibrosis. In infected hosts, its persistence is considered related to the emergence of an alternative small-colony-variant (SCV) phenotype. By reporting the distribution of P. aeruginosa SCVs in various nonclinical environments and the involvement of c-di-GMP in SCV emergence from both clinical and environmental strains, this work contributes to understanding a conserved adaptation mechanism used by P. aeruginosa to adapt readily in all environments. Hindering this adaptation strategy could help control persistent infection by P. aeruginosa.
Collapse
|
11
|
Strain-specific interspecies interactions between co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization. Sci Rep 2022; 12:3374. [PMID: 35233050 PMCID: PMC8888623 DOI: 10.1038/s41598-022-07018-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/09/2022] [Indexed: 01/20/2023] Open
Abstract
Dual species interactions in co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization were examined. The genetic and phenotypic diversity between the isolates was high making the interactions detected strain-specific. Despite this, and the clinical origin of the strains, some interactions were common between some co-isolated pairs. For most pairs, P. aeruginosa exoproducts affected biofilm formation and reduced growth in vitro in its S. aureus counterpart. Conversely, S. aureus did not impair biofilm formation and stimulated swarming motility in P. aeruginosa. Co-culture in a medium that mimics respiratory mucus promoted coexistence and favored mixed microcolony formation within biofilms. Under these conditions, key genes controlled by quorum sensing were differentially regulated in both species in an isolate-dependent manner. Finally, co-infection in the acute infection model in Galleria mellonella larvae showed an additive effect only in the co-isolated pair in which P. aeruginosa affected less S. aureus growth. This work contributes to understanding the complex interspecies interactions between P. aeruginosa and S. aureus by studying strains isolated during acute infection.
Collapse
|
12
|
Gangoda L, Schenk RL, Best SA, Nedeva C, Louis C, D’Silva DB, Fairfax K, Jarnicki AG, Puthalakath H, Sutherland KD, Strasser A, Herold MJ. Absence of pro-survival A1 has no impact on inflammatory cell survival in vivo during acute lung inflammation and peritonitis. Cell Death Differ 2022; 29:96-104. [PMID: 34304242 PMCID: PMC8738744 DOI: 10.1038/s41418-021-00839-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a natural defence mechanism of the body to protect against pathogens. It is induced by immune cells, such as macrophages and neutrophils, which are rapidly recruited to the site of infection, mediating host defence. The processes for eliminating inflammatory cells after pathogen clearance are critical in preventing sustained inflammation, which can instigate diverse pathologies. During chronic inflammation, the excessive and uncontrollable activity of the immune system can cause extensive tissue damage. New therapies aimed at preventing this over-activity of the immune system could have major clinical benefits. Here, we investigated the role of the pro-survival Bcl-2 family member A1 in the survival of inflammatory cells under normal and inflammatory conditions using murine models of lung and peritoneal inflammation. Despite the robust upregulation of A1 protein levels in wild-type cells upon induction of inflammation, the survival of inflammatory cells was not impacted in A1-deficient mice compared to wild-type controls. These findings indicate that A1 does not play a major role in immune cell homoeostasis during inflammation and therefore does not constitute an attractive therapeutic target for such morbidities.
Collapse
Affiliation(s)
- Lahiru Gangoda
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Robyn L. Schenk
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah A. Best
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Christina Nedeva
- grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Cynthia Louis
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Damian B. D’Silva
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Kirsten Fairfax
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Andrew G. Jarnicki
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC Australia
| | - Hamsa Puthalakath
- grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Kate D. Sutherland
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Andreas Strasser
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Marco J. Herold
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
13
|
Outer Membrane Vesicles Displaying a Heterologous PcrV-HitA Fusion Antigen Promote Protection against Pulmonary Pseudomonas aeruginosa Infection. mSphere 2021; 6:e0069921. [PMID: 34612675 PMCID: PMC8510544 DOI: 10.1128/msphere.00699-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Along with surging threats and antibiotic resistance of Pseudomonas aeruginosa in health care settings, it is imperative to develop effective vaccines against P. aeruginosa infection. In this study, we used an Asd (aspartate-semialdehyde dehydrogenase)-based balanced-lethal host-vector system of a recombinant Yersinia pseudotuberculosis mutant to produce self-adjuvanting outer membrane vesicles (OMVs). The OMVs were used as a carrier to deliver the heterologous PcrV-HitAT (PH) fusion antigen of P. aeruginosa for vaccine evaluation. Intramuscular vaccination with OMVs carrying the PH antigen (referred to rOMV-PH) afforded 73% protection against intranasal challenge with 5 × 106 (25 50% lethal doses) of the cytotoxic PA103 strain and complete protection against a noncytotoxic PAO1 strain. In contrast, vaccination with the PH-deficient OMVs or PH antigen alone failed to offer effective protection against the same challenge. Immune analysis showed that the rOMV-PH vaccination induced potent humoral and Th1/Th17 responses compared to the PH vaccination. The rOMV-PH vaccination rapidly cleared P. aeruginosa burdens with coordinated production of proinflammatory cytokines in mice. Moreover, antigen-specific CD4+ and CD8+ T cells and their producing cytokines (tumor necrosis factor alpha and interleukin-17A), rather than antibodies, were essential for protection against pneumonic P. aeruginosa infection. Our studies demonstrated that the recombinant Y. pseudotuberculosis OMVs delivering heterologous P. aeruginosa antigens could be a new promising vaccine candidate for preventing the spread of drug-resistant P. aeruginosa. IMPORTANCE Hospital- and community-acquired infections with Pseudomonas aeruginosa cause a high rate of morbidity and mortality in patients who have underlying medical conditions. The spread of multidrug-resistant P. aeruginosa strains is becoming a great challenge for treatment using antibiotics. Thus, a vaccine as one of the alternative strategies is urgently required to prevent P. aeruginosa infection.
Collapse
|
14
|
García-Reyes S, Moustafa DA, Attrée I, Goldberg JB, Quiroz-Morales SE, Soberón-Chávez G. Vfr or CyaB promote the expression of the pore-forming toxin exlBA operon in Pseudomonas aeruginosa ATCC 9027 without increasing its virulence in mice. MICROBIOLOGY-SGM 2021; 167. [PMID: 34424157 DOI: 10.1099/mic.0.001083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pseudomonas aeruginosa is a wide-spread γ-proteobacterium that produces the biosurfactant rhamnolipid that has a great commercial value due to excellent properties of low toxicity and high biodegradability. However, this bacterium is an opportunist pathogen that constitutes an important health hazard due to its production of virulence-associated traits and its high antibiotic resistance. Thus, it is highly desirable to have a non-virulent P. aeruginosa strain for rhamnolipid production. It has been reported that strain ATCC 9027 is avirulent in mouse models of infection, and it is still able to produce rhamnolipid. Thus, it has been proposed to be suitable for it industrial production, since it encodes a defective LasR quorum sensing (QS) transcriptional regulator that is the head of this regulatory network. However, the restoration of virulence factor production by overexpression of rhlR (the gene encoding a QS-transcriptional regulator which is under the transcriptional control of LasR) is not sufficient to restore its virulence in mice. It is desirable to obtain a deeper understanding of ATCC 9027 attenuated-virulence phenotype and to assess the safety of this strain to be used at an industrial scale. In this work we determined whether increasing the expression of the pore-forming toxin encoded by the exlBA operon in strain ATCC 9027 had an impact on its virulence using Galleria mellonella and mouse models of infections. We increased the expression of the exlBA operon by overexpressing from a plasmid its transcriptional activator Vfr or of the Vfr ligand cyclic AMP produced by CyaB. We found that in G. mellonella ATCC 9027/pUCP24-vfr and ATCC 9027/pUCP24-cyaB gained a virulent phenotype, but these strains remained avirulent in murine models of P. aeruginosa infection. These results reinforce the possibility of using ATCC 9027 for industrial biosurfactants production.
