1
|
Velayati E, Sarihi A, Zarei M, Komaki A, Ramezani-Aliakbari F. Diminazine protects against cardiac aging through the improvement of mitophagy and apoptosis in aging rats induced by D-galactose. BMC Cardiovasc Disord 2025; 25:110. [PMID: 39966715 DOI: 10.1186/s12872-025-04572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a main feature of the aged heart. However, there is still no effective treatment against cardiac aging. Diminazine (DIZE) is an anti-infective agent for animals. It is effective against cardiac disorders. The present study aimed to investigate the effects of DIZE on age-related cardiac dysfunction. METHODS AND RESULTS Wistar rats were randomly divided into four groups, with eight rats per group: control rats (CONT), control rats treated with DIZE (CONT + DIZE), aged rats induced by D-galactose (D-GAL), aged rats treated with DIZE (D-GAL + DIZE). Rats received intraperitoneal (IP) injection of D-GAL at 150 mg/kg daily for 8 weeks to induce aging. The aging animals in the D-GAL + DIZE group were treated with subcutaneous injection of DIZE at 15 mg/kg daily for 8 weeks. Heart tissues were harvested to assay molecular parameters. Our results exhibited cardiac hypertrophy and a significant increase in the expression of cardiac BCL2-associated X (Bax) along with a significant decrease in the expression of cardiac Mitofusin 2 (Mfn2), Phosphatase, and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), Dynamin-related protein 1 (Drp1), and B-cell lymphoma 2 (Bcl2) in the aged rats compared with the control animals. DIZE treatment improved cardiac hypertrophy and the expression of genes. CONCLUSIONS Overall, DIZE treatment significantly reversed the downregulation of PINK1, Mfn2, and Drp1. Moreover, DIZE significantly inhibited apoptosis though improving the gene expression of Bax and Bcl-2 in the heart. DIZE is effective in reducing cardiac hypertrophy induced aging through regulating mitochondrial dynamics, mitophagy and apoptosis.
Collapse
Affiliation(s)
- Ensiyeh Velayati
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Zhuang Z, Zhu Y, Tao J, Liu Y, Lin J, Yang C, Dong C, Qin X, Li Q, Reiter RJ, Wang G, Pei Z, Ren J. UCF101 Rescues against Diabetes-Evoked Cardiac Remodeling and Contractile Anomalies through AMP-Activated Protein Kinase-Mediated Induction of Mitophagy. Pharmacology 2024:1-14. [PMID: 39413739 DOI: 10.1159/000541569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Diabetes mellitus is known to provoke devastating anomalies in myocardial structure and function, while effective therapeutic regimen is still lacking. The selective protease inhibitor UCF101 (5-[5-(2-nitrophenyl) furfuryl iodine]-1,3-diphenyl-2-thiobarbituric acid) has been shown to fend off ischemic heart injury, although its impact on diabetic cardiomyopathy remains elusive. METHODS Our present work was conducted to examine the effect of UCF101 on experimental diabetes-evoked cardiac geometric and functional abnormalities as well as mechanisms involved. Adult mice were made diabetic using streptozotocin (STZ, 50 mg/kg, i.p., for 5 days) while receiving UCF101 (7.15 mg/kg, i.p.). RESULTS STZ evoked cardiac hypertrophy, interstitial fibrosis, mitochondrial ultrastructural damage, oxidative stress, dampened autophagy (LC3B, Beclin 1, elevated p62), mitophagy (FUNDC1 and Parkin with upregulated TOM20), increased left ventricular end systolic diameter, reduced fractional shortening, ejection fraction, cardiomyocyte shortening capacity, velocities of shortening/re-lengthening, and rise in intracellular Ca2+ in conjunction with elongated diastole and intracellular Ca2+ removal, the responses were overtly reconciled by UCF101 with little effects from UCF101 itself. Levels of cell injury markers Omi/HtrA2, TNFα, and stress signaling (JNK, ERK, p38) were overtly enhanced along with compromised phosphorylation of cellular fuel AMP-activated protein kinase (AMPK) (Thr172) and cell survival molecule GSK3β, as well as downregulated SERCA2a and elevated phospholamban, the effect was reversed by UCF101 (except for SERCA2a). AMPK knockout, pharmacological inhibition, the mitophagy inhibitor liensinine, and parkin knockout nullified UCF101-offered cardioprotection in diabetes. UCF101 reversed STZ-induced upregulation in the AMPK degrading enzymes PP2A and PP2C. CONCLUSION These findings suggest that UCF101 rescues diabetes-mediated alterations in cardiac structure and function, likely through AMPK-mediated regulation of mitophagy.
Collapse
Affiliation(s)
- Zhiqiang Zhuang
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuxi Zhu
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yandong Liu
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, China
| | - Jie Lin
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Chunjie Yang
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Chule Dong
- Department of Clinical Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xing Qin
- Department of Cardiology, Air Force Medical University, Xi'an, China
| | - Qun Li
- Guangzhou Cellprotek Pharmaceutical Co., Ltd, Guangzhou, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, USA
| | - Guizhen Wang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, China
| | - Zhaohui Pei
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
3
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
4
|
Weiß J, Heib M, Korn T, Hoyer J, Fuchslocher Chico J, Voigt S, Koudelka T, Tholey A, Adam D. Protease-independent control of parthanatos by HtrA2/Omi. Cell Mol Life Sci 2023; 80:258. [PMID: 37594630 PMCID: PMC10439076 DOI: 10.1007/s00018-023-04904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
HtrA2/Omi is a mitochondrial serine protease with ascribed pro-apoptotic as well as pro-necroptotic functions. Here, we establish that HtrA2/Omi also controls parthanatos, a third modality of regulated cell death. Deletion of HtrA2/Omi protects cells from parthanatos while reconstitution with the protease restores the parthanatic death response. The effects of HtrA2/Omi on parthanatos are specific and cannot be recapitulated by manipulating other mitochondrial proteases such as PARL, LONP1 or PMPCA. HtrA2/Omi controls parthanatos in a manner mechanistically distinct from its action in apoptosis or necroptosis, i.e., not by cleaving cytosolic IAP proteins but rather exerting its effects without exiting mitochondria, and downstream of PARP-1, the first component of the parthanatic signaling cascade. Also, previously identified or candidate substrates of HtrA2/Omi such as PDXDC1, VPS4B or moesin are not cleaved and dispensable for parthanatos, whereas DBC-1 and stathmin are cleaved, and thus represent potential parthanatic downstream mediators of HtrA2/Omi. Moreover, mass-spectrometric screening for novel parthanatic substrates of HtrA2/Omi revealed that the induction of parthanatos does not cause a substantial proteolytic cleavage or major alterations in the abundance of mitochondrial proteins. Resolving these findings, reconstitution of HtrA2/Omi-deficient cells with a catalytically inactive HtrA2/Omi mutant restored their sensitivity against parthanatos to the same level as the protease-active HtrA2/Omi protein. Additionally, an inhibitor of HtrA2/Omi's protease activity did not confer protection against parthanatic cell death. Our results demonstrate that HtrA2/Omi controls parthanatos in a protease-independent manner, likely via novel, unanticipated functions as a scaffolding protein and an interaction with so far unknown mitochondrial proteins.
