1
|
Maimó-Barceló A, Martín-Saiz L, Fernández JA, Pérez-Romero K, Garfias-Arjona S, Lara-Almúnia M, Piérola-Lopetegui J, Bestard-Escalas J, Barceló-Coblijn G. Polyunsaturated Fatty Acid-Enriched Lipid Fingerprint of Glioblastoma Proliferative Regions Is Differentially Regulated According to Glioblastoma Molecular Subtype. Int J Mol Sci 2022; 23:ijms23062949. [PMID: 35328369 PMCID: PMC8949316 DOI: 10.3390/ijms23062949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) represents one of the deadliest tumors owing to a lack of effective treatments. The adverse outcomes are worsened by high rates of treatment discontinuation, caused by the severe side effects of temozolomide (TMZ), the reference treatment. Therefore, understanding TMZ’s effects on GBM and healthy brain tissue could reveal new approaches to address chemotherapy side effects. In this context, we have previously demonstrated the membrane lipidome is highly cell type-specific and very sensitive to pathophysiological states. However, little remains known as to how membrane lipids participate in GBM onset and progression. Hence, we employed an ex vivo model to assess the impact of TMZ treatment on healthy and GBM lipidome, which was established through imaging mass spectrometry techniques. This approach revealed that bioactive lipid metabolic hubs (phosphatidylinositol and phosphatidylethanolamine plasmalogen species) were altered in healthy brain tissue treated with TMZ. To better understand these changes, we interrogated RNA expression and DNA methylation datasets of the Cancer Genome Atlas database. The results enabled GBM subtypes and patient survival to be linked with the expression of enzymes accounting for the observed lipidome, thus proving that exploring the lipid changes could reveal promising therapeutic approaches for GBM, and ways to ameliorate TMZ side effects.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.M.-S.); (J.A.F.)
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.M.-S.); (J.A.F.)
| | - Karim Pérez-Romero
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Santiago Garfias-Arjona
- Quirónsalud Medical Center, 07300 Inca, Spain;
- Son Verí Quirónsalud Hospital, Balearic Islands, 07609 Son Veri Nou, Spain
- Hospital de Llevant, 07680 Porto Cristo, Spain
| | - Mónica Lara-Almúnia
- Department of Neurosurgery, Jimenez Diaz Foundation University Hospital, Reyes Catolicos Av., No 2, 28040 Madrid, Spain;
- Ruber International Hospital, Maso St., No 38, 28034 Madrid, Spain
| | - Javier Piérola-Lopetegui
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Joan Bestard-Escalas
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
- Correspondence: (J.B.-E.); (G.B.-C.)
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
- Correspondence: (J.B.-E.); (G.B.-C.)
| |
Collapse
|
2
|
Kawai T, Matsumori N, Otsuka K. Recent advances in microscale separation techniques for lipidome analysis. Analyst 2021; 146:7418-7430. [PMID: 34787600 DOI: 10.1039/d1an00967b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review paper highlights the recent research on liquid-phase microscale separation techniques for lipidome analysis over the last 10 years, mainly focusing on capillary liquid chromatography (LC) and capillary electrophoresis (CE) coupled with mass spectrometry (MS). Lipids are one of the most important classes of biomolecules which are involved in the cell membrane, energy storage, signal transduction, and so on. Since lipids include a variety of hydrophobic compounds including numerous structural isomers, lipidomes are a challenging target in bioanalytical chemistry. MS is the key technology that comprehensively identifies lipids; however, separation techniques like LC and CE are necessary prior to MS detection in order to avoid ionization suppression and resolve structural isomers. Separation techniques using μm-scale columns, such as a fused silica capillary and microfluidic device, are effective at realizing high-resolution separation. Microscale separation usually employs a nL-scale flow, which is also compatible with nanoelectrospray ionization-MS that achieves high sensitivity. Owing to such analytical advantages, microscale separation techniques like capillary/microchip LC and CE have been employed for more than 100 lipidome studies. Such techniques are still being evolved and achieving further higher resolution and wider coverage of lipidomes. Therefore, microscale separation techniques are promising as the fundamental technology in next-generation lipidome analysis.