Collapse
Affiliation(s)
- Selene García-Reyes
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| | - Dina A Moustafa
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Children's Centre for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ina Attrée
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, Grenoble, France
| | - Joanna B Goldberg
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Children's Centre for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sara E Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| |
Collapse
|
15
|
O'Brien TJ, Hassan MM, Harrison F, Welch M. An in vitro model for the cultivation of polymicrobial biofilms under continuous-flow conditions. F1000Res 2021; 10:801. [PMID: 34557293 PMCID: PMC8442117 DOI: 10.12688/f1000research.55140.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/04/2023] Open
Abstract
The airways of people with cystic fibrosis (CF) are often chronically colonised with a diverse array of bacterial and fungal species. However, little is known about the relative partitioning of species between the planktonic and biofilm modes of growth in the airways. Existing in vivo and in vitro models of CF airway infection are ill-suited for the long-term recapitulation of mixed microbial communities. Here we describe a simple, in vitro continuous-flow model for the cultivation of polymicrobial biofilms and planktonic cultures on different substrata. Our data provide evidence for inter-species antagonism and synergism in biofilm ecology. We further show that the type of substratum on which the biofilms grow has a profound influence on their species composition. This happens without any major alteration in the composition of the surrounding steady-state planktonic community. Our experimentally-tractable model enables the systematic study of planktonic and biofilm communities under conditions that are nutritionally reminiscent of the CF airway microenvironment, something not possible using any existing in vivo models of CF airway infection.
Collapse
Affiliation(s)
| | | | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| |
Collapse
|
16
|
An M, Oh M, Park KT, Seon KH, Jo JE, Lee SK, Kim JK, Shin KS, Koh JH, Lim YH. Anti-asthma and antitussive effects of a fermented extract of a mixture of Ramulus mori, Anthriscus sylvestris, and Salvia plebeian. Food Sci Biotechnol 2021; 30:1257-1268. [PMID: 34393544 PMCID: PMC8352748 DOI: 10.1007/s10068-021-00955-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Respiratory immunity is getting more important recently due to outbreak of respiratory diseases and increasing the concentration of fine dust. The aim of this study was to investigate respiratory protection effect of a fermented extract of medicinal plants (FEMP) containing Ramulus mori, Salvia plebeia, and Anthriscus sylvestris. The expression levels of IL-8 and IL-17 in LPS/poly-L-arginine (PLA) and FEMP-cotreated A549 cells were lower than those in LPS/PLA only-treated cells. The levels of IgE, IL-17, and IL-4 in the bronchoalveolar lavage fluid (BALF) and serum of FEMP-treated mice with ovalbumin/LPS-induced asthma were lower than the control levels. The lung inflammation score and the number of inflammatory cells in the BALF decreased by FEMP treatment. In the citric acid-induced coughing guinea pig, the FEMP treatment decreased the number of coughs. Therefore, FEMP shows anti-asthmatic and antitussive activities without hepatotoxicity and can be used as a compound aiming to improve respiratory health. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00955-3.
Collapse
Affiliation(s)
- Mirae An
- Department of Public Health Science, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Miae Oh
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Keun-Tae Park
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Ki Hwan Seon
- R & D Center, Biocean CO. LTD, Seoul, 08591 Republic of Korea
| | - Jeong Eun Jo
- R & D Center, Biocean CO. LTD, Seoul, 08591 Republic of Korea
| | - Seong Kweon Lee
- R & D Center, Biocean CO. LTD, Seoul, 08591 Republic of Korea
| | - Jeong-Keun Kim
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, Shihung-si, Gyeonggi-do 15073 Republic of Korea
| | - Kwang Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227 Republic of Korea
| | - Jong-Ho Koh
- Department of Bio-Food Analysis and Processing, Bio-Campus Korea Polytechnic College, Nonsan, 32943 Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841 Republic of Korea.,School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, 02841 Republic of Korea.,Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308 Republic of Korea
| |
Collapse
|
17
|
Testing of aerosolized ciprofloxacin nanocarriers on cystic fibrosis airway cells infected with P. aeruginosa biofilms. Drug Deliv Transl Res 2021; 11:1752-1765. [PMID: 34047967 PMCID: PMC8236054 DOI: 10.1007/s13346-021-01002-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/22/2023]
Abstract
The major pathogen found in the lungs of adult cystic fibrosis (CF) patients is Pseudomonas aeruginosa, which builds antibiotic-resistant biofilms. Pulmonary delivery of antibiotics by inhalation has already been proved advantageous in the clinic, but the development of novel anti-infective aerosol medicines is complex and could benefit from adequate in vitro test systems. This work describes the first in vitro model of human bronchial epithelial cells cultivated at the air-liquid interface (ALI) and infected with P. aeruginosa biofilm and its application to demonstrate the safety and efficacy of aerosolized anti-infective nanocarriers. Such a model may facilitate the translation of novel therapeutic modalities into the clinic, reducing animal experiments and the associated problems of species differences. A preformed biofilm of P. aeruginosa PAO1 was transferred to filter-grown monolayers of the human CF cell line (CFBE41o-) at ALI and additionally supplemented with human tracheobronchial mucus. This experimental protocol provides an appropriate time window to deposit aerosolized ciprofloxacin-loaded nanocarriers at the ALI. When applied 1 h post-infection, the nanocarriers eradicated all planktonic bacteria and reduced the biofilm fraction of the pathogen by log 6, while CFBE41o- viability and barrier properties were maintained. The here described complex in vitro model approach may open new avenues for preclinical safety and efficacy testing of aerosol medicines against P. aeruginosa lung infection.
Collapse
|
18
|
Silveira GGOS, Torres MDT, Ribeiro CFA, Meneguetti BT, Carvalho CME, de la Fuente-Nunez C, Franco OL, Cardoso MH. Antibiofilm Peptides: Relevant Preclinical Animal Infection Models and Translational Potential. ACS Pharmacol Transl Sci 2021; 4:55-73. [PMID: 33615161 DOI: 10.1021/acsptsci.0c00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Biofilm-forming bacteria may be 10-1000 times more resistant to antibiotics than planktonic bacteria and represent about 75% of bacterial infections in humans. Antibiofilm treatments are scarce, and no effective therapies have been reported so far. In this context, antibiofilm peptides (ABPs) represent an exciting class of agents with potent activity against biofilms both in vitro and in vivo. Moreover, murine models of bacterial biofilm infections have been used to evaluate the in vivo effectiveness of ABPs. Therefore, here we highlight the translational potential of ABPs and provide an overview of the different clinically relevant murine models to assess ABP efficacy, including wound, foreign body, chronic lung, and oral models of infection. We discuss key challenges to translate ABPs to the clinic and the pros and cons of the existing murine biofilm models for reliable assessment of the efficacy of ABPs.