Collapse
Affiliation(s)
- Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Thiemo Korn
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Johaiber Fuchslocher Chico
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Tomas Koudelka
- Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Andreas Tholey
- Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany.
| |
Collapse
|
5
|
Salin Raj P, Nair A, Preetha Rani MR, Rajankutty K, Ranjith S, Raghu KG. Ferulic acid attenuates high glucose-induced MAM alterations via PACS2/IP3R2/FUNDC1/VDAC1 pathway activating proapoptotic proteins and ameliorates cardiomyopathy in diabetic rats. Int J Cardiol 2023; 372:101-109. [PMID: 36481261 DOI: 10.1016/j.ijcard.2022.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes with no known biomarkers for early detection. Mitochondria-associated endoplasmic reticulum membranes (MAM) are less studied subcellular targets but an emerging area for exploration in metabolic disorders including DCM. We herein studied the role of MAMs and downstream mitochondrial functions in DCM. We also explored the efficacy of ferulic acid (FeA) against DCM via modulation of MAM and its associated signaling pathway. METHODS The H9c2 cardiomyoblast cells were incubated with high concentration (33 mM) of d-glucose for 48 h to create a high glucose ambience in vitro. The expression of various critical proteins of MAM, mitochondrial function, oxidative phosphorylation (OxPhos) and the genesis of apoptosis were examined. The rats fed with high fat/high fructose/streptozotocin (single dose, i.p.) were used as a diabetic model and analyzed the insulin resistance and markers of cardiac hypertrophy and apoptosis. RESULTS High glucose conditions caused the upregulation of MAM formation via PACS2, IP3R2, FUNDC1, and VDAC1 and decreased mitochondrial biogenesis, fusion and OxPhos. The upregulation of mitochondria-driven SMAC-HTRA2-ARTS-XIAP apoptosis and other cell death pathways indicate their critical roles in the genesis of DCM at the molecular level. The diabetic rats also showed cardiomyopathy with increased heart mass index, TNNI3K, troponin, etc. FeA effectively prevented the high glucose-induced MAM alterations and associated cellular anomalies both in vitro and in vivo. CONCLUSION High glucose-induced MAM distortion and subsequent mitochondrial dysfunctions act as the stem of cardiomyopathy. MAM could be explored as a potential target to treat diabetic cardiomyopathy. Also, the FeA could be an attractive nutraceutical agent for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- P Salin Raj
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Anupama Nair
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - M R Preetha Rani
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - K Rajankutty
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - S Ranjith
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
6
|
The Journey of Mitochondrial Protein Import and the Roadmap to Follow. Int J Mol Sci 2023; 24:ijms24032479. [PMID: 36768800 PMCID: PMC9916854 DOI: 10.3390/ijms24032479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are double membrane-bound organelles that play critical functions in cells including metabolism, energy production, regulation of intrinsic apoptosis, and maintenance of calcium homeostasis. Mitochondria are fascinatingly equipped with their own genome and machinery for transcribing and translating 13 essential proteins of the oxidative phosphorylation system (OXPHOS). The rest of the proteins (99%) that function in mitochondria in the various pathways described above are nuclear-transcribed and synthesized as precursors in the cytosol. These proteins are imported into the mitochondria by the unique mitochondrial protein import system that consists of seven machineries. Proper functioning of the mitochondrial protein import system is crucial for optimal mitochondrial deliverables, as well as mitochondrial and cellular homeostasis. Impaired mitochondrial protein import leads to proteotoxic stress in both mitochondria and cytosol, inducing mitochondrial unfolded protein response (UPRmt). Altered UPRmt is associated with the development of various disease conditions including neurodegenerative and cardiovascular diseases, as well as cancer. This review sheds light on the molecular mechanisms underlying the import of nuclear-encoded mitochondrial proteins, the consequences of defective mitochondrial protein import, and the pathological conditions that arise due to altered UPRmt.
Collapse
|
7
|
Wachoski-Dark E, Zhao T, Khan A, Shutt TE, Greenway SC. Mitochondrial Protein Homeostasis and Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23063353. [PMID: 35328774 PMCID: PMC8953902 DOI: 10.3390/ijms23063353] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/06/2022] Open
Abstract
Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic heterogeneity between patients, even between those with the same genetic variant, which is also not well understood. Several of the mitochondrial cardiomyopathies are related to defects in the maintenance of mitochondrial protein homeostasis, or proteostasis. This essential process involves the importing, sorting, folding and degradation of preproteins into fully functional mature structures inside mitochondria. Disrupted mitochondrial proteostasis interferes with mitochondrial energetics and ATP production, which can directly impact cardiac function. An inability to maintain proteostasis can result in mitochondrial dysfunction and subsequent mitophagy or even apoptosis. We review the known mitochondrial diseases that have been associated with cardiomyopathy and which arise from mutations in genes that are important for mitochondrial proteostasis. Genes discussed include DnaJ heat shock protein family member C19 (DNAJC19), mitochondrial import inner membrane translocase subunit TIM16 (MAGMAS), translocase of the inner mitochondrial membrane 50 (TIMM50), mitochondrial intermediate peptidase (MIPEP), X-prolyl-aminopeptidase 3 (XPNPEP3), HtraA serine peptidase 2 (HTRA2), caseinolytic mitochondrial peptidase chaperone subunit B (CLPB) and heat shock 60-kD protein 1 (HSPD1). The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics.
