1
|
Patel MA, Daley M, Van Nynatten LR, Slessarev M, Cepinskas G, Fraser DD. A reduced proteomic signature in critically ill Covid-19 patients determined with plasma antibody micro-array and machine learning. Clin Proteomics 2024; 21:33. [PMID: 38760690 PMCID: PMC11100131 DOI: 10.1186/s12014-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | | | - Marat Slessarev
- Medicine, Western University, London, ON, N6A 3K7, Canada
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada.
- Children's Health Research Institute, London, ON, N6C 4V3, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
2
|
Kumar A, Su Y, Sharma M, Singh S, Kim S, Peavey JJ, Suerken CK, Lockhart SN, Whitlow CT, Craft S, Hughes TM, Deep G. MicroRNA expression in extracellular vesicles as a novel blood-based biomarker for Alzheimer's disease. Alzheimers Dement 2023; 19:4952-4966. [PMID: 37071449 DOI: 10.1002/alz.13055] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION Brain cell-derived small extracellular vesicles (sEVs) in blood offer unique cellular and molecular information related to the onset and progression of Alzheimer's disease (AD). We simultaneously enriched six specific sEV subtypes from the plasma and analyzed a selected panel of microRNAs (miRNAs) in older adults with/without cognitive impairment. METHODS Total sEVs were isolated from the plasma of participants with normal cognition (CN; n = 11), mild cognitive impairment (MCI; n = 11), MCI conversion to AD dementia (MCI-AD; n = 6), and AD dementia (n = 11). Various brain cell-derived sEVs (from neurons, astrocytes, microglia, oligodendrocytes, pericytes, and endothelial cells) were enriched and analyzed for specific miRNAs. RESULTS miRNAs in sEV subtypes differentially expressed in MCI, MCI-AD, and AD dementia compared to the CN group clearly distinguished dementia status, with an area under the curve (AUC) > 0.90 and correlated with the temporal cortical region thickness on magnetic resonance imaging (MRI). DISCUSSION miRNA analyses in specific sEVs could serve as a novel blood-based molecular biomarker for AD. HIGHLIGHTS Multiple brain cell-derived small extracellular vesicles (sEVs) could be isolated simultaneously from blood. MicroRNA (miRNA) expression in sEVs could detect Alzheimer's disease (AD) with high specificity and sensitivity. miRNA expression in sEVs correlated with cortical region thickness on magnetic resonance imaging (MRI). Altered expression of miRNAs in sEVCD31 and sEVPDGFRβ suggested vascular dysfunction. miRNA expression in sEVs could predict the activation state of specific brain cell types.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Yixin Su
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sangeeta Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeremy J Peavey
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Cynthia K Suerken
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Samuel N Lockhart
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher T Whitlow
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Emerging Role of MicroRNA-30c in Neurological Disorders. Int J Mol Sci 2022; 24:ijms24010037. [PMID: 36613480 PMCID: PMC9819962 DOI: 10.3390/ijms24010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of small non-coding RNAs that negatively regulate the expression of target genes by interacting with 3' untranslated regions of target mRNAs to induce mRNA degradation and translational repression. The miR-30 family members are involved in the development of many tissues and organs and participate in the pathogenesis of human diseases. As a key member of the miR-30 family, miR-30c has been implicated in neurological disorders such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. Mechanistically, miR-30c may act as a multi-functional regulator of different pathogenic processes such as autophagy, apoptosis, endoplasmic reticulum stress, inflammation, oxidative stress, thrombosis, and neurovascular function, thereby contributing to different disease states. Here, we review and discuss the biogenesis, gene regulation, and the role and mechanisms of action of miR-30c in several neurological disorders and therapeutic potential in clinics.
