1
|
Berlinghof J, Montilla LM, Peiffer F, Quero GM, Marzocchi U, Meador TB, Margiotta F, Abagnale M, Wild C, Cardini U. Accelerated nitrogen cycling on Mediterranean seagrass leaves at volcanic CO 2 vents. Commun Biol 2024; 7:341. [PMID: 38503855 PMCID: PMC11254932 DOI: 10.1038/s42003-024-06011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Seagrass meadows form highly productive and diverse ecosystems in coastal areas worldwide, where they are increasingly exposed to ocean acidification (OA). Efficient nitrogen (N) cycling and uptake are essential to maintain plant productivity, but the effects of OA on N transformations in these systems are poorly understood. Here we show that complete N cycling occurs on leaves of the Mediterranean seagrass Posidonia oceanica at a volcanic CO2 vent near Ischia Island (Italy), with OA affecting both N gain and loss while the epiphytic microbial community structure remains largely unaffected. Daily leaf-associated N2 fixation contributes to 35% of the plant's N demand under ambient pH, while it contributes to 45% under OA. Nitrification potential is only detected under OA, and N-loss via N2 production increases, although the balance remains decisively in favor of enhanced N gain. Our work highlights the role of the N-cycling microbiome in seagrass adaptation to OA, with key N transformations accelerating towards increased N gain.
Collapse
Affiliation(s)
- Johanna Berlinghof
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy.
- Department of Marine Ecology, University of Bremen, Bremen, Germany.
- Genoa Marine Centre, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genova, Italy.
| | - Luis M Montilla
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Friederike Peiffer
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Grazia M Quero
- Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR), Ancona, Italy
| | - Ugo Marzocchi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Center for water technology (WATEC), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Travis B Meador
- Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Francesca Margiotta
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Maria Abagnale
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Christian Wild
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Ulisse Cardini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy.
- Genoa Marine Centre, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genova, Italy.
| |
Collapse
|
2
|
Soru S, Berlino M, Sarà G, Mangano MC, De Vittor C, Pusceddu A. Effects of acidification on the biogeochemistry of unvegetated and seagrass marine sediments. MARINE POLLUTION BULLETIN 2024; 199:115983. [PMID: 38277962 DOI: 10.1016/j.marpolbul.2023.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/28/2024]
Abstract
Many studies addressed ocean acidification (OA) effects on marine life, whereas its effects on sedimentary organic matter (OM) have received less attention. We investigated differences in OM features in sediments from unvegetated and seagrass (Posidonia oceanica) beds in a shallow hydrothermal area (Aeolian Archipelago, Mediterranean Sea), under natural (8.1-8.0) and acidified (7.8-7.9) conditions. We show that a pH difference of -0.3 units have minor effects on OM features in unvegetated sediments, but relevant consequences within acidified seagrass meadows, where OM quantity and nutritional quality are lower than those under natural pH conditions. Effects of acidified conditions on OM biogeochemistry vary between unvegetated and seagrass sediments, with lower C degradation rates and longer C turnover time in the former than in the latter. We conclude that OA, although with effects not consistent between unvegetated and vegetated sediments, can affect OM quantity, composition, and degradation, thus having possible far-reaching consequences for benthic trophic webs.
Collapse
Affiliation(s)
- Santina Soru
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy.
| | - Manuel Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Piazza Marina 61, 90133 Palermo, Italy.
| | - Gianluca Sarà
- NBFC, National Biodiversity Future Center, Palermo Piazza Marina 61, 90133 Palermo, Italy; Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy.
| | - Maria Cristina Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Piazza Marina 61, 90133 Palermo, Italy.
| | - Cinzia De Vittor
- NBFC, National Biodiversity Future Center, Palermo Piazza Marina 61, 90133 Palermo, Italy; National Institute of Oceanography and Applied Geophysics - OGS, 34010 Trieste, Italy.
| | - Antonio Pusceddu
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy.
| |
Collapse
|
3
|
Pansini A, Beca-Carretero P, Berlino M, Sarà G, Stengel DB, Stipcich P, Ceccherelli G. Field development of Posidonia oceanica seedlings changes under predicted acidification conditions. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105946. [PMID: 36917890 DOI: 10.1016/j.marenvres.2023.105946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Ocean acidification has been consistently evidenced to have profound and lasting impacts on marine species. Observations have shown seagrasses to be highly susceptible to future increased pCO2 conditions, but the responses of early life stages as seedlings are poorly understood. This study aimed at evaluating how projected Mediterranean Sea acidification affects the survival, morphological and biochemical development of Posidonia oceanica seedlings through a long-term field experiment along a natural low pH gradient. Future ocean conditions seem to constrain the morphological development of seedlings. However, high pCO2 exposures caused an initial increase in the degree of saturation of fatty acids in leaves and then improved the fatty acid adjustment increasing unsaturation levels in leaves (but not in seeds), suggesting a nutritional compound translocation. Results also suggested a P. oceanica structural components remodelling which may counteract the effects of ocean acidification but would not enhance seagrass seedling productivity.
