1
|
Leclerc QJ, Duval A, Guillemot D, Opatowski L, Temime L. Using contact network dynamics to implement efficient interventions against pathogen spread in hospital settings: A modelling study. PLoS Med 2024; 21:e1004433. [PMID: 39078828 PMCID: PMC11341093 DOI: 10.1371/journal.pmed.1004433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/22/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Long-term care facilities (LTCFs) are hotspots for pathogen transmission. Infection control interventions are essential, but the high density and heterogeneity of interindividual contacts within LTCF may hinder their efficacy. Here, we explore how the patient-staff contact structure may inform effective intervention implementation. METHODS AND FINDINGS Using an individual-based model (IBM), we reproduced methicillin-resistant Staphylococcus aureus colonisation transmission dynamics over a detailed contact network recorded within a French LTCF of 327 patients and 263 staff over 3 months. Simulated baseline cumulative colonisation incidence was 21 patients (prediction interval: 11, 31) and 35 staff (prediction interval: 19, 54). We examined the potential impact of 3 types of interventions against transmission (reallocation reducing the number of unique contacts per staff, reinforced contact precautions, and hypothetical vaccination protecting against acquisition), targeted towards specific populations. All 3 interventions were effective when applied to all nurses or healthcare assistants (median reduction in MRSA colonisation incidence up to 35%), but the benefit did not exceed 8% when targeting any other single staff category. We identified "supercontactor" individuals with most contacts ("frequency-based," overrepresented among nurses, porters, and rehabilitation staff) or with the longest cumulative time spent in contact ("duration-based," overrepresented among healthcare assistants and patients in elderly care or persistent vegetative state (PVS)). Targeting supercontactors enhanced interventions against pathogen spread in the LTCF. With contact precautions, targeting frequency-based staff supercontactors led to the highest incidence reduction (20%, 95% CI: 19, 21). Vaccinating a mix of frequency- and duration-based staff supercontactors led to a higher reduction (23%, 95% CI: 22, 24) than all other approaches. Although based on data from a single LTCF, when varying epidemiological parameters to extend to other pathogens, our results suggest that targeting supercontactors is always the most effective strategy, indicating this approach could be applied to prevent transmission of other nosocomial pathogens. CONCLUSIONS By characterising the contact structure in hospital settings and identifying the categories of staff and patients more likely to be supercontactors, with either more or longer contacts than others, interventions against nosocomial spread could be more effective. We find that the most efficient implementation strategy depends on the intervention (reallocation, contact precautions, vaccination) and target population (staff, patients, supercontactors). Importantly, both staff and patients may be supercontactors, highlighting the importance of including patients in measures to prevent pathogen transmission in LTCF.
Collapse
Affiliation(s)
- Quentin J. Leclerc
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Paris, France
- INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018, CESP, Versailles, France
- Laboratoire Modélisation, Epidémiologie et Surveillance des Risques Sanitaires, Conservatoire National des Arts et Métiers, Paris, France
| | - Audrey Duval
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Paris, France
- INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018, CESP, Versailles, France
- Laboratoire Modélisation, Epidémiologie et Surveillance des Risques Sanitaires, Conservatoire National des Arts et Métiers, Paris, France
| | - Didier Guillemot
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Paris, France
- INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018, CESP, Versailles, France
- AP-HP, Paris Saclay, Department of Public Health, Medical Information, Clinical Research, Garches, France
| | - Lulla Opatowski
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Paris, France
- INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018, CESP, Versailles, France
| | - Laura Temime
- Laboratoire Modélisation, Epidémiologie et Surveillance des Risques Sanitaires, Conservatoire National des Arts et Métiers, Paris, France
- Institut Pasteur, Conservatoire National des Arts et Métiers, Unité PACRI, Paris, France
| |
Collapse
|
2
|
Gustin MP, Pujo-Menjouet L, Vanhems P. Influenza transmissibility among patients and health-care professionals in a geriatric short-stay unit using individual contact data. Sci Rep 2023; 13:10547. [PMID: 37386032 PMCID: PMC10310843 DOI: 10.1038/s41598-023-36908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Detailed information are lacking on influenza transmissibility in hospital although clusters are regularly reported. In this pilot study, our goal was to estimate the transmission rate of H3N2 2012-influenza, among patients and health care professionals in a short-term Acute Care for the Elderly Unit by using a stochastic approach and a simple susceptible-exposed-infectious-removed model. Transmission parameters were derived from documented individual contact data collected by Radio Frequency IDentification technology at the epidemic peak. From our model, nurses appeared to transmit infection to a patient more frequently with a transmission rate of 1.04 per day on average compared to 0.38 from medical doctors. This transmission rate was 0.34 between nurses. These results, even obtained in this specific context, might give a relevant insight of the influenza dynamics in hospitals and will help to improve and to target control measures for preventing nosocomial transmission of influenza. The investigation of nosocomial transmission of SARS-COV-2 might gain from similar approaches.