Collapse
|
4
|
Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, Dissanayake AS, Rajapakse IH, Karunanayake P, Senarath U, Satharasinghe DA. Therapeutic Potential of miRNAs for Type 2 Diabetes Mellitus: An Overview. Epigenet Insights 2022; 15:25168657221130041. [PMID: 36262691 PMCID: PMC9575458 DOI: 10.1177/25168657221130041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNA(miRNA)s have been identified as an emerging class for therapeutic
interventions mainly due to their extracellularly stable presence in humans and
animals and their potential for horizontal transmission and action. However,
treating Type 2 diabetes mellitus using this technology has yet been in a
nascent state. MiRNAs play a significant role in the pathogenesis of Type 2
diabetes mellitus establishing the potential for utilizing miRNA-based
therapeutic interventions to treat the disease. Recently, the administration of
miRNA mimics or antimiRs in-vivo has resulted in positive modulation of glucose
and lipid metabolism. Further, several cell culture-based interventions have
suggested beta cell regeneration potential in miRNAs. Nevertheless, few such
miRNA-based therapeutic approaches have reached the clinical phase. Therefore,
future research contributions would identify the possibility of miRNA
therapeutics for tackling T2DM. This article briefly reported recent
developments on miRNA-based therapeutics for treating Type 2 Diabetes mellitus,
associated implications, gaps, and recommendations for future studies.
Collapse
Affiliation(s)
- PADS Palihaderu
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - BILM Mendis
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - JMKJK Premarathne
- Department of Livestock and Avian
Sciences, Faculty of Livestock, Fisheries, and Nutrition, Wayamba University of Sri
Lanka, Makandura, Gonawila (NWP), Sri Lanka
| | - WKRR Dias
- Department of North Indian Music,
Faculty of Music, University of the Visual and Performing Arts, Colombo, Sri
Lanka
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences,
Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang,
Selangor, Malaysia
| | - Wan Yong Ho
- Division of Biomedical Sciences,
Faculty of Medicine and Health Sciences, University of Nottingham (Malaysia Campus),
Semenyih, Malaysia
| | - AS Dissanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - IH Rajapakse
- Department of Psychiatry, Faculty of
Medicine, University of Ruhuna, Galle, Sri Lanka
| | - P Karunanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - U Senarath
- Department of Community Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - DA Satharasinghe
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka,DA Satharasinghe, Department of Basic
Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science,
University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
5
|
Kumar V, Kim SH, Bishayee K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci 2022; 23:ijms23179540. [PMID: 36076944 PMCID: PMC9455726 DOI: 10.3390/ijms23179540] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related dementia. The alteration in metabolic characteristics determines the prognosis. Patients at risk show reduced glucose uptake in the brain. Additionally, type 2 diabetes mellitus increases the risk of AD with increasing age. Therefore, changes in glucose uptake in the cerebral cortex may predict the histopathological diagnosis of AD. The shifts in glucose uptake and metabolism, insulin resistance, oxidative stress, and abnormal autophagy advance the pathogenesis of AD syndrome. Here, we summarize the role of altered glucose metabolism in type 2 diabetes for AD prognosis. Additionally, we discuss diagnosis and potential pharmacological interventions for glucose metabolism defects in AD to encourage the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - So-Hyeon Kim
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Kausik Bishayee
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: or
| |
Collapse
|
6
|
Xin X, Duan L, Yang H, Yu H, Bao Y, Jia D, Wu N, Qiao Y. miR-141-3p regulates saturated fatty acid-induced cardiomyocyte apoptosis through Notch1/PTEN/AKT pathway via targeting PSEN1. ENVIRONMENTAL TOXICOLOGY 2022; 37:741-753. [PMID: 34897970 DOI: 10.1002/tox.23439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
It has been reported that miR-141-3p levels are markedly upregulated in the cardiomyocytes of obese rats induced by a high-fat diet. However, the role of miR-141-3p in myocardial lipotoxicity remains elusive. In the present study, the role of miR-141-3p in lipotoxic injury of H9c2 cells induced by palmitic acid (PA) and its possible mechanisms were assessed. The results indicated that miR-141-3p was significantly upregulated in PA-induced cardiomyocytes. miR-141-3p inhibitor enhanced the cell viability, reduced the release of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and troponin I (CTN-I), decreased cell apoptosis rate, and repressed the activation of mitochondrial apoptosis pathway in PA-treated H9c2, whereas treatment with miR-141-3p mimics resulted in the opposite effects. Mechanistically, it was further revealed that miR-141-3p could specifically bind to presenilin 1 (PSEN1) 3'UTR, and upregulating miR-141-3p levels reduced the expression of PSEN1, thereby inhibiting the activation of the Notch1/PTEN/AKT pathway. Additionally, inhibition of Notch1/AKT signaling pathway by its inhibitor could abrogate the effect of miR-141-3p on mitochondrial-mediated apoptosis induced by PA. In conclusion, the present study demonstrates that miR-141-3p regulates saturated fatty acid-induced cardiomyocyte apoptosis through Notch1/PTEN/AKT pathway via targeting PSEN1, which gains a new insight into the mechanisms of myocardial lipotoxic injury.