Collapse
Affiliation(s)
- Arianna Pansini
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy.
| | - Pedro Beca-Carretero
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), 36208, Vigo, Spain; Botany and Plant Science, School of Natural Sciences, University of Galway, Galway, H91 TK33, Ireland
| | - Manuel Berlino
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, 90123, Palermo, Italy
| | - Gianluca Sarà
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, 90123, Palermo, Italy
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, University of Galway, Galway, H91 TK33, Ireland
| | - Patrizia Stipcich
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, 07100, Sassari, Italy
| |
Collapse
|
4
|
Moreira-Saporiti A, Teichberg M, Garnier E, Cornelissen JHC, Alcoverro T, Björk M, Boström C, Dattolo E, Eklöf JS, Hasler-Sheetal H, Marbà N, Marín-Guirao L, Meysick L, Olivé I, Reusch TBH, Ruocco M, Silva J, Sousa AI, Procaccini G, Santos R. A trait-based framework for seagrass ecology: Trends and prospects. FRONTIERS IN PLANT SCIENCE 2023; 14:1088643. [PMID: 37021321 PMCID: PMC10067889 DOI: 10.3389/fpls.2023.1088643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In the last three decades, quantitative approaches that rely on organism traits instead of taxonomy have advanced different fields of ecological research through establishing the mechanistic links between environmental drivers, functional traits, and ecosystem functions. A research subfield where trait-based approaches have been frequently used but poorly synthesized is the ecology of seagrasses; marine angiosperms that colonized the ocean 100M YA and today make up productive yet threatened coastal ecosystems globally. Here, we compiled a comprehensive trait-based response-effect framework (TBF) which builds on previous concepts and ideas, including the use of traits for the study of community assembly processes, from dispersal and response to abiotic and biotic factors, to ecosystem function and service provision. We then apply this framework to the global seagrass literature, using a systematic review to identify the strengths, gaps, and opportunities of the field. Seagrass trait research has mostly focused on the effect of environmental drivers on traits, i.e., "environmental filtering" (72%), whereas links between traits and functions are less common (26.9%). Despite the richness of trait-based data available, concepts related to TBFs are rare in the seagrass literature (15% of studies), including the relative importance of neutral and niche assembly processes, or the influence of trait dominance or complementarity in ecosystem function provision. These knowledge gaps indicate ample potential for further research, highlighting the need to understand the links between the unique traits of seagrasses and the ecosystem services they provide.
Collapse
Affiliation(s)
- Agustín Moreira-Saporiti
- Faculty for Biology and Chemistry, University of Bremen, Bremen, Germany
- Algae and Seagrass Ecology Group, Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Mirta Teichberg
- Algae and Seagrass Ecology Group, Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Eric Garnier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | | | - Mats Björk
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | - Nuria Marbà
- Global Change Research Group, Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB), Esporles Illes Balears, Spain
| | - Lázaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Lukas Meysick
- Åbo Akademi University, Environmental and Marine Biology, Åbo, Finland
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Irene Olivé
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Thorsten B. H. Reusch
- Marine Evolutionary Ecology, Division of Marine Ecology, GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - João Silva
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ana I. Sousa
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Rui Santos
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
5
|
Viana IG, Artika SR, Moreira-Saporiti A, Teichberg M. Limited trait responses of a tropical seagrass to the combination of increasing pCO2 and warming. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:472-488. [PMID: 36272111 DOI: 10.1093/jxb/erac425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Understanding species-specific trait responses under future global change scenarios is of importance for conservation efforts and to make informed decisions within management projects. The combined and single effects of seawater acidification and warmer average temperature were investigated by means of the trait responses of Cymodocea serrulata, a tropical seagrass, under experimental conditions. After a 35 d exposure period, biochemical, morphological, and photo-physiological trait responses were measured. Overall, biochemical traits mildly responded under the individual exposure to high temperature and increasing pCO2 values. The response of C. serrulata was limited to a decrease in %C and an increase in the sucrose content in the rhizome under the high temperature treatment, 32 °C. This suggests that this temperature was lower than the maximum tolerance limit for this species. Increasing pCO2 levels increased %C in the rhizome, and also showed a significant increase in leaf δ13C values. The effects of all treatments were sublethal; however, small changes in their traits could affect the ecosystem services they provide. In particular, changes in tissue carbon concentrations may affect carbon storage capacity, one key ecosystem service. The simultaneous study of different types of trait responses contributes to establish a holistic framework of seagrass ecosystem health under climate change.