Collapse
Affiliation(s)
- Marie-Paule Gustin
- Department of Public Health, Institute of Pharmacy, CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR 5308, ENS Lyon, Equipe PHIE3D, University Lyon, University Claude Bernard Lyon 1, 7 Rue Guillaume Paradin, 69372, Lyon, France
| | - Laurent Pujo-Menjouet
- University of Lyon, University Claude Bernard Lyon 1, CNRS UMR5208, Inria, Dracula Team, Institut Camille Jordan, 69622, Villeurbanne, France.
| | - Philippe Vanhems
- Hospices Civils de Lyon, Service Hygiène, CIRI-Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| |
Collapse
|
3
|
Measuring dynamic social contacts in a rehabilitation hospital: effect of wards, patient and staff characteristics. Sci Rep 2018; 8:1686. [PMID: 29374222 PMCID: PMC5786108 DOI: 10.1038/s41598-018-20008-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 01/10/2018] [Indexed: 11/21/2022] Open
Abstract
Understanding transmission routes of hospital-acquired infections (HAI) is key to improve their control. In this context, describing and analyzing dynamic inter-individual contact patterns in hospitals is essential. In this study, we used wearable sensors to detect Close Proximity Interactions (CPIs) among patients and hospital staff in a 200-bed long-term care facility over 4 months. First, the dynamic CPI data was described in terms of contact frequency and duration per individual status or activity and per ward. Second, we investigated the individual factors associated with high contact frequency or duration using generalized linear mixed-effect models to account for inter-ward heterogeneity. Hospital porters and physicians had the highest daily number of distinct contacts, making them more likely to disseminate HAI among individuals. Conversely, contact duration was highest between patients, with potential implications in terms of HAI acquisition risk. Contact patterns differed among hospital wards, reflecting varying care patterns depending on reason for hospitalization, with more frequent contacts in neurologic wards and fewer, longer contacts in geriatric wards. This study is the first to report proximity-sensing data informing on inter-individual contacts in long-term care settings. Our results should help better understand HAI spread, parameterize future mathematical models, and propose efficient control strategies.
Collapse
|
4
|
Mathematical models of infection transmission in healthcare settings: recent advances from the use of network structured data. Curr Opin Infect Dis 2018; 30:410-418. [PMID: 28570284 DOI: 10.1097/qco.0000000000000390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Mathematical modeling approaches have brought important contributions to the study of pathogen spread in healthcare settings over the last 20 years. Here, we conduct a comprehensive systematic review of mathematical models of disease transmission in healthcare settings and assess the application of contact and patient transfer network data over time and their impact on our understanding of transmission dynamics of infections. RECENT FINDINGS Recently, with the increasing availability of data on the structure of interindividual and interinstitution networks, models incorporating this type of information have been proposed, with the aim of providing more realistic predictions of disease transmission in healthcare settings. Models incorporating realistic data on individual or facility networks often remain limited to a few settings and a few pathogens (mostly methicillin-resistant Staphylococcus aureus). SUMMARY To respond to the objectives of creating improved infection prevention and control measures and better understanding of healthcare-associated infections transmission dynamics, further innovations in data collection and parameter estimation in modeling is required.
Collapse
|