1
|
Mony C, Vannier N, Burel F, Ernoult A, Vandenkoornhuyse P. The root microlandscape of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2024; 244:394-406. [PMID: 39169593 DOI: 10.1111/nph.20048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Understanding the drivers of assemblages of arbuscular mycorrhizal fungi (AMF) is essential to leverage the benefits of AMF for plant growth and health. Arbuscular mycorrhizal fungi are heterogeneously distributed in space even at small scale. We review the role of plant distribution in driving AMF assemblages (the passenger hypothesis), using a transposition of the conceptual framework of landscape ecology. Because rooting systems correspond to habitat patches with limited carrying capacity that differ in quality due to host-preference effects, we suggest considering plant communities as mosaics of AMF microhabitats. We review how predictions from landscape ecology apply to plant community effects on AMF, and the existing evidence that tests these predictions. Although many studies have been conducted on the effect of plant compositional heterogeneity on AMF assemblages, they mostly focused on the effect of plant richness, while only a few investigated the effect of configurational heterogeneity, plant connectivity or plant community temporal dynamics. We propose key predictions and future prospects to fill these gaps. Considering plant communities as landscapes extends the passenger hypothesis by including a spatially explicit dimension and its associated ecological processes and may help understand and manipulate AMF assemblages at small spatial scales.
Collapse
Affiliation(s)
- Cendrine Mony
- UMR 6553 ECOBIO, Université de Rennes, Avenue du Général Leclerc, 35043, Rennes Cedex, France
| | - Nathan Vannier
- UMR 1349 IGEPP, INRAE Centre Bretagne, Domaine de la Motte, BP35327, 35653, Le Rheu Cedex, France
| | - Françoise Burel
- UMR 6553 ECOBIO, Université de Rennes, Avenue du Général Leclerc, 35043, Rennes Cedex, France
| | - Aude Ernoult
- UMR 6553 ECOBIO, Université de Rennes, Avenue du Général Leclerc, 35043, Rennes Cedex, France
| | | |
Collapse
|
2
|
Cao T, Shi M, Zhang J, Ji H, Wang X, Sun J, Chen Z, Li Q, Song X. Nitrogen fertilization practices alter microbial communities driven by clonal integration in Moso bamboo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171581. [PMID: 38461973 DOI: 10.1016/j.scitotenv.2024.171581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Nitrogen (N) fertilization is crucial for maintaining plant productivity. Clonal plants can share resources between connected ramets through clonal integration influencing microbial communities and regulating soil biogeochemical cycling, especially in the rhizosphere. However, the effect of various N fertilization practices on microbial communities in the rhizosphere of clonal ramets remain unknown. In this study, clonal fragments of Moso bamboo (Phyllostachys edulis), consisting of a parent ramet, an offspring ramet, and an interconnecting rhizome, were established in the field. NH4NO3 solution was applied to the parent, offspring ramets or rhizomes to investigate the effect of fertilization practices on the structure and function of rhizosphere microbial communities. The differences in N availability, microbial biomass and community composition, and abundance of nitrifying genes among rhizosphere soils of ramets gradually decreased during the rapid growth of Moso bamboo, irrespective of fertilization practice. The soil N availability variation, particularly in NO3-, caused by fertilization practices altered the rhizosphere microbial community. Soil N availability and stable microbial biomass N in parent fertilization were the highest, being 9.0 % and 18.7 %, as well as 60.8 % and 90.4 % higher than rhizome and offspring fertilizations, respectively. The microbial network nodes and links in rhizome fertilization were 1.8 and 7.5 times higher than in parent and offspring fertilization, respectively. However, the diversity of bacterial community and abundance of nitrifying and denitrifying genes were the highest in offspring fertilization among three practices, which may be associated with increased N loss. Collectively, the rhizosphere microbial community characteristics depended on fertilization practices by altering the clonal integration of N in Moso bamboo. Parent and rhizome fertilization were favorable for N retention in plant-soil system and resulted in more stable microbial functions than offspring fertilization. Our findings provide new insights into precision fertilization for the sustainable Moso bamboo forest management.