Collapse
Affiliation(s)
- Gislaine G O S Silveira
- S-Inova Biotech, Programa de Pós-Graduação Stricto Sensu em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-010, Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Camila F A Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação Stricto Sensu em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-010, Brazil
| | - Beatriz T Meneguetti
- S-Inova Biotech, Programa de Pós-Graduação Stricto Sensu em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-010, Brazil
| | - Cristiano M E Carvalho
- S-Inova Biotech, Programa de Pós-Graduação Stricto Sensu em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-010, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação Stricto Sensu em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-010, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| | - Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação Stricto Sensu em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-010, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| |
Collapse
|
19
|
Ng RN, Tai AS, Chang BJ, Stick SM, Kicic A. Overcoming Challenges to Make Bacteriophage Therapy Standard Clinical Treatment Practice for Cystic Fibrosis. Front Microbiol 2021; 11:593988. [PMID: 33505366 PMCID: PMC7829477 DOI: 10.3389/fmicb.2020.593988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with cystic fibrosis (CF) are given antimicrobials as prophylaxis against bacterial lung infection, which contributes to the growing emergence of multidrug resistant (MDR) pathogens isolated. Pathogens such as Pseudomonas aeruginosa that are commonly isolated from individuals with CF are armed with an arsenal of protective and virulence mechanisms, complicating eradication and treatment strategies. While translation of phage therapy into standard care for CF has been explored, challenges such as the lack of an appropriate animal model demonstrating safety in vivo exist. In this review, we have discussed and provided some insights in the use of primary airway epithelial cells to represent the mucoenvironment of the CF lungs to demonstrate safety and efficacy of phage therapy. The combination of phage therapy and antimicrobials is gaining attention and has the potential to delay the onset of MDR infections. It is evident that efforts to translate phage therapy into standard clinical practice have gained traction in the past 5 years. Ultimately, collaboration, transparency in data publications and standardized policies are needed for clinical translation.
Collapse
Affiliation(s)
- Renee N. Ng
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
| | - Anna S. Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Institute for Respiratory Health, School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Barbara J. Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Occupation and the Environment, School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
20
|
Harrington NE, Sweeney E, Harrison F. Building a better biofilm - Formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection. Biofilm 2020; 2:100024. [PMID: 33381751 PMCID: PMC7762787 DOI: 10.1016/j.bioflm.2020.100024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa biofilm infections in the cystic fibrosis (CF) lung are highly resistant to current antimicrobial treatments and are associated with increased mortality rates. The existing models for such infections are not able to reliably mimic the clinical biofilms observed. We aimed to further optimise an ex vivo pig lung (EVPL) model for P. aeruginosa CF lung infection that can be used to increase understanding of chronic CF biofilm infection. The EVPL model will facilitate discovery of novel infection prevention methods and treatments, and enhanced exploration of biofilm architecture. We investigated purine metabolism and biofilm formation in the model using transposon insertion mutants in P. aeruginosa PA14 for key genes: purD, gacA and pelA. Our results demonstrate that EVPL recapitulates a key aspect of in vivo P. aeruginosa infection metabolism, and that the pathogen forms a biofilm with a clinically realistic structure not seen in other in vitro studies. Two pathways known to be required for in vivo biofilm infection - the Gac regulatory pathway and production of the Pel exopolysaccharide - are essential to the formation of this mature, structured biofilm on EVPL tissue. We propose the high-throughput EVPL model as a validated biofilm platform to bridge the gap between in vitro work and CF lung infection.
Collapse
Affiliation(s)
- Niamh E. Harrington
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Esther Sweeney
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
21
|
Sandri A, Lleo MM, Signoretto C, Boaretti M, Boschi F. Protease inhibitors elicit anti-inflammatory effects in CF mice with Pseudomonas aeruginosa acute lung infection. Clin Exp Immunol 2020; 203:87-95. [PMID: 32946591 DOI: 10.1111/cei.13518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 01/30/2023] Open
Abstract
Pseudomonas aeruginosa is the major respiratory pathogen in patients with cystic fibrosis (CF). P. aeruginosa-secreted proteases, in addition to host proteases, degrade lung tissue and interfere with immune processes. In this study, we aimed at evaluating the possible anti-inflammatory effects of protease inhibitors Marimastat and Ilomastat in the treatment of P. aeruginosa infection. Lung infection with the P. aeruginosa PAO1 strain was established in wild-type and cystic fibrosis transmembrane conductance regulator (CFTR) knock-out C57BL/6 mice expressing a luciferase gene under control of bovine interleukin (IL)-8 promoter. After intratracheal instillation with 150 µM Marimastat and Ilomastat, lung inflammation was monitored by in-vivo bioluminescence imaging and bacterial load in the lungs was assessed. In vitro, the effects of protease inhibitors on PAO1 growth and viability were evaluated. Acute lung infection was established in both wild-type and CFTR knock-out mice. After 24 h, the infection induced IL-8-dependent bioluminescence emission, indicating lung inflammation. In infected mice with ongoing inflammation, intratracheal treatment with 150 µM Marimastat and Ilomastat reduced the bioluminescence signal in comparison to untreated, infected animals. Bacterial load in the lungs was not affected by the treatment, and in vitro the same dose of Marimastat and Ilomastat did not affect PAO1 growth and viability, confirming that these molecules have no additional anti-bacterial activity. Our results show that inhibition of protease activity elicits anti-inflammatory effects in cystic fibrosis (CF) mice with acute P. aeruginosa lung infection. Thus, Marimastat and Ilomastat represent candidate molecules for the treatment of CF patients, encouraging further studies on protease inhibitors and their application in inflammatory diseases.