Collapse
Affiliation(s)
- Xin Xin
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Lian Duan
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Huimin Yang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Hang Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Yandong Bao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Nan Wu
- The Central Laboratory, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Ying Qiao
- The Central Laboratory, The First Affiliated Hospital of China Medical University, Liaoning, China
| |
Collapse
|
7
|
You S, Zheng J, Chen Y, Huang H. Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:976465. [PMID: 36060972 PMCID: PMC9434279 DOI: 10.3389/fendo.2022.976465] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes mellitus(T2DM) is regarded as one of the most severe chronic metabolic diseases worldwide, which poses a great threat to human safety and health. The main feature of T2DM is the deterioration of pancreatic beta-cell function. More and more studies have shown that the decline of pancreatic beta-cell function in T2DM can be attributable to beta-cell apoptosis, but the exact mechanisms of beta-cell apoptosis in T2DM are not yet fully clarified. Therefore, in this review, we will focus on the current status and progress of research on the mechanism of pancreatic beta-cell apoptosis in T2DM, to provide new ideas for T2DM treatment strategies.
Collapse
Affiliation(s)
- SuFang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - JingYi Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - YuPing Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: HuiBin Huang,
| |
Collapse
|
8
|
Mechanisms of Beta-Cell Apoptosis in Type 2 Diabetes-Prone Situations and Potential Protection by GLP-1-Based Therapies. Int J Mol Sci 2021; 22:ijms22105303. [PMID: 34069914 PMCID: PMC8157542 DOI: 10.3390/ijms22105303] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by chronic hyperglycemia secondary to the decline of functional beta-cells and is usually accompanied by a reduced sensitivity to insulin. Whereas altered beta-cell function plays a key role in T2D onset, a decreased beta-cell mass was also reported to contribute to the pathophysiology of this metabolic disease. The decreased beta-cell mass in T2D is, at least in part, attributed to beta-cell apoptosis that is triggered by diabetogenic situations such as amyloid deposits, lipotoxicity and glucotoxicity. In this review, we discussed the molecular mechanisms involved in pancreatic beta-cell apoptosis under such diabetes-prone situations. Finally, we considered the molecular signaling pathways recruited by glucagon-like peptide-1-based therapies to potentially protect beta-cells from death under diabetogenic situations.