Collapse
Affiliation(s)
- Tingting Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junbo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Hangxiang Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jilei Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhenxiong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Cook K, Sharma J, Taylor AD, Herriott IC, Taylor DL. Epiphytic fungal communities vary by substrate type and at sub-meter spatial scales. Mol Ecol 2022; 31:1879-1891. [PMID: 35060231 DOI: 10.1111/mec.16358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
Fungal species have numerous important environmental functions. Where these functions occur will depend on how fungi are spatially distributed, but spatial structures of fungal communities are largely unknown, especially in understudied hyperdiverse tropical tree canopy systems. We explore fungal communities in a Costa Rican tropical rainforest canopy, with a focus on local-scale spatial structure and substrate specificity of fungi. Samples of ~1 cm3 were collected from 135 points along 5 adjacent tree branches, with inter-sample distances from 1 to 800 cm, and dissected into four substrates: outer host tree bark, inner bark, dead bryophytes, and living bryophytes. We sequenced the ITS2 region to characterize total fungal communities. Fungal community composition and diversity varied among substrate types, even when multiple substrates were in direct contact. Fungi were most diverse in living bryophytes, with 39% of all OTUs found exclusively in this substrate, and the least diverse in inner bark. Fungal communities had significant positive spatial autocorrelation and distance decay of similarity only at distances less than one meter. Similarity among samples declines by half in less than ten cm, and even at these short distances, similarities are low with few OTUs shared among samples. These results indicate that community turnover is high and occurs at very small spatial scales, with any two locations sharing very few fungi in common. High heterogeneity of fungal communities in space and among substrates may have implications for the distributions, population dynamics, and diversity of other tree canopy organisms, including epiphytic plants.
Collapse
Affiliation(s)
- Kel Cook
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Bayer Plant Science Building, Room 219, 2911 15th Street, Mail Stop 2122, Lubbock, TX, 79409-2122, USA
| | - Andrew D Taylor
- Department of Biology, University of Hawai'i at Manoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI, 96822, USA
| | - Ian Charold Herriott
- Institute of Arctic Biology, University of Alaska, 311 Irving I Building, Fairbanks, AK, 99775, USA
| | - D Lee Taylor
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
4
|
Mony C, Gaudu V, Ricono C, Jambon O, Vandenkoornhuyse P. Plant neighbours shape fungal assemblages associated with plant roots: A new understanding of niche‐partitioning in plant communities. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cendrine Mony
- UMR 6553 Ecobio CNRS ‐ University of Rennes Rennes Cedex France
| | - Valentin Gaudu
- UMR 6553 Ecobio CNRS ‐ University of Rennes Rennes Cedex France
| | - Claire Ricono
- UMR 6553 Ecobio CNRS ‐ University of Rennes Rennes Cedex France
| | - Olivier Jambon
- UMR 6553 Ecobio CNRS ‐ University of Rennes Rennes Cedex France
| | | |
Collapse
|
5
|
Zhou Y, He YJ, Wang ZJ, Hu BY, Xie TZ, Xiao X, Zhou ZS, Sang XY, Luo XD. A review of plant characteristics, phytochemistry and bioactivities of the genus Glechoma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113830. [PMID: 33465438 DOI: 10.1016/j.jep.2021.113830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants of the genus Glechoma have been abundantly used for thousands of years in China as folk treatments for cholelithiasis, urolithiasis, inflammation, and other conditions. AIM OF THE STUDY This review discusses the potential application of Glechoma as an herbal medicine. The plant characteristics, ethnobotanical uses, phytochemistry, and pharmacological activities of Glechoma are summarized as a guide for phytochemical and pharmacological investigations. MATERIALS AND METHODS Various search engines including SciFinder, Google Scholar, Scopus-Elsevier, Medline, Web of Science, and China National Knowledge Infrastructure were searched for publications on Glechoma using relevant keywords. Additionally, local records, books, and non-English journals were screened up to October 2020. RESULTS The phytochemistry of several Glechoma plants has been systematically studied, and over one hundred different compounds have been isolated and identified. Terpenoids, flavonoids and polyphenols are the major secondary metabolites. Crude extracts and isolated compounds have been shown to exhibit various pharmacological activities including prevention of nephrolithiasis, anti-inflammatory, analgesic, anticomplement, antimicrobial, antioxidant, depigmenting, anticancer, and antiviral activities, among others. CONCLUSION Glechoma species have been used as folk medicine to treat various diseases and have diverse biological activities, making them valuable starting materials for drug development. However, in most cases the pharmacological mechanisms, pharmacokinetics, toxicology, safety, and possible interactions with other drugs remain to be determined.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Bin-Yuan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Tian-Zhen Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xia Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Zhong-Shun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xu-Yan Sang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, 650201, PR China.