Collapse
Affiliation(s)
- A Sandri
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - M M Lleo
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - C Signoretto
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - M Boaretti
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - F Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
22
|
Pseudomonas aeruginosa Volatilome Characteristics and Adaptations in Chronic Cystic Fibrosis Lung Infections. mSphere 2020; 5:5/5/e00843-20. [PMID: 33028687 PMCID: PMC7568651 DOI: 10.1128/msphere.00843-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic lung infections in cystic fibrosis (CF), which are correlated with lung function decline. Significant clinical efforts are therefore aimed at detecting infections and tracking them for phenotypic changes, such as mucoidy and antibiotic resistance. Both the detection and tracking of lung infections rely on sputum cultures, but due to improvements in CF therapies, sputum production is declining, although risks for lung infections persist. Therefore, we are working toward the development of breath-based diagnostics for CF lung infections. In this study, we characterized of the volatile metabolomes of 81 P. aeruginosa clinical isolates collected from 17 CF patients over a duration of at least 5 years of a chronic lung infection. We found that the volatilome of P. aeruginosa adapts over time and is correlated with infection phenotype changes, suggesting that it may be possible to track chronic CF lung infections with a breath test. Pseudomonas aeruginosa chronic lung infections in individuals with cystic fibrosis (CF) significantly reduce quality of life and increase morbidity and mortality. Tracking these infections is critical for monitoring patient health and informing treatments. We are working toward the development of novel breath-based biomarkers to track chronic P. aeruginosa lung infections in situ. Using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC–TOF-MS), we characterized the in vitro volatile metabolomes (“volatilomes”) of 81 P. aeruginosa isolates collected from 17 CF patients over at least a 5-year period of their chronic lung infections. We detected 539 volatiles produced by the P. aeruginosa isolates, 69 of which were core volatiles that were highly conserved. We found that each early infection isolate has a unique volatilome, and as infection progresses, the volatilomes of isolates from the same patient become increasingly dissimilar, to the point that these intrapatient isolates are no more similar to one another than to isolates from other patients. We observed that the size and chemical diversity of P. aeruginosa volatilomes do not change over the course of chronic infections; however, the relative abundances of core hydrocarbons, alcohols, and aldehydes do change and are correlated with changes in phenotypes associated with chronic infections. This study indicates that it may be feasible to track P. aeruginosa chronic lung infections by measuring changes to the infection volatilome and lays the groundwork for exploring the translatability of this approach to direct measurement using patient breath. IMPORTANCEPseudomonas aeruginosa is a leading cause of chronic lung infections in cystic fibrosis (CF), which are correlated with lung function decline. Significant clinical efforts are therefore aimed at detecting infections and tracking them for phenotypic changes, such as mucoidy and antibiotic resistance. Both the detection and tracking of lung infections rely on sputum cultures, but due to improvements in CF therapies, sputum production is declining, although risks for lung infections persist. Therefore, we are working toward the development of breath-based diagnostics for CF lung infections. In this study, we characterized of the volatile metabolomes of 81 P. aeruginosa clinical isolates collected from 17 CF patients over a duration of at least 5 years of a chronic lung infection. We found that the volatilome of P. aeruginosa adapts over time and is correlated with infection phenotype changes, suggesting that it may be possible to track chronic CF lung infections with a breath test.
Collapse
|
23
|
Semaniakou A, Brothers S, Gould G, Zahiremani M, Paton J, Chappe F, Li A, Anini Y, Croll RP, Chappe V. Disrupted local innervation results in less VIP expression in CF mice tissues. J Cyst Fibros 2020; 20:154-164. [PMID: 32600901 DOI: 10.1016/j.jcf.2020.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Vasoactive Intestinal Peptide (VIP) is the major physiological agonist of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride channel activity. VIP functions as a neuromodulator and neurotransmitter secreted by neurons innervating all exocrine glands. VIP is also a potent vasodilator and bronchodilator that regulates exocrine gland secretions, contributing to local innate defense by stimulating the movement of water and chloride transport across intestinal and tracheobronchial epithelia. Previous human studies have shown that the rich intrinsic neuronal networks for VIP secretion around exocrine glands could be lost in tissues from patients with cystic fibrosis. Our research has since confirmed, in vitro and in vivo, the need for chronic VIP exposure to maintain functional CFTR chloride channels at the cell surface of airways and intestinal epithelium, as well as normal exocrine tissues morphology [1]. The goal of the present study was to examine changes in VIP in the lung, duodenum and sweat glands of 8- and 17-weeks old F508del/F508del mice and to investigate VIPergic innervation in the small intestine of CF mice, before important signs of the disease development. Our data show that a low amount of VIP is found in CF tissues prior to tissue damage. Moreover, we found a specific reduction in VIPergic and cholinergic innervation of the small intestine. The general innervation of the primary and secondary myenteric plexus was lost in CF tissues, with the presence of enlarged ganglionic cells in the tertiary layer. We propose that low amount of VIP in CF tissues is due to a reduction in VIPergic and cholinergic innervation and represents an early defect that constitutes an aggravating factor for CF disease progression.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sarah Brothers
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Grayson Gould
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mehrsa Zahiremani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jamie Paton
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Frederic Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Audrey Li
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Younes Anini
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Obstetrics and Gynecology, IWK Health Center, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
24
|
Chatterjee P, Sass G, Swietnicki W, Stevens DA. Review of Potential Pseudomonas Weaponry, Relevant to the Pseudomonas-Aspergillus Interplay, for the Mycology Community. J Fungi (Basel) 2020; 6:jof6020081. [PMID: 32517271 PMCID: PMC7345761 DOI: 10.3390/jof6020081] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most prominent opportunistic bacteria in airways of cystic fibrosis patients and in immunocompromised patients. These bacteria share the same polymicrobial niche with other microbes, such as the opportunistic fungus Aspergillus fumigatus. Their inter-kingdom interactions and diverse exchange of secreted metabolites are responsible for how they both fare in competition for ecological niches. The outcomes of their contests likely determine persistent damage and degeneration of lung function. With a myriad of virulence factors and metabolites of promising antifungal activity, P. aeruginosa products or their derivatives may prove useful in prophylaxis and therapy against A. fumigatus. Quorum sensing underlies the primary virulence strategy of P. aeruginosa, which serves as cell–cell communication and ultimately leads to the production of multiple virulence factors. Understanding the quorum-sensing-related pathogenic mechanisms of P. aeruginosa is a first step for understanding intermicrobial competition. In this review, we provide a basic overview of some of the central virulence factors of P. aeruginosa that are regulated by quorum-sensing response pathways and briefly discuss the hitherto known antifungal properties of these virulence factors. This review also addresses the role of the bacterial secretion machinery regarding virulence factor secretion and maintenance of cell–cell communication.
Collapse
Affiliation(s)
- Paulami Chatterjee
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-114 Wroclaw, Poland;
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
25
|
de Vries CR, Sweere JM, Ishak H, Sunkari V, Bach MS, Liu D, Manasherob R, Bollyky PL. A Delayed Inoculation Model of Chronic Pseudomonas aeruginosa Wound Infection. J Vis Exp 2020:10.3791/60599. [PMID: 32150161 PMCID: PMC7309497 DOI: 10.3791/60599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a major nosocomial pathogen of increasing relevance to human health and disease, particularly in the setting of chronic wound infections in diabetic and hospitalized patients. There is an urgent need for chronic infection models to aid in the investigation of wound pathogenesis and the development of new therapies against this pathogen. Here, we describe a protocol that uses delayed inoculation 24 hours after full-thickness excisional wounding. The infection of the provisional wound matrix present at this time forestalls either rapid clearance or dissemination of infection and instead establishes chronic infection lasting 7-10 days without the need for implantation of foreign materials or immune suppression. This protocol mimics a typical temporal course of post-operative infection in humans. The use of a luminescent P. aeruginosa strain (PAO1:lux) allows for quantitative daily assessment of bacterial burden for P. aeruginosa wound infections. This novel model may be a useful tool in the investigation of bacterial pathogenesis and the development of new therapies for chronic P. aeruginosa wound infections.