Collapse
|
9
|
Guo R, Yu Y, Zhang Y, Li Y, Chu X, Lu H, Sun C. Overexpression of miR-297b-5p protects against stearic acid-induced pancreatic β-cell apoptosis by targeting LATS2. Am J Physiol Endocrinol Metab 2020; 318:E430-E439. [PMID: 31961705 DOI: 10.1152/ajpendo.00302.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic exposure to high concentrations of stearic acid (C18:0) can result in β-cell dysfunction, leading to development of type 2 diabetes. However, the molecular mechanisms underlying the destructive effects of stearic acid on β-cells remain largely unknown. In this study, we aimed to investigate the role of miR-297b-5p on stearic acid-induced β-cell apoptosis. Differential expression of microRNAs (miRNAs) was assessed in a β-TC6 cell line exposed to stearic acid, palmitic acid, or a normal culture medium by high-throughput sequencing. The apoptosis rate was measured by flow cytometry after miR-297b-5p mimic/inhibitor transfection, and large-tumor suppressor kinase 2 (LATS2) was identified as a target of miR-297b-5p using a luciferase activity assay. In vivo, C57BL/6 mice were fed with normal and high-stearic-acid diet, respectively. Mouse islets were used for similar identification of miR-297b-5p and Lats2 in β-TC6 cell. We selected two differentially expressed miRNAs in stearic acid compared with those in the palmitic acid and control groups. miR-297b-5p expression was significantly lower in β-TC6 cells and mouse islets in stearic acid than in control group. Upregulation of miR-297b-5p alleviated the stearic acid-induced cell apoptosis and reduction in insulin secretion by inhibiting Lats2 expression in vitro. Meanwhile, silencing Lats2 significantly reversed the stearic acid-stimulated β-cell dysfunction in both β-TC6 cells and islets. Our findings indicate a suppressive role for miR-297b-5p in stearic acid-induced β-cell apoptosis, which may reveal a potential target for the treatment of β-cell dysfunction in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Rui Guo
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Yue Yu
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Yunjin Zhang
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Yinling Li
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Xia Chu
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Huimin Lu
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Sun T, Han X. Death versus dedifferentiation: The molecular bases of beta cell mass reduction in type 2 diabetes. Semin Cell Dev Biol 2019; 103:76-82. [PMID: 31831356 DOI: 10.1016/j.semcdb.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is currently affecting more than 425 million people worldwide, among which over 90 % of the cases belong to type 2 diabetes. The number is growing quickly every year. Together with its many complications, the disease is causing tremendous social and economic burden and is classified as one of the leading causes of high morbidity and mortality rate. Residing in the islets of Langerhans, pancreatic beta cell serves as a central mediator in glucose homeostasis through secreting insulin, the only hormone that could reduce glucose level in the body, into the blood. Abnormality in pancreatic beta cell is generally considered as the fundamental reason which is responsible for the development of diabetes. Evidence shows that beta cell mass is greatly reduced in the biopsy of type 2 diabetic patients. Since then, large amount of research was conducted in order to decipher the molecular mechanisms behind the phenotype above and enormous progression has been made. The aim of this review is to summarize and provide a rudimentary molecular road map for beta cell mass reduction from the aspects of apoptosis and dedifferentiation based on recent research advances. Hopefully, this review could give the community some enlightenment for the next-step research and, more importantly, could provide avenues for developing novel and effective therapies to restrain or reverse beta cell loss in type 2 diabetes in the clinic.
Collapse
Affiliation(s)
- Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211100, People's Republic of China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211100, People's Republic of China.
| |
Collapse
|
11
|
Wang L, Zhao S, Yu M. Mechanism of Low Expression of miR-30a-5p on Epithelial-Mesenchymal Transition and Metastasis in Ovarian Cancer. DNA Cell Biol 2019; 38:341-351. [PMID: 30839226 DOI: 10.1089/dna.2018.4396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metastasis of ovarian cancer is regulated by microRNAs. This study focused on the effects of miR-30a-5p on ovarian cancer migration and invasion. Our results showed that the miR-30a-5p and mucin type O-glycan biosynthesis are closely related to ovarian cancer, and that miR-30a-5p was downregulated in ovarian cancer cells. miR-30a-5p overexpression reduced cell viability and inhibited migration and invasion in HO-8910 and HO-8910PM cells. S phase kinase-associated protein 2 (SKP2), B cell lymphoma 9 (BCL9), and NOTHC1 are direct target genes of miR-30a-5p. MTDH, SKP2, BCL9, and NOTCH1 genes were overexpressed in ovarian cancer cells, and they are direct target genes of miR-30a-5p. miR-30a-5p overexpression inhibited epithelial-mesenchymal transition (EMT) process, while upregulation of SKP2, BCL9, and NOTCH1 gene expression levels reduced the inhibition of EMT process by miR-30a-5p. miR-30a-5p was lowly expressed in ovarian cancer, and such a phenomenon is related to ovarian cancer metastasis. miR-30a-5p might inhibit the migration and invasion of ovarian cancer cells by downregulating the expression of SKP2, BCL9, and NOTCH1 genes.