Collapse
Affiliation(s)
- Emily Wachoski-Dark
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tian Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- M.A.G.I.C. Inc., Calgary, AB T2E 7Z4, Canada
| | - Timothy E. Shutt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (T.E.S.); (S.C.G.)
| | - Steven C. Greenway
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (T.E.S.); (S.C.G.)
| |
Collapse
|
8
|
Wang Z, Zhang X, Zhu F, Zhou S, Wang Q, Wang H. A-kinase Anchoring Protein 5 Anchors Protein Kinase A to Mediate PLN/SERCA to Reduce Cardiomyocyte Apoptosis Induced by Hypoxia and Reoxygenation. Biochem Cell Biol 2022; 100:162-170. [PMID: 35041539 DOI: 10.1139/bcb-2021-0466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A-kinase anchoring protein (AKAP) 5 has a variety of biological activities. This study explored whether AKAP5 is involved in cardiomyocyte apoptosis induced by H/R and its possible mechanism. H9C2 cells were used to construct an H/R model in vitro, followed by overexpression of AKAP5 in the cells. Flow cytometry was used to detect the rate of cardiomyocyte apoptosis. The expression of phospholamban (PLN) phosphorylation, SERCA2a and apoptosis-related proteins were determined by western blot. Immunofluorescence staining and immunoprecipitation were used to detect the distribution of and interaction between AKAP5, PKA, and PLN. After H/R induction, H9C2 cells had significantly reduced expression of AKAP5 protein. Upregulation of AKAP5 promoted cell survival and significantly reduced LDH level and apoptosis rate of H9C2 cells. In addition, the overexpression of AKAP5 was accompanied by the activation of the PLN/SERCA2a signaling pathway and a reduction in apoptosis. Immunofluorescence staining and immunoprecipitation revealed that AKAP5 colocalized and interacted with PLN and PKA.Interestingly,St-Ht31 inhibited the effect of AKAP5 overexpression on H/R-induced apoptosis in H9C2 cardiomyocytes. AKAP5 overexpression alleviated H/R-induced cardiomyocyte apoptosis, possibly through anchoring to PKA to mediate the PLN/SERCA pathway, suggesting that AKAP5 is a potential therapeutic target for the prevention and treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhi Wang
- Yijishan Hospital of Wannan Medical College, 569222, Cardiology, Wuhu, China.,Wannan Medical College, 74649, .Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China;
| | - Xu Zhang
- Yijishan Hospital of Wannan Medical College, 569222, Department of Cardiology, Wuhu, China.,Wannan Medical College, 74649, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China;
| | - Feng Zhu
- Yijishan Hospital of Wannan Medical College, 569222, Department of Cardiology, Wuhu, China;
| | - Simin Zhou
- Yijishan Hospital of Wannan Medical College, 569222, Department of Endocrinology, Wuhu, China.,Wannan Medical College, 74649, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China;
| | - Qiushu Wang
- Yijishan Hospital of Wannan Medical College, 569222, Department of Cardiology, Wuhu, China.,Wannan Medical College, 74649, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China;
| | - Hegui Wang
- Yijishan Hospital of Wannan Medical College, 569222, Department of Cardiology, Wuhu, China, 241001;
| |
Collapse
|
9
|
Protective Effect of Fasudil on Hydrogen Peroxide-Induced Oxidative Stress Injury of H9C2 Cardiomyocytes. DISEASE MARKERS 2021; 2021:8177705. [PMID: 34900030 PMCID: PMC8654537 DOI: 10.1155/2021/8177705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022]
Abstract
Objective Oxidative damage is a pathological factor that causes cardiovascular damage in the clinic and is increasingly serious. This study focused on the effect of fasudil on H2O2-induced oxidative damage in cardiomyocytes. Materials and Methods H9C2 cardiomyocytes were cultured in vitro and divided into three groups: control group (Con group), H2O2 treatment (H2O2 group), and fasudil and H2O2 cotreatment (H2O2+fasudil group). The content levels of LDH and MDA in the supernatant were detected, and the morphology of H9C2 cardiomyocytes was observed by light microscopy. 8-OHdG staining was observed by a fluorescence inversion microscope. Cell Counting Kit (CCK-8), western blotting, real-time polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay (ELISA) were used to investigate the effect of fasudil on the Rho/ROCK signaling pathway. Results Our results showed that after H2O2 treatment, the H9C2 cardiomyocytes were irregular in shape and elliptical. But the morphology of the H2O2+fasudil group was similar to that of the Con group. The green fluorescence of the H2O2 group was significantly enhancer than that of the Con group, while the green fluorescence of the H2O2+fasudil group was weaker than those of the H2O2 group. By detecting the supernatant, it was found that the contents of LDH were significantly increased, and the contents of SOD and CAT in the H2O2 group were significantly decreased. And the expression of antioxidant indicators in the H2O2 group was significantly decreased by western blotting. The results of RT-PCR showed that SOD1 and SOD2 mRNA in the H2O2 group was significantly reduced, and the contents of GPX1 and GPX3 in the H2O2 group were significantly decreased by enzyme-linked immunosorbent assay (ELISA). The expression of ROCK1, ROCK2, and downstream phosphorylation of myosin phosphatase target subunit-1 (p-MYPT-1) was significantly increased in the H2O2 group, while fasudil inhibited the increase of ROCK1, ROCK2, and p-MYPT-1. Conclusions Fasudil can inhibit the Rho/ROCK signaling pathway induced by H2O2 and reduce oxidative stress response, inhibit apoptosis, and improve antioxidant enzyme activity in H9C2 cardiomyocytes thereby delaying cell senescence.
Collapse
|
10
|
Omi inhibition ameliorates neuron apoptosis and neurological deficit after subarachnoid hemorrhage in rats. Genes Genomics 2021; 43:1423-1432. [PMID: 34677809 PMCID: PMC8606397 DOI: 10.1007/s13258-021-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/04/2021] [Indexed: 11/03/2022]
Abstract
Background Subarachnoid hemorrhage (SAH) is a severe neurological emergency, resulting in cognitive impairments and threatening human's health. Currently, SAH has no effective treatment. It is urgent to search for an effective therapy for SAH. Objective To explore the expression of Omi protein after subarachnoid hemorrhage in rats. Methods SAH rat model was established by injecting blood into the prechiasmatic cistern. Neurological deficit was assessed by detecting neurological deficit scores and brain tissue water contents. Apoptotic cells were evaluated by TUNEL staining and IHC staining. Omi and Cleaved caspase 3 expressions in nerve cells were determined by double staining using IF. Apoptosis-related proteins were measured by Western blotting assay. Results SAH rat model was successfully established, showing more apoptotic cells and high neurological deficit scores in SAH rat. In SAH rat model, Omi expression in nerve cells was elevated and the upregulation of Omi mainly occurred in cytoplasm, accompanied by the degradation of XIAP and the increased cleaved caspase 3/9 and cleaved PARP. Once treated with UCF-101, a specific inhibitor of Omi, the increased cell apoptosis, left/right brain moisture contents and neurological deficits were notably reversed in SAH rat brain. Of note, SAH-induced the increases of apoptosis-related protein in nerve cells were also rescued by the administration of UCF-101. Conclusions UCF-101-mediated Omi inhibition decreased the degradation of XIAP and subsequently inhibited the activation of apoptosis-related proteins, decreased nerve cell apoptosis, leading to the improvement on early brain injury in SAH rat. UCF-101-based Omi inhibition may be used to treat SAH with great potential application.
