1
|
Jin Z, Liao P, Jaisi DP, Wang D, Wang J, Wang H, Jiang S, Yang J, Qiu S, Chen J. Suspended phosphorus sustains algal blooms in a dissolved phosphorus-depleted lake. WATER RESEARCH 2023; 241:120134. [PMID: 37262944 DOI: 10.1016/j.watres.2023.120134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
The expansion of algal bloom in surface waters is a global problem in the freshwater ecosystem. Differential reactivity of organic phosphorus (Po) compounds from organic debris, suspended particulate matter (SPM), and sediment towards hydrolysis can dictate the extent of supply often limited inorganic P (Pi) for algal growth, thereby controlling the extent of bloom. Here, we combined solution P-31 nuclear magnetic resonance (31P NMR), sequential extraction, enzymatic hydrolysis, and 16S rRNA measurements to characterize speciation and biogeochemical cycling of P in Lake Erhai, China. Lower ratios of diester-P/monoester-P in SPM in January (mean 0.09) and July (0.14) than that in April (0.29) reflected the higher degree of diester-P remineralization in cold and warm months. Both H2O-Pi and Po were significantly higher in SPM (mean 1580 mg ·kg-1 and 1618 mg ·kg-1) than those in sediment (mean 8 mg ·kg-1 and 387 mg ·kg-1). In addition, results from enzymatic hydrolysis experiments demonstrated that 61% Po in SPM and 58% in sediment in the H2O, NaHCO3, and NaOH extracts could be hydrolyzed. These results suggested that H2O-Pi and Po from SPM were the primarily bioavailable P sources for algae. Changes of Pi contents (particularly H2O-Pi) in algae and alkaline phosphatase activity (APA) during the observation periods were likely to be controlled by the strategies of P uptake and utilization of algae. P remobilization/remineralization from SPM likely resulted from algae and bacteria (e.g., Pseudomonas). Collectively, these results provide important insights that SPM P could sustain the algal blooms even if the dissolved P was depleted in the water column.
Collapse
Affiliation(s)
- Zuxue Jin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Deb P Jaisi
- Department of Plant and Soil Science, University of Delaware, Newark, DE 19716, USA
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Heng Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shihao Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jiaojiao Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuoru Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Ding S, Jiao L, He J, Li L, Liu W, Liu Y, Zhu Y, Zheng J. Biogeochemical dynamics of particulate organic phosphorus and its potential environmental implication in a typical "algae-type" eutrophic lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120240. [PMID: 36152715 DOI: 10.1016/j.envpol.2022.120240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Organic phosphorus (Po) plays a very important role in the process of lake eutrophication, but there is still a lack of knowledge about the internal cycle of Po in suspended particulate matter (SPM) dominated by algal debris. In this study, the characterization of bioavailable Po by sequential extraction and enzymatic hydrolysis showed that 45% of extracted TP was Po in SPM of Lake Dianchi, and 43-98% of total Po in H2O, NaHCO3 and NaOH fractions was enzymatically hydrolyzable Po (EHP, H2O-EHP: 31-53%). Importantly, labile monoester P was the main organic form (68%) of EHP, and its potential bioavailability was higher than that of diester P and phytate-like P. According to the estimation of P pools in SPM of the whole lake, the total load of Pi plus EHP in the H2O extract of SPM was 74.9 t and had great potential risk to enhance eutrophication in the lake water environment. Accordingly, reducing the amount of SPM in the water during the algal blooming period is likely to be a necessary measure that can successfully interfere with or block the continuous stress of unhealthy levels of P on the aquatic ecosystem.