Collapse
Affiliation(s)
- Lei Wang
- The Second Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shanshan Zhao
- The Second Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Mingxin Yu
- The Second Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
12
|
Liu Y, Dong J, Ren B. MicroRNA-182-5p contributes to the protective effects of thrombospondin 1 against lipotoxicity in INS-1 cells. Exp Ther Med 2018; 16:5272-5279. [PMID: 30546417 DOI: 10.3892/etm.2018.6883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022] Open
Abstract
The dysfunction of beta cells serves an important role in the pathogenesis of type 2 diabetes mellitus (T2DM). An improved understanding of the molecular mechanisms underlying beta cell mass and failure will be useful for identifying novel approaches toward preventing and treating this disease. Recent studies have indicated that free fatty acids (FFAs) can cause beta cell dysfunction. In the present study, palmitate (Pal) was used as a FFA and its functions on cell viability and apoptosis were detected. MTT assay and flow cytometry were used and the results revealed that incubation of INS-1 cells with Pal significantly decreased cell viability and increased cell apoptosis. However, a co-incubation with thrombospondin 1 (THBS-1) protected the cells against Pal-induced toxicity. Numerous studies have demonstrated that microRNAs (miRs) are involved in fatty acid-induced beta cell dysfunction. Various studies have reported that miR-182-5p is associated with a number of diseases, including cancer, heart disease, and leukemia. However, to the best of our knowledge miR-182-5p has never been reported to be associated with diabetes. In the present study, miR-182-5p, which is predicted to target the 3'-untranslated region (UTR) of THBS-1, was detected using reverse transcription-quantitative polymerase chain reaction in INS-1 cells in response to Pal. miR-182-5p was significantly increased in Pal-treated cells compared with the control cells. Furthermore, miR-182-5p mimics significantly decreased cell viability and increased Pal-induced apoptosis in INS-1 cells. However, cell viability was increased and Pal-induced apoptosis was decreased in cells that were treated with miR-182-5p inhibitors. The present findings also revealed that overexpression of THBS-1 counteracted the effect of miR-182-5p on cell viability and apoptosis. These results suggested that miR-182-5p is involved in the mechanism of THBS 1 on the modulation of beta cell survival.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Laboratory of Birth Defects and Related Disease of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Jiayue Dong
- Department of Traditional Chinese Medicine, College of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Bo Ren
- Department of Traditional Chinese Medicine, College of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| |
Collapse
|
13
|
Lv Z, Hu L, Yang Y, Zhang K, Sun Z, Zhang J, Zhang L, Hao Y. Comparative study of microRNA profiling in one Chinese Family with PSEN1 G378E mutation. Metab Brain Dis 2018; 33:1711-1720. [PMID: 29961914 DOI: 10.1007/s11011-018-0279-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/22/2018] [Indexed: 12/24/2022]
Abstract
MicroRNAs are not widely studied in familial Alzheimer's disease cases, whether the microRNA profilings in familial Alzheimer's disease patients are similar to the sporadic AD patients is not known. This study aims to investigate the differential expression of microRNAs (miRNAs) associated with early-onset familial Alzheimer's disease (EO-FAD) in a Chinese family. We performed the gene mutation analysis in a family clinically diagnosed of EO-FAD. Micro-arrays were used to profile the miRNAs in cerebrospinal fluid of 2 affected members, 2 unaffected carriers and 2 mutation negative controls. The clinical presentation confirmed the EO-FAD diagnosis, and a recurrent mutation of the PSEN1 p.G378E was found in the family. The result showed that in the miRNAs expression profile, a total of 166 miRNAs were up-regulated and 3 miRNAs were down-regulated in the affected individuals compared with mutation negative individuals. But after Benjamini Hochberg