| |
Collapse
|
6
|
Shi XP, Bai YF, Song P, Liu YY, Zhang ZW, Zheng B, Jiang CQ, Wang YJ. Clonal integration and phosphorus management under light heterogeneity facilitate the growth and diversity of understory vegetation and soil fungal communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144322. [PMID: 33422956 DOI: 10.1016/j.scitotenv.2020.144322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The spatial heterogeneity of light and nutrient deficiency occurs in many forest understories. Proper fertilization management of unhealthy forests can benefit forest understory diversity and improve the stability of degraded soil; and clonal integration is a major advantage of resource sharing for many forest understory vegetation, such as pteridophytes. In this study, we tested whether understory soil fertilization and clonal integration under light heterogeneity were able to increase the performance and diversity of understory vegetation and soil microbial communities in nature. Field experiments-with or without phosphorus (P) addition, with intact or severed rhizome, and under homogeneous or heterogeneous light environments-were conducted in the understory of a typical evergreen forest in southeast China. Light heterogeneity, P addition and clonal integration promoted the growth, diversity and evenness of ferns and soil microbial biomass C, N and P (MBC, MBN and MBP) at both experimental plot and patch level. They also increased Chao1 richness and Shannon diversity of soil fungal communities at patch level, especially in the high light patches with P addition. The positive effects of P addition and clonal integration on the growth and diversity of ferns and soil microbial biomass were greatly increased under heterogeneous light. The positive effects of clonal integration on the growth were the greatest in the heterogeneous high light patches. Moreover, the interactive effect of P addition and clonal integration increased soil MBN and MBP. Clonal integration promoted the increased growth and diversity of ferns and soil MBC in the heterogeneous light environment (9.35%-35.19%), and enhanced soil MBN and MBP in the P addition treatment (9.03%-12.96%). The interactive effect of P addition and clonal integration largely led to the transition of fungal groups from slow-growing oligotrophic types to fast-growing copiotrophic types. Our results show that the interactions between clonal integration and/or P addition under light heterogeneity increase the benefits of ferns in light-rich patches, and further promote integrative performance of ferns and soil microbial communities.
Collapse
Affiliation(s)
- Xue-Ping Shi
- College of Horticulture and Forestry Sciences / Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan-Feng Bai
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ping Song
- Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan-Yuan Liu
- College of Horticulture and Forestry Sciences / Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo-Wen Zhang
- College of Horticulture and Forestry Sciences / Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zheng
- College of Horticulture and Forestry Sciences / Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Qian Jiang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Yong-Jian Wang
- College of Horticulture and Forestry Sciences / Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Baedke J, Fábregas‐Tejeda A, Nieves Delgado A. The holobiont concept before Margulis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:149-155. [DOI: 10.1002/jez.b.22931] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Baedke
- Department of Philosophy IRuhr University BochumBochum Germany
- Institute of Zoology and Evolutionary ResearchFriedrich‐Schiller‐UniversityJena Germany
| | - Alejandro Fábregas‐Tejeda
- Department of Philosophy IRuhr University BochumBochum Germany
- Institute of BiologyNational Autonomous University of Mexico (UNAM) Circuito Exterior Ciudad Universitaria S/N Mexico City Mexico
| | - Abigail Nieves Delgado
- Department of Philosophy IRuhr University BochumBochum Germany
- Centre for Anthropological Knowledge in Scientific and Technological Cultures (CAST)Ruhr University BochumBochum Germany
| |
Collapse
|
8
|
Hassani MA, Özkurt E, Seybold H, Dagan T, Stukenbrock EH. Interactions and Coadaptation in Plant Metaorganisms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:483-503. [PMID: 31348865 DOI: 10.1146/annurev-phyto-082718-100008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plants associate with a wide diversity of microorganisms. Some microorganisms engage in intimate associations with the plant host, collectively forming a metaorganism. Such close coexistence with plants requires specific adaptations that allow microorganisms to overcome plant defenses and inhabit plant tissues during growth and reproduction. New data suggest that the plant immune system has a broader role beyond pathogen recognition and also plays an important role in the community assembly of the associated microorganism. We propose that core microorganisms undergo coadaptation with their plant host, notably in response to the plant immune system allowing them to persist and propagate in their host. Microorganisms, which are vertically transmitted from generation to generation via plant seeds, putatively compose highly adapted species and may have plant-beneficial functions. The extent to which plant domestication has impacted the underlying genetics of plant-microbe associations remains poorly understood. We propose that the ability of domesticated plants to select and maintain advantageous microbial partners may have been affected. In this review, we discuss factors that impact plant metaorganism assembly and function. We underline the importance of microbe-microbe interactions in plant tissues, as they are still poorly studied but may have a great impact on plant health.