Collapse
Affiliation(s)
- Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jia He
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Lingping Li
- Shenzhen Green Creating Promotion Center of Living Environment, Shenzhen, 518040, China
| | - Wenbin Liu
- Ecological Engineering Company Limited of CCCC First Harbor Engineering Co., Ltd., Shenzhen, 518107, China
| | - Yan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jinlong Zheng
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| |
Collapse
|
3
|
Jin Z, Wang J, Jiang S, Yang J, Qiu S, Chen J. Fuel from within: Can suspended phosphorus maintain algal blooms in Lake Dianchi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119964. [PMID: 36007791 DOI: 10.1016/j.envpol.2022.119964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Extensive algal bloom in the surface water is a pressing issue in Lake Dianchi that causes lake restoration to be difficult owing to complex and variable phosphorus (P) sources in the water column. P released from algae, suspended particles (SS), and sediment can provide sustainable P sources for algal blooms. However, little is known regarding the dynamic of P speciation in these substances from different sources. In this study, solution 31P nuclear magnetic resonance (31P NMR) and chemical sequential extraction were employed to identify P speciation in algae, SS, and sediment during different periods. Results showed that dissolved inorganic P (Pi) directly accumulated in algae in the form of orthophosphate (ortho-P) and pyrophosphate (pyro-P). Algae preferentially utilized Pi, followed by organic P (Po) in the water column when the Pi was insufficient during growth and reproduction. The 31P NMR spectra demonstrated that ortho-P, orthophosphate monoesters (mono-P), orthophosphate diesters (diester-P), and pyro-P dominated the P compounds across the samples tested. Increasing remineralization of SS mono-P driven by intense alkaline phosphatase activities was caused by increasing P needs of algae and pressure of P supply in the water column. The higher ratios of diester-P to mono-P in sediment (mean 0.55) than those in algae (mean 0.07) and SS (mean 0.11 in surface water, 0.14 in bottom water) suggested that the degradation and regeneration occurred within these P compounds during or after sedimentation. Pi content in algae during growth and reproduction was controlled by its P absorption and utilization strategies. Results of this study provide insights into the dynamic cycling of P in algae, SS, and sediment, explaining the reason for algal blooms in the surface water with low concentrations of dissolved P.
Collapse
Affiliation(s)
- Zuxue Jin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shihao Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Jiaojiao Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shuoru Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
4
|
Lv Z, Zhang H, Liang J, Zhao T, Xu Y, Lei Y. Microalgae removal technology for the cold source of nuclear power plant: A review. MARINE POLLUTION BULLETIN 2022; 183:114087. [PMID: 36084612 DOI: 10.1016/j.marpolbul.2022.114087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 07/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the past three decades, nuclear energy has gained much attention as carbon-free electricity. Due to the supply of cooling water in nuclear power plant, large amount of waste heat will increase the water temperature, promote the microalgae and cyanobacteria propagation and increase the chance of red tide. Excess phytoplankton of cool source will result in abnormal operation of cooling system, even core overheating and nuclear leakage. Consequently, it is very important to remove microalgae and cyanobacteria from cold source of nuclear power plants. This review summarizes the formation mechanism and monitoring methods of red tide, compares the advantages and disadvantages of traditional microalgae removal technology including physical, chemical and biological methods. Furthermore, the improved electrochemical method and micro-nano bubble method are introduced in detail. Their combination is considered to be a low-cost, efficient and environmentally-friendly technology to prevent and control red tides for cold source of nuclear power plant.
Collapse
Affiliation(s)
- Ziwei Lv
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Hong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China.
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China.
| | - Tianyu Zhao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Yuena Xu
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Yinyuan Lei
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
5
|
Nutrients and Energy Digestibility of Microalgal Biomass for Fish Feed Applications. SUSTAINABILITY 2021. [DOI: 10.3390/su132313211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aquafeed accounts for at least 75–90% of aquaculture’s operating costs. Traditional aquafeed ingredients such as fishmeal, fish oil, and soybean meal are unsustainable; further, their increasing cost necessities developing alternative feed ingredients. Microalgae-based aquafeed is not only environmentally friendly, but it can also be cost-effective with proper optimization. In addition, the nutrition profile of microalgae is similar to that of many fishes. The digestibility of a feed is one of the most important factors to consider in feed formulation. A highly digestible feed can lower production costs, reduce feed waste, and reduce the risk of eutrophication. This review discusses the digestibility of various nutrients such as protein, lipid, carbohydrate, amino acids, and fatty acids (including omega-3 fatty acids), dry matter, and energy of various microalgae in fish. Other commonly used aquafeed ingredients were also compared to microalgae in terms of nutrient and energy digestibility in fish. The intrinsic characteristics of microalgae, biomass pretreatment, and feed preparation methods are all discussed as factors that contribute to the nutrient and energy digestibility of microalgae in fish. Furthermore, methods for increasing the digestibility of microalgal biomass in fish are suggested. Finally, the review concludes with the challenges and prospects of using microalgae as a fish feed in terms of digestibility.