FDR correction, only 25 miRNAs were significantly up-regulated and no miRNA was down-regulated, the levels of miR-30a-5p, miR-4758-3p and let-7a-3p were elevated significantly. Compared with mutation negative controls, 21 miRNAs were up-regulated and 18 microRNAs were down-regulated in the unaffected mutation carriers, after Benjamini Hochberg FDR correction, miR-345-5p was up-regulated and miR-4795-3p was down-regulated in the unaffected mutation carriers. And there was no difference between the affected members and unaffected mutation carriers. GO database showed that the top biological processes affected by the predicted target genes are nucleic acid binding transcription factor activity and transcription factor activity (sequence-specific DNA binding) (GO:0001071 and GO:0003700). The result of KEGG pathways showed 64 pathways were implicated in the regulatory network. The present study identified the miRNA profiling of Chinese siblings with G378E mutation in the PSEN1. Compared with mutation negative controls, the levels of 25 miRNAs including miR-30a-5p, miR-4758-3p and let-7a-3p were elevated significantly in the affected members, miR-345-5p was up-regulated and miR-4795-3p was down-regulated in the unaffected mutation carriers. Our study showed the microRNA profilings in the cases of a EO-FAD family with PSEN1 p.G378E mutation, but because of the individuals in the family was small, the results in other types of EO-FAD still need further studied.
Collapse
Affiliation(s)
- Zhanyun Lv
- Department of Neurology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China
| | - Liangchen Hu
- Department of Neurology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China
| | - Yan Yang
- Department of Neurology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China
| | - Kui Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China
| | - Zuzhen Sun
- Department of Neurology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China
| | - Jing Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China
| | - Lipan Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China
| | - Yanlei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China.
| |
Collapse
|
14
|
Genome-wide Profiling of Urinary Extracellular Vesicle microRNAs Associated With Diabetic Nephropathy in Type 1 Diabetes. Kidney Int Rep 2017; 3:555-572. [PMID: 29854963 PMCID: PMC5976846 DOI: 10.1016/j.ekir.2017.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Diabetic nephropathy (DN) is a form of progressive kidney disease that often leads to end-stage renal disease (ESRD). It is initiated by microvascular complications due to diabetes. Although microalbuminuria (MA) is the earliest clinical indication of DN among patients with type 1 diabetes (T1D), it lacks the sensitivity and specificity to detect the early onset of DN. Recently, microRNAs (miRNAs) have emerged as critical regulators in diabetes as well as various forms of kidney disease, including renal fibrosis, acute kidney injury, and progressive kidney disease. Additionally, circulating extracellular miRNAs, especially miRNAs packaged in extracellular vesicles (EVs), have garnered significant attention as potential noninvasive biomarkers for various diseases and health conditions. Methods As part of the University of Pittsburgh Epidemiology of Diabetes Complications (EDC) study, urine was collected from individuals with T1D with various grades of DN or MA (normal, overt, intermittent, and persistent) over a decade at prespecified intervals. We isolated EVs from urine and analyzed the small-RNA using NextGen sequencing. Results We identified a set of miRNAs that are enriched in urinary EVs compared with EV-depleted samples, and identified a number of miRNAs showing concentration changes associated with DN occurrence, MA status, and other variables, such as hemoglobin A1c levels. Conclusion Many of the miRNAs associated with DN occurrence or MA status directly target pathways associated with renal fibrosis (including transforming growth factor-β and phosphatase and tensin homolog), which is one of the major contributors to the pathology of DN. These miRNAs are potential biomarkers for DN and MA.
Collapse
|