Collapse
Affiliation(s)
| | - Johanna M Sweere
- Division of Infectious Diseases, School of Medicine, Stanford University; Stanford Immunology, Stanford University
| | - Heather Ishak
- Division of Infectious Diseases, School of Medicine, Stanford University; Palo Alto Veterans Institute of Research
| | | | - Michelle S Bach
- Division of Infectious Diseases, School of Medicine, Stanford University
| | - Dan Liu
- Division of Infectious Diseases, School of Medicine, Stanford University
| | - Robert Manasherob
- Division of Infectious Diseases, School of Medicine, Stanford University
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University; Stanford Immunology, Stanford University
| |
Collapse
|
26
|
Cornforth DM, Diggle FL, Melvin JA, Bomberger JM, Whiteley M. Quantitative Framework for Model Evaluation in Microbiology Research Using Pseudomonas aeruginosa and Cystic Fibrosis Infection as a Test Case. mBio 2020; 11:e03042-19. [PMID: 31937646 PMCID: PMC6960289 DOI: 10.1128/mbio.03042-19] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/14/2023] Open
Abstract
Laboratory models are a cornerstone of modern microbiology, but the accuracy of these models has not been systematically evaluated. As a result, researchers often choose models based on intuition or incomplete data. We propose a general quantitative framework to assess model accuracy from RNA sequencing data and use this framework to evaluate models of Pseudomonas aeruginosa cystic fibrosis (CF) lung infection. We found that an in vitro synthetic CF sputum medium model and a CF airway epithelial cell model had the highest genome-wide accuracy but underperformed on distinct functional categories, including porins and polyamine biosynthesis for the synthetic sputum medium and protein synthesis for the epithelial cell model. We identified 211 "elusive" genes that were not mimicked in a reference strain grown in any laboratory model but found that many were captured by using a clinical isolate. These methods provide researchers with an evidence-based foundation to select and improve laboratory models.IMPORTANCE Laboratory models have become a cornerstone of modern microbiology. However, the accuracy of even the most commonly used models has never been evaluated. Here, we propose a quantitative framework based on gene expression data to evaluate model performance and apply it to models of Pseudomonas aeruginosa cystic fibrosis lung infection. We discovered that these models captured different aspects of P. aeruginosa infection physiology, and we identify which functional categories are and are not captured by each model. These methods will provide researchers with a solid basis to choose among laboratory models depending on the scientific question of interest and will help improve existing experimental models.
Collapse
Affiliation(s)
- Daniel M Cornforth
- School of Biological Sciences, Georgia Institute of Technology, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Frances L Diggle
- School of Biological Sciences, Georgia Institute of Technology, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
27
|
O'Brien TJ, Welch M. Recapitulation of polymicrobial communities associated with cystic fibrosis airway infections: a perspective. Future Microbiol 2019; 14:1437-1450. [PMID: 31778075 DOI: 10.2217/fmb-2019-0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The airways of persons with cystic fibrosis are prone to infection by a diverse and dynamic polymicrobial consortium. Currently, no models exist that permit recapitulation of this consortium within the laboratory. Such microbial ecosystems likely have a network of interspecies interactions, serving to modulate metabolic pathways and impact upon disease severity. The contribution of less abundant/fastidious microbial species on this cross-talk has often been neglected due to lack of experimental tractability. Here, we critically assess the existing models for studying polymicrobial infections. Particular attention is paid to 3Rs-compliant in vitro and in silico infection models, offering significant advantages over mammalian infection models. We outline why these models will likely become the 'go to' approaches when recapitulating polymicrobial cystic fibrosis infection.
Collapse
Affiliation(s)
- Thomas J O'Brien
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
28
|
In vitro evaluation of Pseudomonas aeruginosa chronic lung infection models: Are agar and calcium-alginate beads interchangeable? Eur J Pharm Biopharm 2019; 143:35-43. [DOI: 10.1016/j.ejpb.2019.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
|
29
|
Morello E, Pérez-Berezo T, Boisseau C, Baranek T, Guillon A, Bréa D, Lanotte P, Carpena X, Pietrancosta N, Hervé V, Ramphal R, Cenac N, Si-Tahar M. Pseudomonas aeruginosa Lipoxygenase LoxA Contributes to Lung Infection by Altering the Host Immune Lipid Signaling. Front Microbiol 2019; 10:1826. [PMID: 31474948 PMCID: PMC6702342 DOI: 10.3389/fmicb.2019.01826] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/24/2019] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacteria and a major cause of nosocomial pneumonia. P. aeruginosa has many virulence factors contributing to its ability to colonize the host. LoxA is a lipoxygenase enzyme secreted by P. aeruginosa that oxidizes polyunsaturated fatty acids. Based on previous in vitro biochemical studies, several biological roles of LoxA have been hypothesized, including interference of the host lipid signaling, and modulation of bacterial invasion properties. However, the contribution of LoxA to P. aeruginosa lung pathogenesis per se remained unclear. In this study, we used complementary in vitro and in vivo approaches, clinical strains of P. aeruginosa as well as lipidomics technology to investigate the role of LoxA in lung infection. We found that several P. aeruginosa clinical isolates express LoxA. When secreted in the lungs, LoxA processes a wide range of host polyunsaturated fatty acids, which further results in the production of bioactive lipid mediators (including lipoxin A4). LoxA also inhibits the expression of major chemokines (e.g., MIPs and KC) and the recruitment of key leukocytes. Remarkably, LoxA promotes P. aeruginosa persistence in lungs tissues. Hence, our study suggests that LoxA-dependent interference of the host lipid pathways may contribute to P. aeruginosa lung pathogenesis.
Collapse
Affiliation(s)
- Eric Morello
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Teresa Pérez-Berezo
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Chloé Boisseau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Déborah Bréa
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Philippe Lanotte
- CHRU de Tours, Service de Bactériologie-Virologie, Tours, France.,Université de Tours, UMR1282 ISP, Faculté de Médecine, Equipe Bactéries et Risque Materno-Foetal, Tours, France
| | - Xavier Carpena
- Institut de Biologia Molecular de Barcelona, Parc Científic de Barcelona, Barcelona, Spain.,XALOC Beamline, ALBA Synchrotron, Cerdanyola del Vallès, Spain
| | - Nicolas Pietrancosta
- Plateau 2MI, CNRS UMR8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre Universitaire des Saints-Pères, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Virginie Hervé
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Reuben Ramphal
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France.,Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Nicolas Cenac
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| |
Collapse
|
30
|
Dingemans J, Al-Feghali RE, Lau GW, Sauer K. Controlling chronic Pseudomonas aeruginosa infections by strategically interfering with the sensory function of SagS. Mol Microbiol 2019; 111:1211-1228. [PMID: 30710463 PMCID: PMC6488366 DOI: 10.1111/mmi.14215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 01/16/2023]
Abstract
The hybrid sensor SagS plays a central role in the formation of Pseudomonas aeruginosa biofilms, by enabling the switch from the planktonic to the biofilm mode of growth and by facilitating the transition of biofilm cells to a highly tolerant state. In this study, we examined the importance of the SagS key amino acid residues associated with biofilm formation (L154) and antibiotic tolerance (D105) in P. aeruginosa virulence. Recombinant P. aeruginosa ΔsagS and ΔsagS chromosomally expressing wild-type sagS, or its two variants D105A and L154A, were tested for their potential to form biofilms and cause virulence in plants and mouse models of acute and chronic pneumonia. Although mutation of sagS did not alter P. aeruginosa virulence during acute infections, a significant difference in pathogenicity of sagS mutants was observed during chronic infections, with the L154A variant showing reduced bacterial loads in the chronic pneumonia model, while interference with the D105 residue enhanced the susceptibility of P. aeruginosa biofilms during tobramycin treatment. Our findings suggest that interference with the biofilm or tolerance regulatory circuits of SagS affects P. aeruginosa pathogenicity in chronic but not acute infections, and reveal SagS to be a promising new target to treat P. aeruginosa biofilm infections.