Collapse
Affiliation(s)
- Inés G Viana
- Department of Ecology and Animal Biology, University of Vigo, 36310 Vigo, Spain
- Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, 15001, A Coruña, Spain
| | - Suci Rahmadani Artika
- Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
- Department of Marine Sciences, Faculty of Marine Sciences and Fisheries, Hasanuddin University, Indonesia
- Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Halu Oleo University, Indonesia
| | - Agustín Moreira-Saporiti
- Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
- University of Bremen, Bremen, Germany
- The Ecosystems Center, Marine Biological Laboratory (MBL), Woods Hole, MA, USA
| | - Mirta Teichberg
- Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
- The Ecosystems Center, Marine Biological Laboratory (MBL), Woods Hole, MA, USA
| |
Collapse
|
6
|
Stipcich P, Pansini A, Beca-Carretero P, Stengel DB, Ceccherelli G. Field thermo acclimation increases the resilience of Posidonia oceanica seedlings to marine heat waves. MARINE POLLUTION BULLETIN 2022; 184:114230. [PMID: 36307950 DOI: 10.1016/j.marpolbul.2022.114230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Acclimation is a response that results from chronic exposure of an individual to a new environment. This study aimed to investigate whether the thermal environment affects the early development of the seagrass Posidonia oceanica, and whether the effects of a field-simulated Marine Heat Wave (MHW) on seedlings change depending on acclimation. The experiment was done in the field using a crossed design of Acclimation (acclimated vs unacclimated) and MHW (present vs absent) factors. Acclimation has initially constrained the development of P. oceanica seedlings, but then it increased their resilience to the MHW, under both a morphological and biochemical (fatty acid saturation) level. This treatment could be considered in P. oceanica restoration projects in a climate change-impaired sea, by purposely inducing an increased resistance to heat before transplants.
Collapse
Affiliation(s)
- Patrizia Stipcich
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, via Piandanna 4, 07100 Sassari, Italy.
| | - Arianna Pansini
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, via Piandanna 4, 07100 Sassari, Italy
| | - Pedro Beca-Carretero
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain; Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, via Piandanna 4, 07100 Sassari, Italy
| |
Collapse
|
7
|
Berlinghof J, Peiffer F, Marzocchi U, Munari M, Quero GM, Dennis L, Wild C, Cardini U. The role of epiphytes in seagrass productivity under ocean acidification. Sci Rep 2022; 12:6249. [PMID: 35428831 PMCID: PMC9012757 DOI: 10.1038/s41598-022-10154-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Ocean Acidification (OA), due to rising atmospheric CO2, can affect the seagrass holobiont by changing the plant's ecophysiology and the composition and functioning of its epiphytic community. However, our knowledge of the role of epiphytes in the productivity of the seagrass holobiont in response to environmental changes is still very limited. CO2 vents off Ischia Island (Italy) naturally reduce seawater pH, allowing to investigate the adaptation of the seagrass Posidonia oceanica L. (Delile) to OA. Here, we analyzed the percent cover of different epiphytic groups and the epiphytic biomass of P. oceanica leaves, collected inside (pH 6.9–7.9) and outside (pH 8.1–8.2) the CO2 vents. We estimated the contribution of epiphytes to net primary production (NPP) and respiration (R) of leaf sections collected from the vent and ambient pH sites in laboratory incubations. Additionally, we quantified net community production (NCP) and community respiration (CR) of seagrass communities in situ at vent and ambient pH sites using benthic chambers. Leaves at ambient pH sites had a 25% higher total epiphytic cover with encrusting red algae (32%) dominating the community, while leaves at vent pH sites were dominated by hydrozoans (21%). Leaf sections with and without epiphytes from the vent pH site produced and respired significantly more oxygen than leaf sections from the ambient pH site, showing an average increase of 47 ± 21% (mean ± SE) in NPP and 50 ± 4% in R, respectively. Epiphytes contributed little to the increase in R; however, their contribution to NPP was important (56 ± 6% of the total flux). The increase in productivity of seagrass leaves adapted to OA was only marginally reflected by the results from the in situ benthic chambers, underlining the complexity of the seagrass community response to naturally occurring OA conditions.