Collapse
|
11
|
miR-16-5p Regulates PTPN4 and Affects Cardiomyocyte Apoptosis and Autophagy Induced by Hypoxia/Reoxygenation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5599031. [PMID: 34306144 PMCID: PMC8270708 DOI: 10.1155/2021/5599031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
Objectives To explore the effects of miR-16-5p and PTPN4 on the apoptosis and autophagy of AC16 cardiomyocytes after hypoxia/reoxygenation treatment. Methods AC16 cells were divided into the control group (NC), hypoxia/reoxygenation group (H/R), knockdown miR-16-5p negative control group (NC inhibitor), knockdown miR-16-5p group (miR-16-5p inhibitor), overexpression miR-16-5p negative control group (NC mimics), overexpression miR-16-5p group (miR-16-5p mimics), silent PTPN4 negative control group (sh-NC), silent PTPN4 group (sh-PTPN4), and silent PTPN4 + knockdown miR-16-5p group (sh-PTPN4 + miR-16-5p inhibitor). Real-time fluorescent quantitative PCR (RT-qPCR) and western blotting (WB) were used to measure the expression level of miR-16-3p, miR-16-5p, protein tyrosine phosphatase nonreceptor type 4 (PTPN4), and autophagy-related proteins (beclin-1, LC3 II/I, and P26) in AC16 cells. The apoptosis level of AC16 cells in each group was measured by flow cytometry and TUNEL. The dual-luciferase reporter gene experiment was also used to verify the targeting relationship between miR-16-5p and PTPN4. Results After H/R treatment, the levels of myocardial injury markers including LDH and CK-MB in AC16 cells were increased significantly (P < 0.05), and the levels of cell apoptosis and autophagy also increased significantly (P < 0.05). The level of miR-16-3p in AC16 cells did not change significantly after H/R treatment, whereas the level of miR-16-5p was increased significantly (P < 0.05). After miR-16-5p was knocked down, the levels of LDH and CK-MB in AC16 cells treated with H/R were significantly reduced (P < 0.05), and the rates of cell apoptosis and autophagy were also significantly reduced (P < 0.05). miR-16-5p negatively regulated the expression level of PTPN4 protein in AC16 cells (P < 0.05), and the dual-luciferase reporter gene experiment confirmed that PTPN4 was the downstream target of miR-16-5p. Silencing of PTPN4 significantly increased the damage of AC16 cells induced by H/R treatment (P < 0.05), but simultaneously inhibiting the expression of PTPN4 and miR-16-5p reversed the protective effect of miR-16-5p knockdown on AC16 cells (P < 0.05). Conclusions The expression of miR-16-5p is upregulated in AC16 cells after H/R treatment and the knockdown which can protect AC16 cells from H/R-induced cell damage that may be due to its regulation on the expression of PTPN4.
Collapse
|
12
|
Chen Z, Huang L, Tso A, Wang S, Fang X, Ouyang K, Han Z. Mitochondrial Chaperones and Proteases in Cardiomyocytes and Heart Failure. Front Mol Biosci 2021; 8:630332. [PMID: 33937324 PMCID: PMC8082175 DOI: 10.3389/fmolb.2021.630332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure is one of the leading causes of morbidity and mortality worldwide. In cardiomyocytes, mitochondria are not only essential organelles providing more than 90% of the ATP necessary for contraction, but they also play critical roles in regulating intracellular Ca2+ signaling, lipid metabolism, production of reactive oxygen species (ROS), and apoptosis. Because mitochondrial DNA only encodes 13 proteins, most mitochondrial proteins are nuclear DNA-encoded, synthesized, and transported from the cytoplasm, refolded in the matrix to function alone or as a part of a complex, and degraded if damaged or incorrectly folded. Mitochondria possess a set of endogenous chaperones and proteases to maintain mitochondrial protein homeostasis. Perturbation of mitochondrial protein homeostasis usually precedes disruption of the whole mitochondrial quality control system and is recognized as one of the hallmarks of cardiomyocyte dysfunction and death. In this review, we focus on mitochondrial chaperones and proteases and summarize recent advances in understanding how these proteins are involved in the initiation and progression of heart failure.
Collapse
Affiliation(s)
- Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Alexandria Tso
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shijia Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhen Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
13
|
Gu X, Wang D, Xu Z, Wang J, Guo L, Chai R, Li G, Shu Y, Li H. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol 2021; 22:86. [PMID: 33752742 PMCID: PMC7983387 DOI: 10.1186/s13059-021-02311-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Aging, noise, infection, and ototoxic drugs are the major causes of human acquired sensorineural hearing loss, but treatment options are limited. CRISPR/Cas9 technology has tremendous potential to become a new therapeutic modality for acquired non-inherited sensorineural hearing loss. Here, we develop CRISPR/Cas9 strategies to prevent aminoglycoside-induced deafness, a common type of acquired non-inherited sensorineural hearing loss, via disrupting the Htra2 gene in the inner ear which is involved in apoptosis but has not been investigated in cochlear hair cell protection. RESULTS The results indicate that adeno-associated virus (AAV)-mediated delivery of CRISPR/SpCas9 system ameliorates neomycin-induced apoptosis, promotes hair cell survival, and significantly improves hearing function in neomycin-treated mice. The protective effect of the AAV-CRISPR/Cas9 system in vivo is sustained up to 8 weeks after neomycin exposure. For more efficient delivery of the whole CRISPR/Cas9 system, we also explore the AAV-CRISPR/SaCas9 system to prevent neomycin-induced deafness. The in vivo editing efficiency of the SaCas9 system is 1.73% on average. We observed significant improvement in auditory brainstem response thresholds in the injected ears compared with the non-injected ears. At 4 weeks after neomycin exposure, the protective effect of the AAV-CRISPR/SaCas9 system is still obvious, with the improvement in auditory brainstem response threshold up to 50 dB at 8 kHz. CONCLUSIONS These findings demonstrate the safe and effective prevention of aminoglycoside-induced deafness via Htra2 gene editing and support further development of the CRISPR/Cas9 technology in the treatment of non-inherited hearing loss as well as other non-inherited diseases.