Collapse
Affiliation(s)
- Jozef Dingemans
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - Rebecca E. Al-Feghali
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, United States.,Corresponding author: Karin Sauer, Binghamton University, Department of Biological Sciences, Binghamton Biofilm Research Center (BBRC), 2401 ITC Building, 85 Murray Hill Road, Binghamton, NY 13902, Phone (607) 777-3157, Fax: (607) 777-6521,
| |
Collapse
|
31
|
Zhang Z, Hunter L, Wu G, Maidstone R, Mizoro Y, Vonslow R, Fife M, Hopwood T, Begley N, Saer B, Wang P, Cunningham P, Baxter M, Durrington H, Blaikley JF, Hussell T, Rattray M, Hogenesch JB, Gibbs J, Ray DW, Loudon ASI. Genome-wide effect of pulmonary airway epithelial cell-specific Bmal1 deletion. FASEB J 2019; 33:6226-6238. [PMID: 30794439 PMCID: PMC6463917 DOI: 10.1096/fj.201801682r] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Pulmonary airway epithelial cells (AECs) form a critical interface between host and environment. We investigated the role of the circadian clock using mice bearing targeted deletion of the circadian gene brain and muscle ARNT-like 1 (Bmal1) in AECs. Pulmonary neutrophil infiltration, biomechanical function, and responses to influenza infection were all disrupted. A circadian time-series RNA sequencing study of laser-captured AECs revealed widespread disruption in genes of the core circadian clock and output pathways regulating cell metabolism (lipids and xenobiotics), extracellular matrix, and chemokine signaling, but strikingly also the gain of a novel rhythmic transcriptome in Bmal1-targeted cells. Many of the rhythmic components were replicated in primary AECs cultured in air-liquid interface, indicating significant cell autonomy for control of pulmonary circadian physiology. Finally, we found that metabolic cues dictate phasing of the pulmonary clock and circadian responses to immunologic challenges. Thus, the local circadian clock in AECs is vital in lung health by coordinating major cell processes such as metabolism and immunity.-Zhang, Z. Hunter, L., Wu, G., Maidstone, R., Mizoro, Y., Vonslow, R., Fife, M., Hopwood, T., Begley, N., Saer, B., Wang, P., Cunningham, P., Baxter, M., Durrington, H., Blaikley, J. F., Hussell, T., Rattray, M., Hogenesch, J. B., Gibbs, J., Ray, D. W., Loudon, A. S. I. Genome-wide effect of pulmonary airway epithelial cell-specific Bmal1 deletion.
Collapse
Affiliation(s)
- Zhenguang Zhang
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Louise Hunter
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Gang Wu
- Division of Human Genetics, Department of Pediatrics, Center for Chronobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Immunobiology, Department of Pediatrics, Center for Chronobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Robert Maidstone
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Yasutaka Mizoro
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Ryan Vonslow
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Mark Fife
- Manchester Center for Collaborative Inflammation Research, Faculty of Biology, Health and Medicine, University of Manchester, Manchester, United Kingdom
| | - Thomas Hopwood
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Nicola Begley
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Ben Saer
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Ping Wang
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Peter Cunningham
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Matthew Baxter
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Hannah Durrington
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - John F. Blaikley
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Center for Collaborative Inflammation Research, Faculty of Biology, Health and Medicine, University of Manchester, Manchester, United Kingdom
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom; and
| | - John B. Hogenesch
- Division of Human Genetics, Department of Pediatrics, Center for Chronobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Julie Gibbs
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - David W. Ray
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| | - Andrew S. I. Loudon
- Centre for Biological Timing, Faculty of Biology, Health, and Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Irvine S, Bunk B, Bayes HK, Spröer C, Connolly JPR, Six A, Evans TJ, Roe AJ, Overmann J, Walker D. Genomic and transcriptomic characterization of Pseudomonas aeruginosa small colony variants derived from a chronic infection model. Microb Genom 2019; 5:e000262. [PMID: 30920365 PMCID: PMC6521587 DOI: 10.1099/mgen.0.000262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/10/2019] [Indexed: 01/26/2023] Open
Abstract
Phenotypic change is a hallmark of bacterial adaptation during chronic infection. In the case of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis, well-characterized phenotypic variants include mucoid and small colony variants (SCVs). It has previously been shown that SCVs can be reproducibly isolated from the murine lung following the establishment of chronic infection with mucoid P. aeruginosa strain NH57388A. Using a combination of single-molecule real-time (PacBio) and Illumina sequencing we identify a large genomic inversion in the SCV through recombination between homologous regions of two rRNA operons and an associated truncation of one of the 16S rRNA genes and suggest this may be the genetic switch for conversion to the SCV phenotype. This phenotypic conversion is associated with large-scale transcriptional changes distributed throughout the genome. This global rewiring of the cellular transcriptomic output results in changes to normally differentially regulated genes that modulate resistance to oxidative stress, central metabolism and virulence. These changes are of clinical relevance because the appearance of SCVs during chronic infection is associated with declining lung function.
Collapse
Affiliation(s)
- Sharon Irvine
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Boyke Bunk
- Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhiffenstraße 7B, 38124 Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Hannah K. Bayes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cathrin Spröer
- Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhiffenstraße 7B, 38124 Braunschweig, Germany
| | - James P. R. Connolly
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anne Six
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Thomas J. Evans
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew J. Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jörg Overmann
- Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhiffenstraße 7B, 38124 Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
33
|
Acetylcholine-treated murine dendritic cells promote inflammatory lung injury. PLoS One 2019; 14:e0212911. [PMID: 30822345 PMCID: PMC6396899 DOI: 10.1371/journal.pone.0212911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years a non-neuronal cholinergic system has been described in immune cells, which is often usually activated during the course of inflammatory processes. To date, it is known that Acetylcholine (ACh), a neurotransmitter extensively expressed in the airways, not only induces bronchoconstriction, but also promotes a set of changes usually associated with the induction of allergic/Th2 responses. We have previously demonstrated that ACh polarizes human dendritic cells (DC) toward a Th2-promoting profile through the activation of muscarinic acetylcholine receptors (mAChR). Here, we showed that ACh promotes the acquisition of an inflammatory profile by murine DC, with the increased MHC II IAd expression and production of two cytokines strongly associated with inflammatory infiltrate and tissue damage, namely TNF-α and MCP-1, which was prevented by blocking mAChR. Moreover, we showed that ACh induces the up-regulation of M3 mAChR expression and the blocking of this receptor with tiotropium bromide prevents the increase of MHC II IAd expression and TNF-α production induced by ACh on DC, suggesting that M3 is the main receptor involved in ACh-induced activation of DC. Then, using a short-term experimental murine model of ovalbumin-induced lung inflammation, we revealed that the intranasal administration of ACh-treated DC, at early stages of the inflammatory response, might be able to exacerbate the recruitment of inflammatory mononuclear cells, promoting profound structural changes in the lung parenchyma characteristic of chronic inflammation and evidenced by elevated systemic levels of inflammatory marker, TNF-α. These results suggest a potential role for ACh in the modulation of immune mechanisms underlying pulmonary inflammatory processes.