Collapse
Affiliation(s)
- Johanna Berlinghof
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy. .,Department of Marine Ecology, University of Bremen, Bremen, Germany.
| | - Friederike Peiffer
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy.,Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Ugo Marzocchi
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy.,Department of Biology, Center for Water Technology - WATEC, Aarhus University, Aarhus, Denmark.,Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Marco Munari
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Grazia M Quero
- Institute for Marine Biological Resources and Biotechnology, National Research Council (IRBIM-CNR), Ancona, Italy
| | - Laura Dennis
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Christian Wild
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Ulisse Cardini
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy.
| |
Collapse
|
8
|
Rodríguez A, Moreno-Borges S, Brito A. Response of Cymodocea nodosa to ocean acidification and warming in the Canary Islands: Direct and indirect effects. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105603. [PMID: 35325757 DOI: 10.1016/j.marenvres.2022.105603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
As detected in warming and ocean acidification, global change can have profound impact on marine life. Its effects on seagrasses are becoming increasingly well-known, since several studies have focused on the responses of these species to global change conditions. However a few studies have assessed the combined effect of temperature and acidification on seagrasses. Overall in this study, the combined effects of increased ocean temperature and pH levels expected at the end of this century (+5 °C and pH 7.5) on Cymodocea nodosa from Canary Islands, were evaluated for one month through manipulative laboratory experiments. Growth, net production, respiration, gross primary production, chlorophyll-a concentration and its vulnerability to herbivory were quantified. Results showed a positive effect of decreased pH on growth and gross primary production, as well as greater vulnerability to consumption by the sea urchin Paracentrotus lividus. In contrast, increased temperature limited net and gross primary production. This study shows than in future scenarios, C. nodosa from the Canary Islands may be a losing species in the global change stakes.
Collapse
Affiliation(s)
- Adriana Rodríguez
- Departamento de Biología Animal, Edafología y Geología. Grupo de investigación BIOECOMAC. Facultad de Ciencias, Universidad de La Laguna, Spain; Grupo de investigación BIOCON, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain.
| | - Sergio Moreno-Borges
- Departamento de Biología Animal, Edafología y Geología. Grupo de investigación BIOECOMAC. Facultad de Ciencias, Universidad de La Laguna, Spain
| | - Alberto Brito
- Departamento de Biología Animal, Edafología y Geología. Grupo de investigación BIOECOMAC. Facultad de Ciencias, Universidad de La Laguna, Spain
| |
Collapse
|
9
|
Ocean warming and acidification modify top-down and bottom-up control in a tropical seagrass ecosystem. Sci Rep 2021; 11:13605. [PMID: 34193925 PMCID: PMC8245495 DOI: 10.1038/s41598-021-92989-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Seagrass ecosystem is one of the most productive ecosystems in coastal waters providing numerous ecological functions and supporting a large biodiversity. However, various anthropogenic stressors including climate change are impacting these vulnerable habitats. Here, we investigated the independent and combined effects of ocean warming and ocean acidification on plant-herbivore interactions in a tropical seagrass community. Direct and indirect effects of high temperature and high pCO2 on the physiology of the tropical seagrass Thalassia hemprichii and sea urchin Tripneustes gratilla were evaluated. Productivity of seagrass was found to increase under high pCO2, while sea urchin physiology including feeding rate decreased particularly under high temperature. The present study indicated that future climate change will affect the bottom-up and top-down balance, which potentially can modify the ecosystem functions and services of tropical seagrass ecosystems.
Collapse
|
10
|
Naiel MA, Alagawany M, Patra AK, El-Kholy AI, Amer MS, Abd El-Hack ME. Beneficial impacts and health benefits of macroalgae phenolic molecules on fish production. AQUACULTURE 2021; 534:736186. [DOI: 10.1016/j.aquaculture.2020.736186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Beca-Carretero P, Guihéneuf F, Krause-Jensen D, Stengel DB. Seagrass fatty acid profiles as a sensitive indicator of climate settings across seasons and latitudes. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105075. [PMID: 32739623 DOI: 10.1016/j.marenvres.2020.105075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Zostera marina is a dominant meadow-forming seagrass in temperate regions in the northern hemisphere. Here, fatty acid content and composition, and pigmentation, in leaves were evaluated across temporal (April, July, November -2015 and January-2016) and latitudinal (Greenland to southern Spain) environmental gradients. Content of total fatty acids (TFA) in samples collected in Ireland during warmer periods (summer) was 2-3 times lower than in winter and exhibited a lower proportion of polyunsaturated fatty acids (PUFAs), which have high high-nutritional value relative to saturated fatty acids (SAFA). The latitudinal comparison (Greenland to southern Spain) revealed a clear reduction in the proportion n-3 PUFAs and an increase in n-6 PUFA and SAFA, which correlated with the rise in temperature towards southern locations, which correlated with the rise in temperature towards south. Results indicate that future warming may negatively affect its lipid nutritional value. These results demonstrate the capacity of seagrasses to adjust their lipid composition to achieve optimal membrane functionality, suggesting the potential use of FA as an eco-physiological indicator of global change conditions. The results also suggest that future warming may negatively affect the lipid nutritional value of seagrasses.