Collapse
Affiliation(s)
- Xi Gu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- Department of Otolaryngology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Daqi Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Zhijiao Xu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Jinghan Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Luo Guo
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096 China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
| | - Genglin Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Yilai Shu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Huawei Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
14
|
Zheng J, Long M, Qin Z, Wang F, Chen Z, Li L. Nicorandil inhibits cardiomyocyte apoptosis and improves cardiac function by suppressing the HtrA2/XIAP/PARP signaling after coronary microembolization in rats. Pharmacol Res Perspect 2021; 9:e00699. [PMID: 33448699 PMCID: PMC7809785 DOI: 10.1002/prp2.699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiomyocyte apoptosis is a key factor in the deterioration of cardiac function after coronary microembolization (CME). Nicorandil (NIC) affects myocardial injury, which may be related to the inhibition of apoptosis. However, the specific mechanism of cardioprotection has not been elucidated. Therefore, we analyzed the impact of NIC on cardiac function in rats subjected to CME and its effect on the high-temperature requirement peptidase 2/X-linked inhibitor of apoptosis protein/poly ADP-ribose polymerase (HtrA2/XIAP/PARP) pathway. Sprague Dawley rats were divided into four groups: Sham, CME, CME + NIC, and CME + UCF. Echocardiography was performed 9 hours after CME. Myocardial injury markers were evaluated in blood samples, and the heart tissue was collected for hematoxylin-eosin staining, hematoxylin basic fuchsin picric acid staining staining, TdT-mediated DUTP nick end labeling (TUNEL) staining, Western blot analysis of the HtrA2/XIAP/PARP pathway, and transmission electron microscopy. NIC ameliorated cardiac dysfunctioncaused by CME and reduced serum levels of CK-MB and LDH. In addition, NIC decreased myocardial microinfarct size and apoptotic index. NIC reduced the Bax/Bcl-2 ratio, levels of cleaved caspase 3/9, cytoplasmic HtrA2, and cleaved PARP, and increased the level of XIAP. The effects of NIC were similar to those of the HtrA2 inhibitor, UCF101. This study demonstrated that NIC reduces CME-induced myocardial injury, reduces mitochondrial damage, and improves myocardial function. The reduction in cardiomyocyte apoptosis by NIC may be mediated by the HtrA2/XIAP/PARP signaling pathway.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Manyun Long
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Zhenbai Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Fen Wang
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiqing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| |
Collapse
|
15
|
Li Y, Liu M, Yi J, Song X, Zheng X, Liu D, Wang S, Chu C, Yang J. Exogenous hydrogen sulfide inhibits apoptosis by regulating endoplasmic reticulum stress-autophagy axis and improves myocardial reconstruction after acute myocardial infarction. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1325-1336. [PMID: 33210714 DOI: 10.1093/abbs/gmaa133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
During acute myocardial infarction, endoplasmic reticulum (ER) stress-induced autophagy and apoptosis have been shown as important pathogeneses of myocardial reconstruction. Importantly, hydrogen sulfide (H2S), as a third endogenous gas signaling molecule, exerts strong cytoprotective effect on anti-ER stress, autophagy regulation and antiapoptosis. Here, we showed that H2S treatment inhibits apoptosis by regulating ER stress-autophagy axis and improves myocardial reconstruction after acute myocardial infarction. We found that H2S intervention improved left ventricle function, reduced glycogen deposition in myocardial tissue mesenchyme, and inhibited apoptosis. Moreover, the expressions of fibrosis indicators (Col3a1 and Col1a2), ER stress-related proteins (CHOP and BIP/ERP78), autophagy-related proteins (Beclin and ATG5), apoptosis protein (Bax), as well as fibrosis protein Col4a3bp were all decreased after treatment with H2S. H2S administration also maintained MMP/TIMP balance. Mechanistically, H2S activated the PI3K/AKT signaling pathway. In addition, H2S treatment also reduced the expressions of ER stress-related proteins, autophagy-related proteins, and apoptins in in vitro experiments. Interestingly, activation of ER stress-autophagy axis could reverse the inhibitory effect of H2S on myocardial apoptosis. Altogether, these results suggested that exogenous H2S suppresses myocardial apoptosis by blocking ER stress-autophagy axis, which in turn reverses cardiac remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Yaling Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Maojun Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jiali Yi
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Xiong Song
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Xia Zheng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Da Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Sen Wang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| |
Collapse
|
16
|
Svaguša T, Martinić M, Martinić M, Kovačević L, Šepac A, Miličić D, Bulum J, Starčević B, Sirotković-Skerlev M, Seiwerth F, Kulić A, Sedlić F. Mitochondrial unfolded protein response, mitophagy and other mitochondrial quality control mechanisms in heart disease and aged heart. Croat Med J 2020. [PMID: 32378379 PMCID: PMC7230417 DOI: 10.3325/cmj.2020.61.126] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are involved in crucial homeostatic processes in the cell: the production of adenosine triphosphate and reactive oxygen species, and the release of pro-apoptotic molecules. Thus, cell survival depends on the maintenance of proper mitochondrial function by mitochondrial quality control. The most important mitochondrial quality control mechanisms are mitochondrial unfolded protein response, mitophagy, biogenesis, and fusion-fission dynamics. This review deals with mitochondrial quality control in heart diseases, especially myocardial infarction and heart failure. Some previous studies have demonstrated that the activation of mitochondrial quality control mechanisms may be beneficial for the heart, while others have shown that it may lead to heart damage. Our aim was to describe the mechanisms by which mitochondrial quality control contributes to heart protection or damage and to provide evidence that may resolve the seemingly contradictory results from the previous studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Filip Sedlić
- Filip Sedlić, Department of Pathophysiology, University of Zagreb School of Medicine, Kišpatićeva 12, 10 000 Zagreb, Croatia,
| |
Collapse
|
17
|
Wu L, Liu D, Wu Y, Wei X, Wang Z, Wang W, Zhang S, Yang H, Yi M, Liu H. p53 mediated transcription of Omi/HtrA2 in aging myocardium. Biochem Biophys Res Commun 2019; 519:734-739. [PMID: 31543347 DOI: 10.1016/j.bbrc.2019.09.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/16/2019] [Indexed: 10/26/2022]
Abstract
AIMS Omi/HtrA2 is a pro-apoptotic protein, increased mRNA and protein levels of Omi/HtrA2 in aging myocardium facilitates apoptosis and affects mitochondrial homeostasis. Our previous study found that p53 can bind to the Omi/HtrA2 promoter. The purpose of this study was to determine whether p53 participates in regulating the expression of Omi/HtrA2 in aging myocardium. METHODS AND RESULTS we used Western blot to detect the expression of Omi/HtrA2 and p53 nucleoprotein, and then found that both of them were elevated in aging heart. Furthermore, we also observed the increased binding of p53 to Omi/HtrA2 promoter by chromatin immunoprecipitation. To initially explore the regulation mechanism of Omi/HtrA2, plasmid transfection and RNA interference in NIH3T3 cells were used to upregulate or knock down p53, respectively. The mRNA and protein levels of Omi/HtrA2 were increased with the overexpression of p53 by real-time PCR and Western blot, and Omi/HtrA2 promoter activity enhanced after transfected with pcDNA3.1-p53. The result from RNA interference was quite the contrary.Our study demonstrated that the binding ability of p53 to Omi/HtrA2 promoter was increased in aging myocardium, and increased p53 promoted the mRNA and protein levels of Omi/HtrA2 by enhancing the promoter activity of Omi/HtrA2. CONCLUSIONS p53 acts as a transcriptional factor that induces Omi/HtrA2 expression in aged cardiomyocytes.These results provide a new way to explore the mechanism of increased Omi/HtrA2 in the aging process of heart.