Collapse
|
6
|
Yang F, Cen R, Feng W, Zhu Q, Leppäranta M, Yang Y, Wang X, Liao H. Dynamic simulation of nutrient distribution in lakes during ice cover growth and ablation. CHEMOSPHERE 2021; 281:130781. [PMID: 34022597 DOI: 10.1016/j.chemosphere.2021.130781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Nutrient transport in seasonally ice-covered lakes is an important factor affecting spring algal blooms in eutrophic waters; because phase changes during the ice growth process redistribute the nutrients. In this study, nutrient transport under static conditions was simulated by using two ice thickness models in combination with an indoor freezing experiment under different segregation coefficient conditions for nutrients. A real-time prediction model for nutrient and pollutant concentrations in ice-covered lakes was established to explore the impact of the ice-on period in eutrophic shallow lakes. The results demonstrated that the empirical degree-day model and the high-resolution thermodynamic snow and sea-ice model (HIGHTSI) could both be used to simulate lake ice thickness. The empirical degree-day model performed better at predicting the maximum ice thickness (measured thickness 0.22-0.55 m; simulated thickness 0.48 m), whereas the HIGHTSI model was more accurate when estimating the mean thickness (5-6% error). When simulating ice growth, the HIGHTSI model considered more meteorological factors impacting ice cover ablation; hence, it performed better during the ablation stage relative to the empirical degree-day model. Two non-dynamic nutrient transport models were developed by combining the segregation coefficient model and the ice thickness prediction model. The HIGHTSI nutrient transport model can be used to predict real-time changes in nutrient concentrations under ice cover, and the degree-day model can be used to predict changes in the lake water ecosystem.
Collapse
Affiliation(s)
- Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rui Cen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weiying Feng
- School of Space and Environment, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| | - Qiuheng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Matti Leppäranta
- Institute for Atmospheric and Earth System Research, University of Helsinki, 00014, Helsinki, Finland
| | - Yu Yang
- Shengyang Institute of Engingeering, Liaoning, 110136, China
| | - Xihuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
7
|
Packa V, Howell T, Bostan V, Furdui VI. Phosphorus-based metabolic pathway tracers in surface waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29498-29508. [PMID: 33559082 DOI: 10.1007/s11356-021-12697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Trophic status in surface waters has been mostly monitored by measuring soluble reactive phosphorus (SRP) and total phosphorus (TP). Additional to these common parameters, a two-dimensional ion chromatography mass spectrometry (2D-IC-MS) method was used to simultaneously measure soluble phosphate (Pi), pyrophosphate (PPi), and eleven phosphate-containing metabolites (P-metabolites) in Lake Ontario and its tributaries. From the additional P species, PPi, adenosine 5'-monophosphate (AMP), glucose 6-phosphate (G-P), D-fructose 6-phosphate (F-P), D-fructose 1,6-biphosphate (F-2P), D-ribulose 5-phosphate (R-P), D-ribulose 1,5-bisphosphate (R-2P), and D-(-)-3-phosphoglyceric acid (PGA) were detected and quantified in the lake and river samples. The additional multivariate statistical analysis identified similarities between samples collected at different locations. The presence of R-P, R-2P, and F-2P in Lake Ontario tributaries seems to be mainly related to the Calvin cycle, while the lack of all these three P-metabolites and higher PGA levels than G-P in Toronto Harbour samples seems to be the result of depleted Calvin cycle, pentose phosphate, and glycolysis metabolic pathways.
Collapse
Affiliation(s)
- Vlastimil Packa
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, ON, M9P 3V6, Canada
- Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Todd Howell
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, ON, M9P 3V6, Canada
| | - Vadim Bostan
- Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Vasile I Furdui
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, ON, M9P 3V6, Canada.
- Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada.