Collapse
|
34
|
Britto CJ, Niu N, Khanal S, Huleihel L, Herazo-Maya JD, Thompson A, Sauler M, Slade MD, Sharma L, Dela Cruz CS, Kaminski N, Cohn LE. BPIFA1 regulates lung neutrophil recruitment and interferon signaling during acute inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 316:L321-L333. [PMID: 30461288 DOI: 10.1152/ajplung.00056.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bpifa1 (BPI fold-containing group A member 1) is an airway host-protective protein with immunomodulatory properties that binds to LPS and is regulated by infectious and inflammatory signals. Differential expression of Bpifa1 has been widely reported in lung disease, yet the biological significance of this observation is unclear. We sought to understand the role of Bpifa1 fluctuations in modulating lung inflammation. We treated wild-type (WT) and Bpifa1-/- mice with intranasal LPS and performed immunological and transcriptomic analyses of lung tissue to determine the immune effects of Bpifa1 deficiency. We show that neutrophil (polymorphonuclear cells, PMNs) lung recruitment and transmigration to the airways in response to LPS is impaired in Bpifa1-/- mice. Transcriptomic analysis revealed a signature of 379 genes that differentiated Bpifa1-/- from WT mice. During acute lung inflammation, the most downregulated genes in Bpifa1-/- mice were Cxcl9 and Cxcl10. Bpifa1-/- mice had lower bronchoalveolar lavage concentrations of C-X-C motif chemokine ligand 10 (Cxcl10) and Cxcl9, interferon-inducible PMN chemokines. This was consistent with lower expression of IFNγ, IFNλ, downstream IFN-stimulated genes, and IFN-regulatory factors, which are important for the innate immune response. Administration of Cxcl10 before LPS treatment restored the inflammatory response in Bpifa1-/- mice. Our results identify a novel role for Bpifa1 in the regulation of Cxcl10-mediated PMN recruitment to the lungs via IFNγ and -λ signaling during acute inflammation.
Collapse
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Naiqian Niu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Sara Khanal
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Luai Huleihel
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Jose D Herazo-Maya
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Alison Thompson
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Martin D Slade
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut.,Yale University School of Public Health, Department of Environmental Health Sciences , New Haven, Connecticut
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Lauren E Cohn
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
35
|
Pandey S, Delgado C, Kumari H, Florez L, Mathee K. Outer-membrane protein LptD (PA0595) plays a role in the regulation of alginate synthesis in Pseudomonas aeruginosa. J Med Microbiol 2018; 67:1139-1156. [PMID: 29923820 DOI: 10.1099/jmm.0.000752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The presence of alginate-overproducing (Alg+) strains of Pseudomonas aeruginosa in cystic fibrosis patients is indicative of chronic infection. The Alg+ phenotype is generally due to a mutation in the mucA gene, encoding an innermembrane protein that sequesters AlgT/U, the alginate-specific sigma factor. AlgT/U release from the anti-sigma factor MucA is orchestrated via a complex cascade called regulated intramembrane proteolysis. The goal of this study is to identify new players involved in the regulation of alginate production. METHODOLOGY Previously, a mutant with a second-site suppressor of alginate production (sap), sap27, was isolated from the constitutively Alg+ PDO300 that harbours the mucA22 allele. A cosmid from a P. aeruginosa minimum tiling path library was identified via en masse complementation of sap27. The cosmid was transposon mutagenized to map the contributing gene involved in the alginate production. The identified gene was sequenced in sap27 along with algT/U, mucA, algO and mucP. The role of the novel gene was explored using precise in-frame algO and algW deletion mutants of PAO1 and PDO300.Results/Key findings. The gene responsible for restoring the mucoid phenotype was mapped to lptD encoding an outer-membrane protein. However, the sequencing of sap27 revealed a mutation in algO, but not in lptD. In addition, we demonstrate that lipopolysaccharide transport protein D (LptD)-dependent alginate production requires AlgW in PAO1 and AlgO in PDO300. CONCLUSION LptD plays a specific role in alginate production. Our findings suggest that there are two pathways for the production of alginate in P. aeruginosa, one involving AlgW in the wild-type, and one involving AlgO in the mucA22 mutant.
Collapse
Affiliation(s)
- Sundar Pandey
- 1Department of Biological Sciences, College of Arts Sciences and Education, Florida International University, Miami, FL, USA
| | - Camila Delgado
- 2Department of Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,†Present address: Langone Medical Center, New York University School of Medicine, New York, USA
| | - Hansi Kumari
- 2Department of Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,3Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Laura Florez
- 2Department of Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Kalai Mathee
- 4Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,2Department of Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,3Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
36
|
Utari PD, Setroikromo R, Melgert BN, Quax WJ. PvdQ Quorum Quenching Acylase Attenuates Pseudomonas aeruginosa Virulence in a Mouse Model of Pulmonary Infection. Front Cell Infect Microbiol 2018; 8:119. [PMID: 29755959 PMCID: PMC5932173 DOI: 10.3389/fcimb.2018.00119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/03/2018] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is the predominant pathogen in pulmonary infections associated with cystic fibrosis. Quorum sensing (QS) systems regulate the production of virulence factors and play an important role in the establishment of successful P. aeruginosa infections. Inhibition of the QS system (termed quorum quenching) renders the bacteria avirulent thus serving as an alternative approach in the development of novel antibiotics. Quorum quenching in Gram negative bacteria can be achieved by preventing the accumulation of N-acyl homoserine lactone (AHL) signaling molecule via enzymatic degradation. Previous work by us has shown that PvdQ acylase hydrolyzes AHL signaling molecules irreversibly, thereby inhibiting QS in P. aeruginosa in vitro and in a Caenorhabditis elegans model of P. aeruginosa infection. The aim of the present study is to assess the therapeutic efficacy of intranasally instilled PvdQ acylase in a mouse model of pulmonary P. aeruginosa infection. First, we evaluated the deposition pattern of intranasally administered fluorochrome-tagged PvdQ (PvdQ-VT) in mice at different stages of pulmonary infection by in vivo imaging studies. Following intranasal instillation, PvdQ-VT could be traced in all lung lobes with 42 ± 7.5% of the delivered dose being deposited at 0 h post-bacterial-infection, and 34 ± 5.2% at 72 h post bacterial-infection. We then treated mice with PvdQ during lethal P. aeruginosa pulmonary infection and that resulted in a 5-fold reduction of lung bacterial load and a prolonged survival of the infected animals with the median survival time of 57 hin comparison to 42 h for the PBS-treated group. In a sublethal P. aeruginosa pulmonary infection, PvdQ treatment resulted in less lung inflammation as well as decrease of CXCL2 and TNF-α levels at 24 h post-bacterial-infection by 15 and 20%, respectively. In conclusion, our study has shown therapeutic efficacy of PvdQ acylase as a quorum quenching agent during P. aeruginosa infection.