Collapse
Affiliation(s)
- Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
3
|
Dahdah N, Gonzalez-Franquesa A, Samino S, Gama-Perez P, Herrero L, Perales JC, Yanes O, Malagón MDM, Garcia-Roves PM. Effects of Lifestyle Intervention in Tissue-Specific Lipidomic Profile of Formerly Obese Mice. Int J Mol Sci 2021; 22:3694. [PMID: 33916315 PMCID: PMC8037078 DOI: 10.3390/ijms22073694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/06/2023] Open
Abstract
Lipids are highly diverse in their composition, properties and distribution in different biological entities. We aim to establish the lipidomes of several insulin-sensitive tissues and to test their plasticity when divergent feeding regimens and lifestyles are imposed. Here, we report a proton nuclear magnetic resonance (1H-NMR) study of lipid abundance across 4 tissues of C57Bl6J male mice that includes the changes in the lipid profile after every lifestyle intervention. Every tissue analysed presented a specific lipid profile irrespective of interventions. Glycerolipids and fatty acids were most abundant in epididymal white adipose tissue (eWAT) followed by liver, whereas sterol lipids and phosphoglycerolipids were highly enriched in hypothalamus, and gastrocnemius had the lowest content in all lipid species compared to the other tissues. Both when subjected to a high-fat diet (HFD) and after a subsequent lifestyle intervention (INT), the lipidome of hypothalamus showed no changes. Gastrocnemius and liver revealed a pattern of increase in content in many lipid species after HFD followed by a regression to basal levels after INT, while eWAT lipidome was affected mainly by the fat composition of the administered diets and not their caloric density. Thus, the present study demonstrates a unique lipidome for each tissue modulated by caloric intake and dietary composition.
Collapse
MESH Headings
- Adipose Tissue, White/metabolism
- Animals
- Caloric Restriction
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Healthy Lifestyle
- Hypothalamus/metabolism
- Lipidomics
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Obesity/complications
- Obesity/diet therapy
- Obesity/metabolism
- Physical Conditioning, Animal
- Mice
Collapse
Affiliation(s)
- Norma Dahdah
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
| | - Alba Gonzalez-Franquesa
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sara Samino
- Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, 43004 Tarragona, Spain; (S.S.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pau Gama-Perez
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - José Carlos Perales
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, 43004 Tarragona, Spain; (S.S.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Del Mar Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Cordoba, Spain
| | - Pablo Miguel Garcia-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| |
Collapse
|
4
|
Sanders KL, Edwards JL. Nano-liquid chromatography-mass spectrometry and recent applications in omics investigations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4404-4417. [PMID: 32901622 PMCID: PMC7530103 DOI: 10.1039/d0ay01194k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid chromatography coupled to mass spectrometry (LC-MS) is one of the most powerful tools in identifying and quantitating molecular species. Decreasing column diameter from the millimeter to micrometer scale is now a well-developed method which allows for sample limited analysis. Specific fabrication of capillary columns is required for proper implementation and optimization when working in the nanoflow regime. Coupling the capillary column to the mass spectrometer for electrospray ionization (ESI) requires reduction of the subsequent emitter tip. Reduction of column diameter to capillary scale can produce improved chromatographic efficiency and the reduction of emitter tip size increased sensitivity of the electrospray process. This improved sensitivity and ionization efficiency is valuable in analysis of precious biological samples where analytes vary in size, ion affinity, and concentration. In this review we will discuss common approaches and challenges in implementing nLC-MS methods and how the advantages can be leveraged to investigate a wide range of biomolecules.
Collapse
|
5
|
Fincher JA, Dyer JE, Korte AR, Yadavilli S, Morris NJ, Vertes A. Matrix‐free mass spectrometry imaging of mouse brain tissue sections on silicon nanopost arrays. J Comp Neurol 2018; 527:2101-2121. [DOI: 10.1002/cne.24566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jarod A. Fincher
- George Washington University Washington District of Columbia 20052
| | | | - Andrew R. Korte
- George Washington University Washington District of Columbia 20052
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine Children's National Medical Center Washington District of Columbia 20010
| | | | - Akos Vertes
- George Washington University Washington District of Columbia 20052
| |
Collapse
|
6
|
Byeon SK, Park SH, Lee JC, Hwang S, Ku CR, Shin DY, Yoon JS, Lee EJ, Moon MH. Lipidomic differentiation of Graves' ophthalmopathy in plasma and urine from Graves' disease patients. Anal Bioanal Chem 2018; 410:7121-7133. [PMID: 30135996 DOI: 10.1007/s00216-018-1313-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
Approximately 50% of patients with Graves' disease (GD) develop retracted eyelids with bulging eyes, known as Graves' ophthalmopathy (GO). However, no simple diagnostic blood marker for distinguishing GO from GD has been developed yet. The objective of this study was to conduct comprehensive profiling of lipids using plasma and urine samples from patients with GD and GO undergoing antithyroid therapy using nanoflow ultrahigh performance liquid chromatography electrospray ionization tandem mass spectrometry. Plasma (n = 86) and urine (n = 75) samples were collected from 23 patients with GD without GO, 31 patients with GO, and 32 healthy controls. Among 389 plasma and 273 urinary lipids that were structurally identified, 281 plasma and 191 urinary lipids were quantified in selected reaction monitoring mode. High-abundance lipids were significantly altered, indicating that the development of GD is evidently related to altered lipid metabolism in both plasma and urine. Several urinary lysophosphatidylcholine species were found to be increased (3- to 10-fold) in both GD and GO. While the overall lipid profiles between GD and GO were similar, significant changes (area under receiver operating curve > 0.8) in GO vs. GD were observed in a few lipid profiles: 58:7-TG and (16:1,18:0)-DG from plasma, 16:1-PC and 50:1-TG from urine, and d18:1-S1P from both plasma and urine samples. An altered metabolism of lipids associated with the additional development of ophthalmopathy was confirmed with the discovery of several candidate markers. These can be suggested as candidate markers for differentiating the state of GO and GD patients based on plasma or urinary lipidomic analysis. Graphical abstract.