| |
Collapse
|
8
|
Mau L, Kant J, Walker R, Kuchendorf CM, Schrey SD, Roessner U, Watt M. Wheat Can Access Phosphorus From Algal Biomass as Quickly and Continuously as From Mineral Fertilizer. FRONTIERS IN PLANT SCIENCE 2021; 12:631314. [PMID: 33584779 PMCID: PMC7879783 DOI: 10.3389/fpls.2021.631314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 05/05/2023]
Abstract
Algae can efficiently take up excess nutrients from waterways, making them a valuable resource potentially capable of replacing synthesized and mined fertilizers for agriculture. The capacity of algae to fertilize crops has been quantified, but it is not known how the algae-derived nutrients become available to plants. We aimed to address this question: what are the temporal dynamics of plant growth responses to algal biomass? to better propose mechanisms by which plants acquire nutrients from algal biomass and thereby study and promote those processes in future agricultural applications. Data from various sources were transformed and used to reconstruct the nutrient release from the algae Chlorella vulgaris and subsequent uptake by wheat (Triticum aestivum L.) (as reported in Schreiber et al., 2018). Plants had received 0.1x or 1x dried algae or wet algae, or zero, 0.1x or 1x mineral fertilizer calculated from agricultural practices for P application and grown to 55 days in three soils. Contents of P and other nutrients acquired from algae were as high as from mineral fertilizer, but varied based on moisture content and amount of algae applied to soils (by 55 days after sowing plants with 1x mineral fertilizer and 1x dried algae had 5.6 mg P g DWshoot; 2.2-fold more than those with 0 or 0.1x mineral fertilizer, 0.1x dried algae and wet algae, and 1x wet algae). Absolute and relative leaf area growth and estimated P uptake rates showed similar dynamics, indicating that wheat acquires P from algae quickly. A model proposes that algal fertilizer promotes wheat growth after rapid transformation in soil to inorganic nutrients. We conclude theoretically that phosphorus from algal biomass is available to wheat seedlings upon its application and is released gradually over time with minor differences related to moisture content on application. The growth and P uptake kinetics hint at nutrient forms, including N, and biomass stimulation worthy of research to further exploit algae in sustainable agriculture practices. Temporal resolved phenotype analyses in combination with a mass-balance approach is helpful for understanding resource uptake from recycled and biofertilizer sources by plants.
Collapse
Affiliation(s)
- Lisa Mau
- Institute of Bio- and Geoscience - IBG-2: Plant Science, Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Josefine Kant
- Institute of Bio- and Geoscience - IBG-2: Plant Science, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Robert Walker
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Christina M. Kuchendorf
- Institute of Bio- and Geoscience - IBG-2: Plant Science, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Silvia D. Schrey
- Institute of Bio- and Geoscience - IBG-2: Plant Science, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Michelle Watt
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Yang P, Yang C, Yin H. Dynamics of phosphorus composition in suspended particulate matter from a turbid eutrophic shallow lake (Lake Chaohu, China): Implications for phosphorus cycling and management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140203. [PMID: 32570068 DOI: 10.1016/j.scitotenv.2020.140203] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Particulate phosphorus (P) dominates the total P (TP) content in lacustrine water columns and is a primary source of dissolved P in turbid eutrophic shallow lakes. However, the spatiotemporal variability of P compositions in suspended particulate matter (SPM) remains poorly understood. In this study, we applied chemical extraction and solution 31P nuclear magnetic resonance (31P NMR) to assess the seasonal variations of SPM P compositions from a shallow turbid lake (Lake Chaohu, China) and its main river tributaries. P fractionation analysis indicated that mobile P (the sum of labile-P, iron-bound P, and organic P) accounted for >60% of the TP in SPM and showed high spatiotemporal variability throughout the year-long field investigation. In most seasons, riverine SPM (in urban rivers or rivers with high flow) contained a higher mobile P content than that of the lake and was therefore a dominant source of lacustrine mobile particulate P. Solution 31P NMR identified five types of P compounds in SPM, with highest contributions from orthophosphate. Organic P components and concentrations showed high seasonal variability, and elevated p values occurred during the summer algal bloom. The correlation analysis between organic and inorganic P fractions inferred the possible degradation of organic P into reactive inorganic components of SPM. Consequently, biological or chemical processes would further transform the labile inorganic P into soluble reactive phosphorus, which is readily utilized by lacustrine algae. Our results suggest that the labile forms of P in SPM were highly dynamic and significantly contributed to the eutrophication of the turbid shallow lake.