Collapse
Affiliation(s)
- Pedro Beca-Carretero
- Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Freddy Guihéneuf
- Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Dorte Krause-Jensen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, DK-8600, Silkeborg, Denmark; Arctic Research Centre (ARC), Aarhus University, Ole Worms Allé 1, Bldgs. 1130-1134-1135, DK-8000, Aarhus C, Denmark
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Ecological Function of Phenolic Compounds from Mediterranean Fucoid Algae and Seagrasses: An Overview on the Genus Cystoseira sensu lato and Posidonia oceanica (L.) Delile. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8010019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biodiversity is undergoing rapid and worrying changes, partially driven by anthropogenic activities. Human impacts and climate change (e.g., increasing temperature and ocean acidification), which act at different spatial scales, represent the most serious threats to biodiversity and ecosystem structure and function. In the Mediterranean Sea, complex systems such as fucoid algae and seagrasses, characterized by a high associated biodiversity, are regularly exposed to natural and anthropogenic pressures. These systems, particularly sensitive to a variety of stressors, evolved several physiological and biochemical traits as a response to the different pressures which they are subjected to. For instance, they produce a huge quantity of secondary metabolites such as phenolic compounds, to adapt to different environmental stressors and to defend themselves from biological pressures. These natural products are receiving increasing attention due to their possible applications in a wide range of industrial sectors. In this paper we provide an overview on the ecological role of phenolic compounds from the genus Cystoseira sensu lato and Posidonia oceanica (L.) Delile, also highlighting their potential use as ecological biomarkers.
Collapse
|
13
|
Zunino S, Canu DM, Zupo V, Solidoro C. Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Hernán G, Castejón I, Terrados J, Tomas F. Herbivory and resource availability shift plant defense and herbivore feeding choice in a seagrass system. Oecologia 2019; 189:719-732. [PMID: 30806786 DOI: 10.1007/s00442-019-04364-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/18/2019] [Indexed: 11/25/2022]
Abstract
Numerous hypotheses have been posited to explain the observed variation in plant defense strategies against herbivory. Under resource-rich environments, plants are predicted to increase their tolerance (limiting resource model; LRM) and, while the resource availability hypothesis (RAH) predicts a decrease in constitutive resistance in plant species growing in resource-rich environments, at the intraspecific level, plants are predicted to follow an opposite pattern (intraspecific RAH). Furthermore, the effect of multiple factors in modulating plant defense strategies has been scarcely explored and is more difficult to predict. Our aim was to understand how plant defense traits respond to herbivory, resource availability and their interactions, and to assess the effects on plant palatability. To this end, we performed an in situ factorial experiment at two sites simulating three herbivory levels and two nutrient availability conditions with the seagrass Posidonia oceanica. Additionally, we performed a series of feeding experiments with its two main herbivores. While plants decreased their constitutive resistance under nutrient fertilization (contrary to intraspecific RAH but in accordance to the RAH), and did not increase allocation to tolerance (likely due to resource limitation, LRM), simulated herbivory induced resistance traits. However, we found no interactive effects of nutrient fertilization and herbivory simulation on plant defense. Both herbivores responded similarly to changes in plant palatability, strongly preferring nutrient-enriched plants and non-clipped plants. This work highlights the need to better understand the drivers of plant defense intraspecific variability in response to resources, particularly in habitat-forming species where changes in plant traits and abundance will cascade onto associated species.
Collapse
Affiliation(s)
- Gema Hernán
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain.