Collapse
Affiliation(s)
- Linguo Wu
- Department of Pathology, Beijing Luhe Hospital,Capital Medical University, Beijing, 101100, China.
| | - Dan Liu
- Yan Jing Medical College, Capital Medical University, Beijing, 101300, China.
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, 100069, China.
| | - Xin Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Zhaojia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, 100069, China.
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, 100069, China.
| | - Hong Yang
- Yan Jing Medical College, Capital Medical University, Beijing, 101300, China.
| | - Ming Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, 100069, China.
| |
Collapse
|
18
|
Extracellular HtrA2 Induces Apoptosis in Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2019; 20:ijms20215446. [PMID: 31683713 PMCID: PMC6862081 DOI: 10.3390/ijms20215446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
The serine protease high-temperature-required protein A2 (HtrA2) has been identified as a key intracellular molecule promoting apoptosis in cells during ischemia reperfusion (IR) injury. IR injury in ST-segment elevation myocardial infarction (STEMI) contributes to overall myocardial damage. HtrA2 has further been shown to be significantly increased in the serum of patients with STEMI. In the present pilot study, we use human umbilical vein endothelial cells (HUVECs) to investigate whether extracellular HtrA2 induces apoptosis using Annexin V staining. Furthermore, we examine whether HtrA2 is released extracellularly after staurosporine-induced apoptosis using ELISA. We find that HtrA2 is released upon induction of apoptosis by staurosporine into the cell culture medium. Furthermore, treatment of HUVECs with extracellular HtrA2-induces apoptosis, while the addition of anti-HtrA2 antibodies reduces both HtrA2- and staurosporine-induced endothelial cell apoptosis. In conclusion, we show here that extracellular HtrA2 induces apoptosis in human endothelial cells, although the exact molecular mechanisms have to be investigated in future.
Collapse
|
19
|
Liu D, Wu L, Wu Y, Wei X, Wang W, Zhang S, Yi M, Li J, Liu H, Ma X. Heat shock factor 1-mediated transcription activation of Omi/HtrA2 induces myocardial mitochondrial apoptosis in the aging heart. Aging (Albany NY) 2019; 11:8982-8997. [PMID: 31627188 PMCID: PMC6834417 DOI: 10.18632/aging.102361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Increased cardiac apoptosis is a hallmark of the elderly, which in turn increases the risk for developing cardiac disease. The overexpression of Omi/HtrA2 mRNA and protein contributes to apoptosis in the aged heart. Heat shock factor 1 (HSF1) is a transcription factor that binds to the promoter of Omi/HtrA2 in the aging myocardium. However, whether HSF1 participates in cardiomyocyte apoptosis via transcriptional regulation of Omi/HtrA2 remains unclear. The present study was designed to investigate whether HSF1 plays a role in Omi/HtrA2 transcriptional regulation and myocardial apoptosis. METHODS AND RESULTS Assessment of the hearts of mice of different ages was performed, which indicated a decrease in cardiac function reserve and an increase in mitochondrial apoptosis. Omi/HtrA2 overexpression in the elderly was negatively correlated with left ventricular function after exercise overload and positively correlated with myocardial Caspase-9 apoptosis. Chromatin immunoprecipitation (ChIP) of aging hearts and plasmid transfection/RNA interference of H9C2 cells revealed that enhancement of HSF1 expression promotes Omi/HtrA2 expression by inducing the promoter activity of Omi/HtrA2 while also increasing mitochondrial apoptosis by upregulating Omi/HtrA2 expression. CONCLUSIONS HSF1 acts as a transcriptional factor that induces Omi/HtrA2 expression and Caspase-9 apoptosis in aged cardiomyocytes, while also decreasing cardiac function reserve.
Collapse
Affiliation(s)
- Dan Liu
- Department of Physiology and Pathophysiology, Yan Jing Medical College, Capital Medical University, Beijing 101300, China
| | - Linguo Wu
- Department of Pathology, Beijing LuHe Hospital of Capital Medical University, Beijing 101100, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Xin Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Ming Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Li
- Department of Cardiology, XuanWu Hospital Capital Medical University, Beijing 100053, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
20
|
miR-181c-5p Exacerbates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis via Targeting PTPN4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1957920. [PMID: 31178952 PMCID: PMC6501226 DOI: 10.1155/2019/1957920] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Background Activation of cell apoptosis is a major form of cell death during myocardial ischemia/reperfusion injury (I/RI). Therefore, examining ways to control cell apoptosis has important clinical significance for improving postischemic recovery. Clinical evidence demonstrated that miR-181c-5p was significantly upregulated in the early phase of myocardial infarction. However, whether or not miR-181c-5p mediates cardiac I/RI through cell apoptosis pathway is unknown. Thus, the present study is aimed at investigating the role and the possible mechanism of miR-181c-5p in apoptosis during I/R injury by using H9C2 cardiomyocytes. Methods and Results The rat origin H9C2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R, 6 hours hypoxia followed by 6 hours reoxygenation) to induce cell injury. The results showed that H/R significantly increased the expression of miR-181c-5p but not miR-181c-3p in H9C2 cells. In line with this, in an in vivo rat cardiac I/RI model, miR-181c-5p expression was also significantly increased. The overexpression of miR-181c-5p by its agomir transfection significantly aggravated H/R-induced cell injury (increased lactate dehydrogenase level and reduced cell viability) and exacerbated H/R-induced cell apoptosis (greater cleaved caspases 3 expression, Bax/Bcl-2 and more TUNEL-positive cells). In contrast, inhibition of miR-181c-5p in vitro had the opposite effect. By using computational prediction algorithms, protein tyrosine phosphatase nonreceptor type 4 (PTPN4) was predicted as a potential target gene of miR-181c-5p and was verified by the luciferase reporter assay. The overexpression of miR-181c-5p significantly attenuated the mRNA and protein expression of PTPN4 in H9C2 cardiomyocytes. Moreover, knockdown of PTPN4 significantly aggravated H/R-induced enhancement of LDH level, cleaved caspase 3 expression, and apoptotic cell death, which mimicked the proapoptotic effects of miR-181c-5p in H9C2 cardiomyocytes. Conclusions These findings suggested that miR-181c-5p exacerbates H/R-induced cardiomyocyte injury and apoptosis via targeting PTPN4 and that miR-181c-5p/PTPN4 signaling may yield novel strategies to combat myocardial I/R injury.