Collapse
Affiliation(s)
- Pan Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Chunhui Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China.
| |
Collapse
|
10
|
Feng W, Yang F, Zhang C, Liu J, Song F, Chen H, Zhu Y, Liu S, Giesy JP. Composition characterization and biotransformation of dissolved, particulate and algae organic phosphorus in eutrophic lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114838. [PMID: 32563804 DOI: 10.1016/j.envpol.2020.114838] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/03/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Characteristics and transformation of organic phosphorus in water are vital to biogeochemical cycling of phosphorus and support of blooms of phytoplankton and cyanobacteria. Using solution 31P nuclear magnetic resonance (NMR), combined with field surveys and lab analyses, composition and structural characteristics of dissolved phosphorus (DP), particulate phosphorus (PP) and organic P in algae were studied in two eutrophic lakes in China, Tai Lake and Chao Lake. Factors influencing migration and transformation of these constituents in lake ecosystems were also investigated. A method was developed to extract, flocculate and concentrate DP and PP from lake water samples. Results showed that orthophosphate (Ortho-P) constituted 32.4%-81.3% of DP and 43.7%-54.9% of PP, respectively; while monoester phosphorus (Mono-P) was 13.2%-54.0% of DP and 32.9%-43.7% of PP, respectively. Phosphorus in algae was mostly organic P, especially Mono-P, which was ≥50% of TP. Environmental factors and water quality parameters such as temperature (T), electrical conductivity (EC), pH, secchi depth (SD), dissolved oxygen (DO), chemical oxygen demand (CODcr), chlorophyll-a (Chl-a), affected the absolute and relative concentrations of various P components in the two lakes. Increased temperature promoted bioavailable P (Ortho-P and Mono-P) release to the lake waters. The results can provide an important theoretical basis for the mutual conversion process of organic P components between various media in the lake water environment.
Collapse
Affiliation(s)
- Weiying Feng
- School of Space and Environment, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Chen Zhang
- Quality Inspection and Standard Research Center, Postal Scientific Research and Planning Academy, Beijing, 100096, China
| | - Jing Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shasha Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - John P Giesy
- Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; Department of Environmental Science, Baylor, University, Waco, TX, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Incorporation of defatted microalgal biomass (Tetraselmis sp. CTP4) at the expense of soybean meal as a feed ingredient for juvenile gilthead seabream (Sparus aurata). ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101869] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
O'Day PA, Nwosu UG, Barnes ME, Hart SC, Berhe AA, Christensen JN, Williams KH. Phosphorus Speciation in Atmospherically Deposited Particulate Matter and Implications for Terrestrial Ecosystem Productivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4984-4994. [PMID: 32181661 DOI: 10.1021/acs.est.9b06150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical forms of phosphorus (P) in airborne particulate matter (PM) are poorly known and do not correlate with solubility or extraction measurements commonly used to infer speciation. We used P X-ray absorption near-edge structure (XANES) and 31P nuclear magnetic resonance (NMR) spectroscopies to determine P species in PM collected at four mountain sites (Colorado and California). Organic P species dominated samples from high elevations, with organic P estimated at 65-100% of total P in bulk samples by XANES and 79-88% in extracted fractions (62-84% of total P) by NMR regardless of particle size (≥10 or 1-10 μm). Phosphorus monoester and diester organic species were dominant and present in about equal proportions, with low fractions of inorganic P species. By comparison, PM from low elevation contained mixtures of organic and inorganic P, with organic P estimated at 30-60% of total P. Intercontinental PM transport determined from radiogenic lead (Pb) isotopes varied from 0 to 59% (mean 37%) Asian-sourced Pb at high elevation, whereas stronger regional PM inputs were found at low elevation. Airborne flux of bioavailable P to high-elevation ecosystems may be twice as high as estimated by global models, which will disproportionately affect net primary productivity.