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Inés Castejón
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain
| | - Jorge Terrados
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain
| | - Fiona Tomas
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
15
|
Pagès JF, Smith TM, Tomas F, Sanmartí N, Boada J, De Bari H, Pérez M, Romero J, Arthur R, Alcoverro T. Contrasting effects of ocean warming on different components of plant-herbivore interactions. MARINE POLLUTION BULLETIN 2018; 134:55-65. [PMID: 29074253 DOI: 10.1016/j.marpolbul.2017.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/29/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
There is increasing uncertainty of how marine ecosystems will respond to rising temperatures. While studies have focused on the impacts of warming on individual species, knowledge of how species interactions are likely to respond is scant. The strength of even simple two-species interactions is influenced by several interacting mechanisms, each potentially changing with temperature. We used controlled experiments to assess how plant-herbivore interactions respond to temperature for three structural dominant macrophytes in the Mediterranean and their principal sea urchin herbivore. Increasing temperature differentially influenced plant-specific growth, sea urchin growth and metabolism, consumption rates and herbivore preferences, but not movement behaviour. Evaluating these empirical observations against conceptual models of plant-herbivore performance, it appears likely that while the strength of herbivory may increase for the tested macroalga, for the two dominant seagrasses, the interaction strength may remain relatively unchanged or even weaken as temperatures rise. These results show a clear set of winners and losers in the warming Mediterranean as the complex factors driving species interactions change.
Collapse
Affiliation(s)
- Jordi F Pagès
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, United Kingdom.
| | - Timothy M Smith
- Deakin University, Centre of Integrative Ecology, School of Life and Environmental Sciences, Geelong, Australia; Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, Blanes, Catalunya, Spain
| | - Fiona Tomas
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Miquel Marquès 21, Esporles, Illes Balears, Spain; Department of Fisheries and Wildlife, Oregon State University, OR, United States
| | - Neus Sanmartí
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, Barcelona, Catalonia, Spain
| | - Jordi Boada
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, Blanes, Catalunya, Spain
| | - Harriet De Bari
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, Blanes, Catalunya, Spain
| | - Marta Pérez
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, Barcelona, Catalonia, Spain
| | - Javier Romero
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, Barcelona, Catalonia, Spain
| | - Rohan Arthur
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, Blanes, Catalunya, Spain; Oceans and Coasts Program, Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, India
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, Blanes, Catalunya, Spain; Oceans and Coasts Program, Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, India
| |
Collapse
|
16
|
Beca-Carretero P, Guihéneuf F, Marín-Guirao L, Bernardeau-Esteller J, García-Muñoz R, Stengel DB, Ruiz JM. Effects of an experimental heat wave on fatty acid composition in two Mediterranean seagrass species. MARINE POLLUTION BULLETIN 2018; 134:27-37. [PMID: 29331284 DOI: 10.1016/j.marpolbul.2017.12.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Global warming is emerging as one of the most critical threats to terrestrial and marine species worldwide. This study assessed the effects of simulated warming events in culture on two seagrass species, Posidonia oceanica and Cymodocea nodosa, which play a key role in coastal ecosystems of the Mediterranean Sea. Changes in fatty acids as key metabolic indicators were assessed in specimens from two geographical populations of each species adapted to different in situ temperature regimes. Total fatty acid (TFA) content and composition were compared in C. nodosa and P. oceanica from natural populations and following exposure to heat stress in culture. After heat exposure, individuals of C. nodosa and P. oceanica adapted to colder temperatures in situ accumulated significantly more TFA than controls. For both species, the proportion of polyunsaturated fatty acids (PUFA) decreased, and the percentage of saturated fatty acids (SFA) increased significantly after the heat treatment. These results highlight that populations of both species living at warmest temperatures in situ were more thermo-tolerant and exhibited a greater capacity to cope with heat stress by readjusting their lipid composition faster. Finally, exposure of seagrasses to warmer conditions may induce a decrease in PUFA/SFA ratio which could negatively affect their nutritional value and generate important consequences in the healthy state of next trophic levels.