Collapse
Affiliation(s)
- Seul Kee Byeon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Se Hee Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Gyeonggi, 10444, South Korea.,Graduate School, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jong Cheol Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sena Hwang
- Department of Internal Medicine, Chaum Life Center, CHA University School of Medicine, Seoul, 06062, South Korea
| | - Cheol Ryong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Dong Yeob Shin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Eun Jig Lee
- Graduate School, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Institute of Endocrine Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
7
|
Rustam YH, Reid GE. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal Chem 2017; 90:374-397. [PMID: 29166560 DOI: 10.1021/acs.analchem.7b04836] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yepy H Rustam
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Gavin E Reid
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia.,School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Yan F, Wen Z, Wang R, Luo W, Du Y, Wang W, Chen X. Identification of the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipidomics. BMC Pulm Med 2017; 17:174. [PMID: 29212488 PMCID: PMC5719761 DOI: 10.1186/s12890-017-0513-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 11/20/2017] [Indexed: 01/16/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an irreversible interstitial pulmonary disease featured by high mortality, chronic and progressive course, and poor prognosis with unclear etiology. Currently, more studies have been focusing on identifying biomarkers to predict the progression of IPF, such as genes, proteins, and lipids. Lipids comprise diverse classes of molecules and play a critical role in cellular energy storage, structure, and signaling. The role of lipids in respiratory diseases, including cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD) has been investigated intensely in the recent years. The human serum lipid profiles in IPF patients however, have not been thoroughly understood and it will be very helpful if there are available molecular biomarkers, which can be used to monitor the disease progression or provide prognostic information for IPF disease. Methods In this study, we performed the ultraperformance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) to detect the lipid variation and identify biomarker in plasma of IPF patients. The plasma were from 22 IPF patients before received treatment and 18 controls. Results A total of 507 individual blood lipid species were determined with lipidomics from the 40 plasma samples including 20 types of fatty acid, 159 types of glycerolipids, 221 types of glycerophospholipids, 47 types of sphingolipids, 46 types of sterol lipids, 7 types of prenol lipids, 3 types of saccharolipids, and 4 types of polyketides. By comparing the variations in the lipid metabolite levels in IPF patients, a total of 62 unique lipids were identified by statistical analysis including 24 kinds of glycerophoslipids, 30 kinds of glycerolipids, 3 kinds of sterol lipids, 4 kinds of sphingolipids and 1 kind of fatty acids. Finally, 6 out of 62 discriminating lipids were selected as the potential biomarkers, which are able to differentiate between IPF disease and controls with ROC analysis. Conclusions Our results provided vital information regarding lipid metabolism in IPF patients and more importantly, a few potentially promising biomarkers were firstly identified which may have a predictive role in monitoring and diagnosing IPF disease. Electronic supplementary material The online version of this article (10.1186/s12890-017-0513-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feng Yan
- Department of Respiration, First Hospital of Tsinghua University, Beijing, 100016, China.