Collapse
Affiliation(s)
- Peggy A O'Day
- Life and Environmental Sciences Department and The Sierra Nevada Research Institute, University of California, Merced, California 95343, United States
| | - Ugwumsinachi G Nwosu
- Life and Environmental Sciences Department and The Sierra Nevada Research Institute, University of California, Merced, California 95343, United States
| | - Morgan E Barnes
- Environmental Systems Graduate Group, University of California, Merced, California 95343, United States
| | - Stephen C Hart
- Life and Environmental Sciences Department and The Sierra Nevada Research Institute, University of California, Merced, California 95343, United States
| | - Asmeret Asefaw Berhe
- Life and Environmental Sciences Department and The Sierra Nevada Research Institute, University of California, Merced, California 95343, United States
| | - John N Christensen
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth H Williams
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Rocky Mountain Biological Lab, Gothic, Colorado 81225, United States
| |
Collapse
|
13
|
Li C, Feng W, Song F, He Z, Wu F, Zhu Y, Giesy JP, Bai Y. Three decades of changes in water environment of a large freshwater Lake and its relationship with socio-economic indicators. J Environ Sci (China) 2019; 77:156-166. [PMID: 30573079 DOI: 10.1016/j.jes.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 06/09/2023]
Abstract
Tai Lake (Ch: Taihu) has attracted international attention forcyanobacteria blooms. However, the drivers of cultural eutrophication, especially long-term socio-economic indicators have been little researched. The results of research demonstrate how socio-economic development affected quality of water and how it has been improved by anthropogenic activities. This study described variability in indicators of water quality in Tai Lakeand investigated thedrivers. Significant relationships existed between concentrations of annual mean total nitrogen (TN), total phosphorous (TP), chemical oxygen demand (COD) and biological oxygen demand (BOD), and population, per capital gross domestic production (GDP) and sewage discharge (p < 0.05). However, mechanisms causing change varied among TN, TP, COD and BOD. Before 2000, the main contributors to increases in concentrations of TN were human population, GDP and volumes of domestic sewage discharges. After 2000, discharges of industrial sewage become the primary contributor. After 1998, the regressions of annual mean TN, TP and COD on per capital GDP, population and domestic sewage discharge were reversed compared to the former period. Since 1999, an apparent inverted U-shaped relationship between environmental pollution and economic development has developed, which indicated that actions taken by governments have markedly improved quality of water in Tai Lake. The statistical relationship between BOD and per capital GDP didn't conform to the Kuznet curve. The U-shaped Kuznet curve may offer hope for the future that with significant environmental investments a high GDP can be reached and maintained without degradation of the environment, especially through appropriate management of industrial sewage discharge.
Collapse
Affiliation(s)
- Cuicui Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiying Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhongqi He
- USDA-ARS, Southern Regional Research Center, New Orleans LA70124, USA
| | - Fengchang Wu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - John P Giesy
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon SKS7N 5B3, Canada
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
14
|
Zhao Q, Wang J, Wang J, Wang JXL. Seasonal dependency of controlling factors on the phytoplankton production in Taihu Lake, China. J Environ Sci (China) 2019; 76:278-288. [PMID: 30528019 DOI: 10.1016/j.jes.2018.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 06/09/2023]
Abstract
In this study, 44 profiles of gross primary productivity (GPP) and sunlight, along with water temperature, Chlorophyll-a (Chla) and nutrients, were observed in Meiliang Bay of Taihu Lake, China, in the spring, summer, and fall seasons. Effects of water temperature, light, and nutrient concentration were examined in relation to the GPP-unit-Chla (GPP of algae per Chla). The results showed that the optimum temperature for the GPP of phytoplankton was 27.9°C, the optimal PNA-unit-Chla (photon number absorbed by phytoplankton per Chla) was 0.25 (mol), and the HSCN-unit-Chla and HSCP-unit-Chla (half-saturation constants of nitrogen and phosphorus of algae per Chla) were 0.005 (mg/L) and 0.0004 (mg/L), respectively. The seasonal dependency of the effect of different factors on the GPP was analyzed. Compared with temperature and nutrients, light was found to be the most important factor affecting the GPP during the three seasons. The effect of temperature and nutrients on the GPP of phytoplankton has obvious seasonal change. In spring, temperature was the secondary factor affecting the GPP of phytoplankton, and the effect of nutrients may be negligible in the eutrophic lake on account of temperature limit, which showed that the GPP of algae was only affected by the physical process. In summer and fall, temperature didn't affect the GPP of algae, and the presence of nutrients was the secondary factor affecting the GPP of phytoplankton. From summer to fall, effect of phosphorus was weakened and effect of nitrogen was enhanced.