Collapse
Affiliation(s)
- Putri D. Utari
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, Netherlands
| | - Barbro N. Melgert
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, Netherlands
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
37
|
Khedoe PPSJ, de Kleijn S, van Oeveren-Rietdijk AM, Plomp JJ, de Boer HC, van Pel M, Rensen PCN, Berbée JFP, Hiemstra PS. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development. PLoS One 2017; 12:e0183741. [PMID: 28910300 PMCID: PMC5598950 DOI: 10.1371/journal.pone.0183741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD), and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC) possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS)-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L) mice. METHODS Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study) or in week 14, 16, 18 and 20 (chronic study). Inflammatory parameters were measured in bronchoalveolar lavage (BAL) and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study. RESULTS In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment. CONCLUSION These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.
Collapse
Affiliation(s)
- P. Padmini S. J. Khedoe
- Dept. of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stan de Kleijn
- Dept. of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemarie M. van Oeveren-Rietdijk
- Dept. of Medicine, Div. of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap J. Plomp
- Dept. of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hetty C. de Boer
- Dept. of Medicine, Div. of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Melissa van Pel
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F. P. Berbée
- Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Dept. of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Farisa Banu S, Rubini D, Rakshitaa S, Chandrasekar K, Murugan R, Wilson A, Gowrishankar S, Pandian SK, Nithyanand P. Antivirulent Properties of Underexplored Cinnamomum tamala Essential Oil and Its Synergistic Effects with DNase against Pseudomonas aeruginosa Biofilms - An In Vitro Study. Front Microbiol 2017; 8:1144. [PMID: 28694794 PMCID: PMC5483474 DOI: 10.3389/fmicb.2017.01144] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a nosocomial pathogen colonizing patients with chronic infectious diseases and has gained resistance to all the known broad spectrum antibiotics available today. The present study showcases the antibiofilm potential of an essential oil (EO) from an underexplored Cinnamomum species namely, C. tamala, against P. aeruginosa biofilms. Furthermore, the synergistic effects of the EO along with a commercially available DNase (DNaseI) and a DNase (MBD) isolated from a marine bacterium were explored for its antibiofilm activity. The results showed that the synergized action has maximum efficacy in inhibiting young and preformed biofilms. The synergized effect of EO and DNaseI showed 70% inhibition against matured biofilms of P. aeruginosa. The EO from C. tamala also showed quorum sensing inhibitory potential as it could inhibit the swarming motility behavior of P. aeruginosa. The synergistic action of EO and DNases offers a novel alternate therapeutic strategy for combating P. aeruginosa biofilm associated infections.
Collapse
Affiliation(s)
- Sanaulla Farisa Banu
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - Durairajan Rubini
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - Sairam Rakshitaa
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - Kamaraj Chandrasekar
- Govind Ballabh Pant National Institute of Himalayan Environment and Sustainable DevelopmentAlmora, India
| | - Ramar Murugan
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - Aruni Wilson
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma LindaCA, United States
| | | | | | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India.,Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
39
|
New Mouse Model for Chronic Infections by Gram-Negative Bacteria Enabling the Study of Anti-Infective Efficacy and Host-Microbe Interactions. mBio 2017; 8:mBio.00140-17. [PMID: 28246361 PMCID: PMC5347345 DOI: 10.1128/mbio.00140-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Only a few, relatively cumbersome animal models enable long-term Gram-negative bacterial infections that mimic human situations, where untreated infections can last for weeks. Here, we describe a simple murine cutaneous abscess model that enables chronic or progressive infections, depending on the subcutaneously injected bacterial strain. In this model, Pseudomonas aeruginosa cystic fibrosis epidemic isolate LESB58 caused localized high-density skin and soft tissue infections and necrotic skin lesions for up to 10 days but did not disseminate in either CD-1 or C57BL/6 mice. The model was adapted for use with four major Gram-negative nosocomial pathogens, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, and Escherichia coli. This model enabled noninvasive imaging and tracking of lux-tagged bacteria, the influx of activated neutrophils, and production of reactive oxygen-nitrogen species at the infection site. Screening antimicrobials against high-density infections showed that local but not intravenous administration of gentamicin, ciprofloxacin, and meropenem significantly but incompletely reduced bacterial counts and superficial tissue dermonecrosis. Bacterial RNA isolated from the abscess tissue revealed that Pseudomonas genes involved in iron uptake, toxin production, surface lipopolysaccharide regulation, adherence, and lipase production were highly upregulated whereas phenazine production and expression of global activator gacA were downregulated. The model was validated for studying virulence using mutants of more-virulent P. aeruginosa strain PA14. Thus, mutants defective in flagella or motility, type III secretion, or siderophore biosynthesis were noninvasive and suppressed dermal necrosis in mice, while a strain with a mutation in the bfiS gene encoding a sensor kinase showed enhanced invasiveness and mortality in mice compared to controls infected with wild-type P. aeruginosa PA14. More than two-thirds of hospital infections are chronic or high-density biofilm infections and difficult to treat due to adaptive, multidrug resistance. Unfortunately, current models of chronic infection are technically challenging and difficult to track without sacrificing animals. Here we describe a model of chronic subcutaneous infection and abscess formation by medically important nosocomial Gram-negative pathogens that is simple and can be used for tracking infections by imaging, examining pathology and immune responses, testing antimicrobial treatments suitable for high-density bacterial infections, and studying virulence. We propose that this mouse model can be a game changer for modeling hard-to-treat Gram-negative bacterial chronic and skin infections.
Collapse
|
40
|
Interleukin-17 Is Required for Control of Chronic Lung Infection Caused by Pseudomonas aeruginosa. Infect Immun 2016; 84:3507-3516. [PMID: 27698020 PMCID: PMC5116727 DOI: 10.1128/iai.00717-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Chronic pulmonary infection with Pseudomonas aeruginosa is a feature of cystic fibrosis (CF) and other chronic lung diseases. Cytokines of the interleukin-17 (IL-17) family have been proposed as important in the host response to P. aeruginosa infection through their role in augmenting antibacterial immune responses, although their proinflammatory effect may contribute to lung damage that occurs as a result of chronic infection. We set out to explore the role of IL-17 in the host response to chronic P. aeruginosa infection. We used a murine model of chronic pulmonary infection with CF-related strains of P. aeruginosa. We demonstrate that IL-17 cytokine signaling is essential for mouse survival and prevention of chronic infection at 2 weeks postinoculation using two different P. aeruginosa strains. Following infection, there was a marked expansion of cells within mediastinal lymph nodes, comprised mainly of innate lymphoid cells (ILCs); ∼90% of IL-17-producing (IL-17+) cells had markers consistent with group 3 ILCs. A smaller percentage of IL-17+ cells had markers consistent with a B1 phenotype. In lung homogenates harvested 14 days following infection, there was a significant expansion of IL-17+ cells; about 50% of these were CD3+, split equally between CD4+ Th17 cells and γδ T cells, while the CD3− IL-17+ cells were almost exclusively group 3 ILCs. Further experiments with B cell-deficient mice showed that B cell production of IL-17 or natural antibodies did not provide any defense against chronic P. aeruginosa infection. Thus, IL-17 rather than antibody is a key element in host defense against chronic pulmonary infection with P. aeruginosa.
Collapse
|