| | - Zhensong Wen
- Division of Research and Education, First Hospital of Tsinghua University, Beijing, 100016, China
| | - Rui Wang
- Department of Neurology, The LongFu hospital of Beijing, Beijing, 100010, China
| | - Wenling Luo
- Department of Respiration, First Hospital of Tsinghua University, Beijing, 100016, China
| | - Yufeng Du
- Department of Gerontology, The First Hospital of ShanXi Medical University, Taiyuan, ShanXi, 030001, China
| | - Wenjun Wang
- Beijing Qiji Biotechnology Company, Beijing, 100193, China
| | - Xianyang Chen
- Beijing Qiji Biotechnology Company, Beijing, 100193, China
| |
Collapse
|
9
|
Park SM, Byeon SK, Lee H, Sung H, Kim IY, Seong JK, Moon MH. Lipidomic analysis of skeletal muscle tissues of p53 knockout mice by nUPLC-ESI-MS/MS. Sci Rep 2017; 7:3302. [PMID: 28607433 PMCID: PMC5468235 DOI: 10.1038/s41598-017-02065-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022] Open
Abstract
Tumour suppressor p53 is known to be associated with the maintenance of mitochondrial functional properties in the skeletal muscles. As deactivation or mutation of p53 can affect the synthesis of lipids, investigating the relationship between p53-related energy generation metabolism and perturbation of lipid profile is critical. In this study, 329 lipid species (among 412 identified species) in two different skeletal muscle tissues (the gastrocnemius and soleus) from p53 knockout (KO) mice were quantitatively analysed using nanoflow ultrahigh performance liquid chromatography tandem mass spectrometry (nUPLC-MS/MS). Overall, lipids from the soleus tissues were more affected by p53 KO than those from the gastrocnemius in most lipid profiles. In p53 KO, lysophosphatidylcholine (LPC), lysophosphatidylserine (LPS), phosphatidic acid (PA), sphingomyelin (SM), and triacylglycerol (TAG), including 6 TAG (44:2, 46:0, 58:5, 58:8, 58:9, and 50:0), were significantly increased (p < 0.05) by 1.4–2-fold only in the soleus tissue. Overall monohexosylceramide (MHC) levels, including those of 3 MHC species (d18:0/24:0, d18:1/22:0, and d18:1/24:0), were significantly increased (p < 0.05) by 2–4 fold, only in the gastrocnemius tissue. The results suggest that lipid profiles are significantly altered by the lack of p53 in muscle tissues.
Collapse
Affiliation(s)
- Se Mi Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Seul Kee Byeon
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Hojun Lee
- College of Veterinary Medicine, BK21 Program for Veterinary Science and Research, Institute of Veterinary Science, Seoul National University, Seoul, 08826, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
| | - Hyerim Sung
- College of Veterinary Medicine, BK21 Program for Veterinary Science and Research, Institute of Veterinary Science, Seoul National University, Seoul, 08826, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
| | - Il Yong Kim
- College of Veterinary Medicine, BK21 Program for Veterinary Science and Research, Institute of Veterinary Science, Seoul National University, Seoul, 08826, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea
| | - Je Kyung Seong
- College of Veterinary Medicine, BK21 Program for Veterinary Science and Research, Institute of Veterinary Science, Seoul National University, Seoul, 08826, Korea. .,Korea Mouse Phenotyping Center (KMPC), Seoul, 08826, Korea.
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
10
|
Lee JC, Byeon SK, Moon MH. Relative Quantification of Phospholipids Based on Isotope-Labeled Methylation by Nanoflow Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry: Enhancement in Cardiolipin Profiling. Anal Chem 2017; 89:4969-4977. [PMID: 28399627 DOI: 10.1021/acs.analchem.7b00297] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, lipid analysis based on isotope-labeled methlylation (ILM) was performed by nanoflow ultrahigh performance liquid chromatography-eletrospray ionization-tandem mass spectrometry (nUPLC-ESI-MS/MS) for enhanced detection and quantification of targeted phospholipids. ILM depends on methylation of phosphate groups by (trimethylsilyl)diazomethane, and the ILM based quantitation with reversed phase nUPLC-ESI-MS/MS provides advantages in PL profiling such as enhanced detectability of methylated PLs owing to increased hydrophobicity and substantial increase in resolution due to the increase of retention. Efficacy of ILM in nUPLC-ESI-MS/MS analysis was evaluated in the selected reaction monitoring (SRM) method by varying the mixing ratio of H-/D-methylated PL standards, which resulted in the successful quantification of 24 species, including phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylglycerol (PG), ceramide-1-phosphate (Cer1P), phosphoinositides, and cardiolipin (CL), with ∼6.6% variation in the calculated ratio of H-/D-methylated PLs. The method was applied to the lipid extracts from a DU145 cell line after D-allose treatment, resulting in the quantification of 83 PLs of which results were not statistically different from those obtained by conventional quantification methods. Morever, detection and quantification of CLs and PAs were evidenced to be highly effective when used with the ILM method as 43 CLs and 20 PAs from cellular lipid extracts were analyzed while only 18 CLs and 12 PAs were identified when conventional methods were carried out. This proves the ILM combined with LC-MS to be a promising method for analysis of the aforementioned classes of lipids. Overall, the study highlighted the applicability of targeted quantification by the ILM method in lipidomic analysis and demonstrated an improvement in the detection of less abundant anionic PLs.
Collapse
Affiliation(s)
- Jong Cheol Lee
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seul Kee Byeon
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|