Collapse
Affiliation(s)
- Qiaohua Zhao
- College of Hydrometeorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Jing Wang
- College of Hydrometeorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianjian Wang
- College of Hydrometeorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Julian X L Wang
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
| |
Collapse
|
15
|
Feng W, Liu S, Li C, Li X, Song F, Wang B, Chen H, Wu F. Algal uptake of hydrophilic and hydrophobic dissolved organic nitrogen in the eutrophic lakes. CHEMOSPHERE 2019; 214:295-302. [PMID: 30265937 DOI: 10.1016/j.chemosphere.2018.09.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Dissolved organic nitrogen (DON) derived from sediments plays an active role in biogeochemical cycling of nutrients in aquatic ecosystems. Sediments from four eutrophic lakes were studied using three-dimensional fluorescence excitation-emission matrix (3DEEM) spectra and supelite XAD-8 macroporous resin separation to investigate the bioavailability of hydrophilic and hydrophobic DON to algae (Microcystis flos-aquae (Wittr.) Kirchner). The results showed that the average loss of DON was <6.0% after dividing DON into hydrophilic and hydrophobic components, demonstrating the utility of XAD-8 resin separation in the study of DON components from lake sediments. The 3DEEM analysis showed that hydrophobic and hydrophilic DON comprised humic- and protein-like materials, respectively. During the incubation period, the bioavailability of hydrophilic DON, which accounted for 59.3%-80.4% of total DON, stimulated algal growth, suggesting that hydrophilic DON was the primary source of organic nitrogen for algae. In contrast, hydrophobic DON increased algal density by only 31.8% of that observed for hydrophilic DON, and had a small (accounted for 20.0%-26.6% of total DON) effect on algal growth over the short-term. The significant differences in algal growth between the two types of DON suggested that they should be considered separately in the eutrophic lake restorations.
Collapse
Affiliation(s)
- Weiying Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shasha Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Cuicui Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofeng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beibei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
16
|
Liu S, Wu F, Feng W, Guo W, Song F, Wang H, Wang Y, He Z, Giesy JP, Zhu P, Tang Z. Using dual isotopes and a Bayesian isotope mixing model to evaluate sources of nitrate of Tai Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32631-32639. [PMID: 30242656 DOI: 10.1007/s11356-018-3242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Identification and quantification of sources of nitrate (NO3-) in freshwater lakes provide useful information for management of eutrophication and improving water quality in lakes. Dual δ15N- and δ18O-NO3- isotopes and a Bayesian isotope mixing model were applied to identify sources of NO3- and estimate their proportional contributions to concentrations of NO3- in Tai Lake, China. In waters of Tai Lake, values for δ15N-NO3- ranged from 3.8 to 10.1‰, while values of δ18O ranged from 2.2 to 12.0‰. These results indicated that NO3- was derived primarily from agricultural and industrial sources. Stable isotope analysis in R called SIAR model was used to estimate proportional contributions from four potential NO3- sources (agricultural, industrial effluents, domestic sewage, and rainwater). SIAR output revealed that agricultural runoff provided the greatest proportion (50.8%) of NO3- to the lake, followed by industrial effluents (33.9%), rainwater (8.4%), and domestic sewage (6.8%). Contributions of those primary sources of NO3- to sub-regions of Tai Lake varied significantly (p < 0.05). For the northern region of the lake, industrial source (35.4%) contributed the greatest proportion of NO3-, followed by agricultural runoff (27.4%), domestic sewage (21.3%), and rainwater (15.9%). Whereas for the southern region, the proportion of NO3- contributed from agriculture (38.6%) was slightly greater than that contributed by industry (30.8%), which was similar to results for nearby inflow tributaries. Thus, to improve water quality by addressing eutrophication and reduce primary production of phytoplankton, NO3- from both nonpoint agricultural sources and industrial point sources should be mitigated. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weiying Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenjing Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhongqi He
- USDA-ARS Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA, 70124, USA
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Peng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
17
|
Liu Z, Zhang Y, Han F, Yan P, Liu B, Zhou Q, Min F, He F, Wu Z. Investigation on the adsorption of phosphorus in all fractions from sediment by modified maifanite. Sci Rep 2018; 8:15619. [PMID: 30353133 PMCID: PMC6199331 DOI: 10.1038/s41598-018-34144-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Sediment phosphorus (P) removal is crucial for the control of eutrophication, and the in-situ adsorption is an essential technique. In this study, modified maifanite (MMF) prepared by acidification, alkalization, salinization, calcination and combined modifications, respectively, were first applied to treat sediment P. The morphology and microstructure of MMF samples were characterized by X-ray fluorescence (XRF), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET). Various adsorption parameters were tested, such as dosage of maifanite, time, operation pH and temperature. The adsorption mechanisms were also investigated and discussed. Results showed that CMMF-H2.5-400 (2.5 mol/L H2SO4 and calcined at 400 °C) exhibited the highest P adsorption capacity. Thus, it was selected as the in-situ adsorbent material to control the internal P loading. Under the optimal conditions of dynamic experiments, the adsorption rates of TP, IP, OP, Fe/Al-P and Ca-P by CMMF-H2.5-400 were 37.22%, 44.41%, 25.54%, 26.09% and 60.34%, respectively. The adsorption mechanisms analysis revealed that the adsorption of P onto CMMF-H2.5-400 mainly by ligand exchange. Results of this work indicated that the modification treatment could improve the adsorption capacity of maifanite, and CMMF-H2.5-400 could be further applied to eutrophication treatment.