Collapse
Affiliation(s)
- Pedro Beca-Carretero
- Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Freddy Guihéneuf
- Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Lázaro Marín-Guirao
- Seagrass Ecology Group, Oceanography Centre of Murcia, Spanish Oceanography Institute, Spain; Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | | | - Rocío García-Muñoz
- Seagrass Ecology Group, Oceanography Centre of Murcia, Spanish Oceanography Institute, Spain
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Juan M Ruiz
- Seagrass Ecology Group, Oceanography Centre of Murcia, Spanish Oceanography Institute, Spain
| |
Collapse
|
17
|
Rodríguez A, Clemente S, Brito A, Hernández JC. Effects of ocean acidification on algae growth and feeding rates of juvenile sea urchins. MARINE ENVIRONMENTAL RESEARCH 2018; 140:382-389. [PMID: 30032994 DOI: 10.1016/j.marenvres.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
The recent decrease in seawater pH has stimulated a great deal of research on the effects of ocean acidification on various organisms. Most of these studies have mainly focused on the direct effects of acidification on organisms. However, the effects on ecological interactions have been poorly studied. In this paper we have focused on determining the effects of acidification on feeding rates of two species of sea urchins, Paracentrotus lividus and Diadema africanum through laboratory experiments. Nine algae species were reared under two pH treatmens (ph = 8.1 vs. pH = 7.6) for 10 days. We evaluated possible changes in calcification rates, growth and internal structure. Then these algae were offered to juvenile sea urchins for 7 days, evaluating the consumption rates of juvenile sea urchins under these different pH conditions. The algae reared in the control treatment showed higher growth rates and concentration of calcium carbonate, however no internal structural changes were observed in any algae. Juvenile Paracentrotus lividus showed higher consumption rates on algae previously subjected to pH 7.6 than on algae reared under control conditions and between algae species in low pH.The algae most consumed were C. liebetruthii, C. abies-marina and C. elongata by P. lividus juveniles from low pH treatment. However in D. africanum the feeding rates were similar between treatments. This study demonstrated the negative effects of low pH on various species of algae in growth, and indirectly the increase in herbivory rates of juvenile sea urchins on algae reared under low pH.
Collapse
Affiliation(s)
- Adriana Rodríguez
- Dpto. Biología Animal, Edafología y Geología. UD Ciencias Marinas, Facultad de Ciencias (Sección Biología), Universidad de La Laguna.Avda, Astrofísico Francisco Sánchez s/n, La Laguna, 38206, Tenerife, Canary Islands, Spain.
| | - Sabrina Clemente
- Dpto. Biología Animal, Edafología y Geología. UD Ciencias Marinas, Facultad de Ciencias (Sección Biología), Universidad de La Laguna.Avda, Astrofísico Francisco Sánchez s/n, La Laguna, 38206, Tenerife, Canary Islands, Spain
| | - Alberto Brito
- Dpto. Biología Animal, Edafología y Geología. UD Ciencias Marinas, Facultad de Ciencias (Sección Biología), Universidad de La Laguna.Avda, Astrofísico Francisco Sánchez s/n, La Laguna, 38206, Tenerife, Canary Islands, Spain
| | - José Carlos Hernández
- Dpto. Biología Animal, Edafología y Geología. UD Ciencias Marinas, Facultad de Ciencias (Sección Biología), Universidad de La Laguna.Avda, Astrofísico Francisco Sánchez s/n, La Laguna, 38206, Tenerife, Canary Islands, Spain
| |
Collapse
|
18
|
Scartazza A, Moscatello S, Gavrichkova O, Buia MC, Lauteri M, Battistelli A, Lorenti M, Garrard SL, Calfapietra C, Brugnoli E. Carbon and nitrogen allocation strategy in Posidonia oceanica is altered by seawater acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:954-964. [PMID: 28724227 DOI: 10.1016/j.scitotenv.2017.06.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 05/05/2023]
Abstract
Rising atmospheric CO2 causes ocean acidification that represents one of the major ecological threats for marine biota. We tested the hypothesis that long-term exposure to increased CO2 level and acidification in a natural CO2 vent system alters carbon (C) and nitrogen (N) metabolism in Posidonia oceanica L. (Delile), affecting its resilience, or capability to restore the physiological homeostasis, and the nutritional quality of organic matter available for grazers. Seawater acidification decreased the C to N ratio in P. oceanica tissues and increased grazing rate, shoot density, leaf proteins and asparagine accumulation in rhizomes, while the maximum photochemical efficiency of photosystem II was unaffected. The 13C-dilution in both structural and non-structural C metabolites in the acidified site indicated quali-quantitative changes of C source and/or increased isotopic fractionation during C uptake and carboxylation associated with the higher CO2 level. The decreased C:N ratio in the acidified site suggests an increased N availability, leading to a greater storage of 15N-enriched compounds in rhizomes. The amount of the more dynamic C storage form, sucrose, decreased in rhizomes of the acidified site in response to the enhanced energy demand due to higher shoot recruitment and N compound synthesis, without affecting starch reserves. The ability to modulate the balance between stable and dynamic C reserves could represent a key ecophysiological mechanism for P. oceanica resilience under environmental perturbation. Finally, alteration in C and N dynamics promoted a positive contribution of this seagrass to the local food web.