Collapse
Affiliation(s)
- M Amine Hassani
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Ezgi Özkurt
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Heike Seybold
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Tal Dagan
- Institute of Microbiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
9
|
Abstract
The holobiont concept defines a given organism and its associated symbionts as a potential level of selection over evolutionary time. In clonal plants, recent experiments demonstrated vertical transmission of part of the microbiota from one ramet (i.e., potentially autonomous individual) to another within the clonal network (i.e., connections by modified stems present in ∼35% of all plants). The holobiont concept defines a given organism and its associated symbionts as a potential level of selection over evolutionary time. In clonal plants, recent experiments demonstrated vertical transmission of part of the microbiota from one ramet (i.e., potentially autonomous individual) to another within the clonal network (i.e., connections by modified stems present in ∼35% of all plants). Because of this heritability, and potentially reciprocal exchange of microbes between generations of ramets, we propose to extend the existing holobiont framework to the concept of meta-holobiont. A meta-holobiont is a network of holobionts that can exchange biomolecules and microbiota across generations, thus impacting the fitness of both biological scales: holobionts and meta-holobionts. Specifically, meta-holobiont dynamics can result in sharing, specialization, and division of labor across plant clonal generations. This paper, which coins the meta-holobiont concept, is expected to stimulate discussion and to be applied beyond the context of networked clonal plants (e.g., to social insects).
Collapse
|
10
|
Faure D, Simon JC, Heulin T. Holobiont: a conceptual framework to explore the eco-evolutionary and functional implications of host-microbiota interactions in all ecosystems. THE NEW PHYTOLOGIST 2018; 218:1321-1324. [PMID: 29738088 DOI: 10.1111/nph.15199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Denis Faure
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91 190, Gif-sur-Yvette, France
| | - Jean-Christophe Simon
- INRA/Agrocampus Ouest/Université Rennes 1, UMR 1349, IGEPP, Domaine de la Motte, B.P. 35327, F-35653, Le Rheu Cedex, France
| | - Thierry Heulin
- Aix Marseille University, CEA, CNRS, Laboratory for Microbial Ecology of the Rhizosphere and Extreme Environment (LEMiRE), UMR7265 BVME, F-13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
11
|
Vannier N, Mony C, Bittebiere AK, Michon-Coudouel S, Biget M, Vandenkoornhuyse P. A microorganisms' journey between plant generations. MICROBIOME 2018; 6:79. [PMID: 29695286 PMCID: PMC5918900 DOI: 10.1186/s40168-018-0459-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/09/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Plants are colonized by a great diversity of microorganisms which form a microbiota and perform additional functions for their host. This microbiota can thus be considered a toolbox enabling plants to buffer local environmental changes, with a positive influence on plant fitness. In this context, the transmission of the microbiota to the progeny represent a way to ensure the presence of beneficial symbionts within the habitat. Examples of such transmission have been mainly described for seed transmission and concern a few pathogenic microorganisms. We investigated the transmission of symbiotic partners to plant progeny within clonal plant network. METHODS We used the clonal plant Glechoma hederacea as plant model and forced newly emitted clonal progeny to root in separated pots while controlling the presence of microorganisms. We used an amplicon sequencing approach of 16S and 18S rRNA targeting bacteria/archaea and fungi respectively to describe the root microbiota of mother and clonal-plant offspring. RESULTS We demonstrated the vertical transmission of a significant proportion of the mother plants' symbiotic bacteria and fungi to the daughters. Interestingly, archaea were not transmitted to the daughter plants. Transmitted communities had lower richness, suggesting a filtration during transmission. We found that the transmitted pool of microorganisms was similar among daughters, constituting the heritability of a specific cohort of microorganisms, opening a new understanding of the plant holobiont. We also found significant effects of distance to the mother plant and of growth time on the richness of the microbiota transmitted. CONCLUSIONS In this clonal plant, microorganisms are transmitted between individuals through connections, thereby ensuring the availability of microbe partners for the newborn plants as well as the dispersion between hosts for the microorganisms. This previously undescribed ecological process allows the dispersal of microorganisms in space and across plant generations. As the vast majority of plants are clonal, this process might be therefore a strong driver of ecosystem functioning and assembly of plant and microorganism communities in a wide range of ecosystems.
Collapse
Affiliation(s)
- Nathan Vannier
- Université de Rennes 1, CNRS, UMR 6553 EcoBio, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| | - Cendrine Mony
- Université de Rennes 1, CNRS, UMR 6553 EcoBio, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Anne-Kristel Bittebiere
- Université de Lyon 1, CNRS, UMR 5023 LEHNA, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| | - Sophie Michon-Coudouel
- Université de Rennes 1, CNRS, UMS3343 OSUR, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Marine Biget
- Université de Rennes 1, CNRS, UMS3343 OSUR, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Philippe Vandenkoornhuyse
- Université de Rennes 1, CNRS, UMR 6553 EcoBio, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| |
Collapse
|