Collapse
Affiliation(s)
- Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Fan Han
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Pan Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fenli Min
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
18
|
Wang C, Liu Z, Zhang Y, Liu B, Zhou Q, Zeng L, He F, Wu Z. Synergistic removal effect of P in sediment of all fractions by combining the modified bentonite granules and submerged macrophyte. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:458-467. [PMID: 29358138 DOI: 10.1016/j.scitotenv.2018.01.093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
The removal efficiency of sediment phosphorus (P) with the in-situ synergistic effect of modified bentonite granules (MBG) and Vallisneria spiralis (V. spiralis) in West Lake, Hangzhou, China was investigated for the first time in the study. CMBG-Na10-450 (nitrification (10% Na2CO3)-calcination (450 °C) combined modification) was prepared and characterized, and the removal effects of sediment P of all fractions with CMBG-Na10-450 and V. spiralis in combination and separately were evaluated in batch experiments. Results showed that CMBG-Na10-450 could promote the growth of V. spiralis, and the residual P of the sediment not adsorbed on CMBG-Na10-450 was changed through root oxygenation and nutrition allocation, and then enhanced the extra P adsorption on CMBG-Na10-450. The combination of MBG and V. spiralis exhibited a synergistic removal effect higher than the summation of MBG and V. spiralis applied separately. The results of microcosm experiments showed that the combination of CMBG-Na10-450 and V. spiralis enhanced the function of P metabolism by increasing the special genus that belongs to the family Erysipelotrichaceae.
Collapse
Affiliation(s)
- Chuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
19
|
Feng W, Wu F, He Z, Song F, Zhu Y, Giesy JP, Wang Y, Qin N, Zhang C, Chen H, Sun F. Simulated bioavailability of phosphorus from aquatic macrophytes and phytoplankton by aqueous suspension and incubation with alkaline phosphatase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1431-1439. [PMID: 29074246 DOI: 10.1016/j.scitotenv.2017.10.172] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Bioavailability of phosphorus (P) in biomass of aquatic macrophytes and phytoplankton and its possible relationship with eutrophication were explored by evaluation of forms and quantities of P in aqueous extracts of dried macrophytes. Specifically, effects of hydrolysis of organically-bound P by the enzyme alkaline phosphatase were studied by use of solution 31P-nuclear magnetic resonance (NMR) spectroscopy. Laboratory suspensions and incubations with enzymes were used to simulate natural releases of P from plant debris. Three aquatic macrophytes and three phytoplankters were collected from Tai Lake, China, for use in this simulation study. The trend of hydrolysis of organic P (Po) by alkaline phosphatase was similar for aquatic macrophytes and phytoplankton. Most monoester P (15.3% of total dissolved P) and pyrophosphate (1.8%) and polyphosphate (0.4%) and DNA (3.2%) were transformed into orthophosphate (14.3%). The major forms of monoester P were glycerophosphate (8.8%), nucleotide (2.5%), phytate (0.4%) and other monoesters P (3.6%). Proportions of Po including condensed P hydrolyzed in phytoplankton and aquatic macrophytes were different, with the percentage of 22.6% and 6.0%, respectively. Proportion of Po hydrolyzed in debris from phytoplankton was approximately four times greater than that of Po from aquatic macrophytes, and could be approximately twenty-five times greater than that of Po in sediments. Thus, release and hydrolysis of Po, derived from phytoplankton debris would be an important and fast way to provide bioavailable P to support cyanobacterial blooming in eutrophic lakes.
Collapse
Affiliation(s)
- Weiying Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhongqi He
- USDA-ARS, Southern Regional Research Center, New Orleans LA70124, USA
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - John P Giesy
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon SKS7N 5B3, Canada
| | - Ying Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ning Qin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|