Collapse
Affiliation(s)
- Andrea Scartazza
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Via Salaria km 29,300, 00016 Monterotondo Scalo, RM, Italy; Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Via G. Marconi 2, 05010 Porano, TR, Italy.
| | - Stefano Moscatello
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Via G. Marconi 2, 05010 Porano, TR, Italy.
| | - Olga Gavrichkova
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Via G. Marconi 2, 05010 Porano, TR, Italy
| | | | - Marco Lauteri
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Via G. Marconi 2, 05010 Porano, TR, Italy
| | - Alberto Battistelli
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Via G. Marconi 2, 05010 Porano, TR, Italy
| | - Maurizio Lorenti
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | | | - Carlo Calfapietra
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Via G. Marconi 2, 05010 Porano, TR, Italy
| | - Enrico Brugnoli
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Via G. Marconi 2, 05010 Porano, TR, Italy
| |
Collapse
|
19
|
Global and local disturbances interact to modify seagrass palatability. PLoS One 2017; 12:e0183256. [PMID: 28813506 PMCID: PMC5558941 DOI: 10.1371/journal.pone.0183256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/01/2017] [Indexed: 11/19/2022] Open
Abstract
Global change, such as warming and ocean acidification, and local anthropogenic disturbances, such as eutrophication, can have profound impacts on marine organisms. However, we are far from being able to predict the outcome of multiple interacting disturbances on seagrass communities. Herbivores are key in determining plant community structure and the transfer of energy up the food web. Global and local disturbances may alter the ecological role of herbivory by modifying leaf palatability (i.e. leaf traits) and consequently, the feeding patterns of herbivores. This study evaluates the main and interactive effects of factors related to global change (i.e. elevated temperature, lower pH levels and associated ocean acidification) and local disturbance (i.e. eutrophication through ammonium enrichment) on a broad spectrum of leaf traits using the temperate seagrass Cymodocea nodosa, including structural, nutritional, biomechanical and chemical traits. The effect of these traits on the consumption rates of the generalist herbivore Paracentrotus lividus (purple sea urchin) is evaluated. The three disturbances of warming, low pH level and eutrophication, alone and in combination, increased the consumption rate of seagrass by modifying all leaf traits. Leaf nutritional quality, measured as nitrogen content, was positively correlated to consumption rate. In contrast, a negative correlation was found between feeding decisions by sea urchins and structural, biomechanical and chemical leaf traits. In addition, a notable accomplishment of this work is the identification of phenolic compounds not previously reported for C. nodosa. Our results suggest that global and local disturbances may trigger a major shift in the herbivory of seagrass communities, with important implications for the resilience of seagrass ecosystems.
Collapse
|
20
|
Balestri E, Vallerini F, Lardicci C. Recruitment and Patch Establishment by Seed in the Seagrass Posidonia oceanica: Importance and Conservation Implications. FRONTIERS IN PLANT SCIENCE 2017; 8:1067. [PMID: 28670323 PMCID: PMC5472673 DOI: 10.3389/fpls.2017.01067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/02/2017] [Indexed: 05/30/2023]
Abstract
Seagrasses are declining globally, and deeper understanding is needed on the recruitment potential and distribution of new populations for many threatened species to support conservation planning in the face of climate change. Recruitment of Posidonia oceanica, a threatened seagrass endemic to the Mediterranean, has long been considered rare due to infrequent flowering, but mounting evidence demonstrates that the species is responding to a changing climate through greater reproductive effort. Due to the fragmentary information on recruit occurrence and distribution, little is known about reproductive success in the species and its contribution to persistence. We assembled P. oceanica recruitment data from published and unpublished sources, including our own, to examine the frequency and extent of recruitment events (establishment of seedlings in a site), seedling growth potential and habitat characteristics at recruitment sites. Results show that at least one recruitment event has occurred about every 3 years, and 18 localities were colonized at least one time since the first seedling record in 1986. Notably, consistently high seedling inputs were observed in four localities of the Western Mediterranean. Seedlings established mainly on unoccupied substrate areas along the coasts of islands, in sheltered sites and at shallower depths (<3 m) than the upper limit of adjacent P. oceanica meadows. Seedling establishment occurred more frequently on rocky than on sandy substrate, and rarely on dead "matte" or meadows of the seagrass Cymodocea nodosa. The chance of colonization success on rock was two times higher than on sand. Our 11 years of observations have allowed for the first time the documentation of the formation and development of patches by P. oceanica seed. These findings contradict the historical assumption that sexual recruitment is rare and usually unsuccessful for P. oceanica, and highlight the potential importance of recruitment for the long-term persistence and adaptation of the species to sea level rise predicted in the next century in the Mediterranean. Unfortunately, management actions have mainly focused on established meadows, ignoring the presence of recruits in outside areas. Therefore, it will be useful to identify and consider regeneration sites in designing future management strategies to improve seagrass conservation effectiveness.
Collapse
|