Collapse
|
21
|
Hu Y, Bi Y, Yao D, Wang P, Li Y. Omi/HtrA2 Protease Associated Cell Apoptosis Participates in Blood-Brain Barrier Dysfunction. Front Mol Neurosci 2019; 12:48. [PMID: 30853894 PMCID: PMC6395387 DOI: 10.3389/fnmol.2019.00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/07/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Omi/HtrA2 is a proapoptotic mitochondrial serine protease involved in caspase-dependent cell apoptosis, translocating from mitochondria to the cytosol after an apoptotic insult. Our previous study indicated pre-treatment with UCF-101, a specific inhibitor of Omi/HtrA2, could significantly reduce neuronal apoptosis and attenuate sepsis-induced cognitive dysfunction. Various hypotheses involving blood-brain-barrier (BBB) disruption have been proposed to account for sepsis-associated encephalopathy (SAE). Here, we attempted to explore whether interference of Omi/HtrA2 by RNA interference or UCF-101 pre-treatment can improve sepsis-induced disruption of BBB using human cerebral microvascular endothelial cell line (hCMEC/D3) in vitro and if so, to explore mechanisms involved Omi/HtrA2 protease mediates BBB disruption in SAE. Methods: hCMEC/D3 cell monolayers were intervened by different concentrations of LPS (0–50 μg/mL) over experimental period. Pharmacological or gene interventions (by silencing RNA of Omi/HtrA2) were used to study molecular mechanisms involved in sepsis-associated Omi/HtrA2 translocation, cell apoptosis and BBB dysfunction. BBB function was assessed by trans-endothelial electrical resistance (TEER) and permeability to labeled dextrans (FITC-4kDa). Tight junction (TJ) integrity was assessed by immunofluorescence, western blotting and transmission electron microscopic (TEM) analyses. Apoptosis was determined using flow cytometry and TUNEL assay. Mitochondrial membrane potential (MMP) and oxidative stress were also investigated. Results: LPS affects hCMEC/D3 TJ permeability in a concentration- and time-dependent manner. LPS intervention resulted in a significant disruption of BBB, as manifested by decreased TEER (by ~26%) and a parallel increased paracellular permeability to FITC- (4kDa) dextrans through hCMEC/D3 monolayers. The inhibition of Omi/HtrA2 by UCF-101 or Omi/HtrA2 shRNA reduced LPS-induced brain endothelial cell apoptosis, and resulted in significant improvement on LPS-induced BBB disruption as well as decreased occludin, claudin-5 and ZO-1 expressions. Omi/HtrA2 manipulated endothelial cell apoptosis by shifting into cytosol and inducing X-linked inhibitor of apoptosis protein (XIAP) degradation. UCF-101 administration or Omi/HtrA2 shRNA intervention did attenuate the degradation of XIAP, Poly ADP-ribose polymerase (PARP) cleavage, and caspase-3 cleavage. However, only UCF-101 partly prevented the mobilization of Omi/HtrA2 from the mitochondria to the cytosol after LPS intervention. That abrogation of Omi/HtrA2 by UCF-101 or Omi/HtrA2 shRNA resulted in a significant improvement on LPS-induced decrease of MMP. Oxidative stress was significantly increased in the LPS treated group compared to the control or NC-shRNA group. However, abrogation of Omi/HtrA2 by UCF-101 or Omi/HtrA2 shRNA did not significantly improve oxidative injury. Conclusions: Our study indicated an important role of Omi/HtrA2 in manipulating LPS-induced cell apoptosis and BBB integrity by translocating from mitochondria into cytosol in brain endothelial cells. Omi/HtrA2 induced mitochondrial pathway apoptosis, which involves inhibition of an important antiapoptotic protein XIAP and influence on MMP. Therapeutic methods that inhibit Omi/HtrA2 function may provide a novel therapeutic measure to septic encephalopathy.
Collapse
Affiliation(s)
- Yueyu Hu
- Department of Neurology, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yong Bi
- Department of Neurology, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Danhua Yao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pengfei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Li F, Li X, Yang J, Guo X, Zheng X, Lv Z, Shi C. Increased Expression of Apo-J and Omi/HtrA2 After Intracerebral Hemorrhage in Rats. World Neurosurg 2018; 116:e26-e34. [PMID: 29581019 DOI: 10.1016/j.wneu.2018.03.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To investigate the changes of Apo-J and Omi/HtrA2 protein expression in rats with intracerebral hemorrhage. METHODS 150 Sprague-Dawley adult rats were randomly divided into 3 groups: (1) normal control (NC) group, (2) sham group, and (3) intracerebral hemorrhage (ICH) group. The data were collected at 6 hours, 12 hours, 1 day, 2 days, 3 days, 5 days, and 7 days. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling staining. The distributions of the Apo-J and Omi/HtrA2 proteins were determined by immunohistochemical staining. The levels of Apo-J mRNA and Omi/HtrA2 mRNA expressions were examined by real-time polymerase chain reaction. RESULTS Apoptosis in the ICH group was higher than in the sham and NC groups (P < 0.05). Both the Apo-J and Omi/HtrA2 expression levels were increased in the peripheral region of hemorrhage, with a peak at 3 days. The Apo-J mRNA level positively correlated with the HtrA2 mRNA level in the ICH group (r = 0.883, P < 0.001). CONCLUSION The expressions of Apo-J and Omi/HtrA2 increased in parallel in the peripheral region of rat cerebral hemorrhage. Local high expression of Apo-J in the peripheral regions may play a neuroprotective role by inhibiting apoptosis via the Omi/HtrA2 pathway after hemorrhage.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurology, Wenjiang District People's Hospital, Chengdu, China
| | - Xiaogang Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yang
- Department of Neurology, Wenjiang District People's Hospital, Chengdu, China
| | - Xiaoyan Guo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Zheng
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhiyu Lv
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changqing Shi
- Department of Neurosurgery, Wenjiang District People's Hospital, Chengdu, China.
| |
Collapse
|
23
|
Lu X, Xue P, Fu L, Zhang J, Jiang J, Guo X, Bao G, Xu G, Sun Y, Chen J, Cui Z. HAX1 is associated with neuronal apoptosis and astrocyte proliferation after spinal cord injury. Tissue Cell 2018; 54:1-9. [PMID: 30309497 DOI: 10.1016/j.tice.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
HS1-associated protein X-1 (HAX1) is a class of multifunctional protein, participated in various physiological processes such as cell apoptosis, proliferation and motility. However, the HAX1 expression and function in the spinal cord injury (SCI) pathological process have not been investigated. In our current research, the rat model of SCI was established, and then we explored the possible role of HAX1 after SCI. The results of western blot indicated that HAX1 was present in sham operated control group and significantly elevated at 3 days post SCI, then declined gradually. Immunohistochemical studies indicated HAX1 expression was enhanced significantly in white and gray matter at 3 days post SCI compared with sham operated group. Double immunofluorescence staining showed the proportion of cells, double-labeled HAX1 and neurons, astrocytes, increased significantly at 3 days post SCI. In addition, co-localization of HAX1/active caspase-3 and HAX1/PCNA was tested in cells. Furthermore, over-expression of HAX1 inhibited neuronal apoptosis in vitro, and in astrocytes HAX1 silencing could down-regulate PCNA expression post LPS treatment. Meanwhile, CCK8 assay showed that knockdown of HAX1 could inhibit the astrocyte proliferation. In summary, our data indicated that HAX1 might play significant roles in pathological process of neuronal apoptosis and astrocyte proliferation during SCI.
Collapse
Affiliation(s)
- Xiongsong Lu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China; Medical College, Nantong University, Jiangsu, People's Republic of China
| | - Pengfei Xue
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Luyu Fu
- Department of Pathophysiology, Medical College, Nantong University, Jiangsu, People's Republic of China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiawei Jiang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaofeng Guo
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Wang M, Ye J, Liu J, Wan J. High-temperature requirement protein A2 (HtrA2): A promising biomarker to predict the ischemia-reperfusion injuries in STEMI patients. Int J Cardiol 2018; 249:436. [PMID: 29121748 DOI: 10.1016/j.ijcard.2017.07.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
25
|
|
26
|
Ma Z, Xin Z, Di W, Yan X, Li X, Reiter RJ, Yang Y. Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell Mol Life Sci 2017; 74:3989-3998. [PMID: 28795196 PMCID: PMC11107672 DOI: 10.1007/s00018-017-2618-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion (IR) injury occurs in many organs and tissues, and contributes to morbidity and mortality worldwide. Melatonin, an endogenously produced indolamine, provides a strong defense against IR injury. Mitochondrion, an organelle for ATP production and a decider for cell fate, has been validated to be a crucial target for melatonin to exert its protection against IR injury. In this review, we first clarify the mechanisms underlying mitochondrial dysfunction during IR and melatonin's protection of mitochondria under this condition. Thereafter, special focus is placed on the protective actions of melatonin against IR injury in brain, heart, liver, and others. Finally, we explore several potential future directions of research in this area. Collectively, the information compiled here will serve as a comprehensive reference for the actions of melatonin in IR injury identified to date and will hopefully aid in the design of future research and increase the potential of melatonin as a therapeutic agent.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Russel J Reiter
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China.
- Department of Cellular and Structural Biology, UT Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
27
|
Hortmann M, Robinson S, Mohr M, Haenel D, Mauler M, Stallmann D, Reinoehl J, Duerschmied D, Peter K, Bode C, Ahrens I. Circulating HtrA2 as a novel biomarker for mitochondrial induced cardiomyocyte apoptosis and ischemia-reperfusion injury in ST-segment elevation myocardial infarction. Int J Cardiol 2017; 243:485-491. [DOI: 10.1016/j.ijcard.2017.05.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 11/16/2022]
|
28
|
Hortmann M, Robinson S, Mohr M, Mauler M, Stallmann D, Reinöhl J, Duerschmied D, Peter K, Carr J, Gibson CM, Bode C, Ahrens I. The mitochondria-targeting peptide elamipretide diminishes circulating HtrA2 in ST-segment elevation myocardial infarction. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2017; 8:695-702. [PMID: 28534645 DOI: 10.1177/2048872617710789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The extent of myocardial damage in patients with ST-segment elevation myocardial infarction (STEMI) depends on both the time to reperfusion as well as injury induced by ischaemia-reperfusion resulting in a cascade of cellular and humoral reactions. As a consequence of ischaemia-reperfusion in the heart, the high-temperature requirement serine peptidase 2 (HtrA2) is translocated from the mitochondria to the cytosol, whereupon it induces protease activity-dependent apoptosis mediated via caspases. Myocardial damage induced by reperfusion cannot be monitored due to a current lack in specific biomarkers. We examined the serum level of HtrA2 as a potentially novel biomarker for mitochondrial-induced cardiomyocyte apoptosis. METHODS After informed consent, peripheral blood was obtained from patients (n=19) with first-time acute anterior STEMI after percutaneous coronary intervention. Within this group, 10 of the patients received the mitochondria-targeting peptide elamipretide (phase 2a clinical study EMBRACE (NCT01572909)). Blood was also obtained from a control group of healthy donors (n=16). The serum level of HtrA2 was measured by an enzyme-linked immunosorbent assay (ELISA). In a murine model of myocardial ischaemia-reperfusion injury, HtrA2 was determined in plasma by ELISA after left anterior descending artery occlusion. RESULTS HtrA2 median was significantly increased in patients with STEMI compared to healthy controls 392.4 (240.7-502.8) pg/mL vs. 1805.5 (981.3-2220.1) pg/mL (P⩽0.05). Elamipretide significantly reduced the HtrA2 median serum level after myocardial infarction 1805.5 (981.3-2220.1) pg/mL vs. 496.5 (379.4-703.8) pg/mL (P⩽0.05). Left anterior descending artery occlusion in mice significantly increased HtrA2 mean in plasma (117.4 fg/ml±SEM 28.1 vs. 525.2 fg/ml±SEM 96; P⩽0.05). CONCLUSION Compared to healthy controls, we found significantly increased serum levels of HtrA2 in patients with STEMI. The result was validated in a murine model of myocardial ischaemia-reperfusion injury. In humans the increased serum level was significantly reduced by the mitochondria-targeting peptide elamipretide. In conclusion, HtrA2 is detectable in serum of patients with STEMI and might present a novel biomarker for mitochondrial-induced cardiomyocyte apoptosis. Consequently, HtrA2 may also show promise as a biomarker for the identification of ischaemia-reperfusion injury. However, this must be validated in a lager clinical trial.
Collapse
Affiliation(s)
- Marcus Hortmann
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Samuel Robinson
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany.,Department of Medicine, Monash University, Australia
| | - Moritz Mohr
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Maximillian Mauler
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Daniela Stallmann
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Jochen Reinöhl
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Karlheinz Peter
- Department of Medicine, Monash University, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - James Carr
- Stealth BioTherapeutics Inc., Newton, USA
| | | | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Ingo Ahrens
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany.,Augustinerinnen Hospital, Cologne, Academic Teaching Hospital University of Cologne, Germany
| |
Collapse
|