1
|
Tong Z, Jiang D, Yang C, Li Y, He Z, Ma X, Wang L, Song L. The involvement of CaMKKI in activating AMPKα in yesso scallop Patinopecten yessoensis under high temperature stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105227. [PMID: 38986890 DOI: 10.1016/j.dci.2024.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Calcium/calmodulin dependent protein kinase kinase (CaMKK), a highly conserved protein kinase, is involved in the downstream processes of various biological activities by phosphorylating and activating 5'-AMP-activated protein kinase (AMPK) in response to the increase of cytosolic-free calcium (Ca2+). In the present study, a CaMKKI was identified from Yesso scallop Patinopecten yessoensis. Its mRNA was ubiquitously expressed in haemocytes and all tested tissues with the highest expression level in mantle. The expression level of PyCaMKKI mRNA in adductor muscle was significantly upregulated at 1, 3 and 6 h after high temperature treatment (25 °C), which was 3.43-fold (p < 0.05), 5.25-fold (p < 0.05), and 5.70-fold (p < 0.05) of that in blank group, respectively. At 3 h after high temperature treatment (25 °C), the protein level of PyAMPKα, as well as the phosphorylation level of PyAMPKα at Thr170 in adductor muscle, and the positive co-localized fluorescence signals of PyCaMKKI and PyAMPKα in haemocyte all increased significantly (p < 0.05) compared to blank group (18 °C). The pull-down assay showed that rPyCaMKKI and rPyAMPKα could bind each other in vitro. After PyCaMKKI was silenced by siRNA, the mRNA and protein levels of PyCaMKKI and PyAMPKα, and the phosphorylation level of PyAMPKα at Thr170 in adductor muscle were significantly down-regulated (p < 0.05) compared with the negative control group receiving an injection of siRNA-NC. These results collectively suggested that PyCaMKKI was involved in the activation of PyAMPKα in response to high temperature stress and would be helpful for understanding the function of PyCaMKKI-PyAMPKα pathway in maintaining energy homeostasis under high temperature stress in scallops.
Collapse
Affiliation(s)
- Ziling Tong
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Dongli Jiang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoyu He
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxue Ma
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Cui X, Huang X, Chen X, Li H, Wu Y, Yang Z, Liu Z, Feng R, Xu J, Wei C, Ding Z, Cheng H. Influence of Starvation on Biochemical, Physiological, Morphological, and Transcriptional Responses Associated with Glucose and Lipid Metabolism in the Liver of Javelin Goby ( Synechogobius hasta). Animals (Basel) 2024; 14:2734. [PMID: 39335323 PMCID: PMC11429288 DOI: 10.3390/ani14182734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, the influence of fasting on hepatic glucose and lipid metabolism was explored by examining biochemical, antioxidative, and morphological indicators and transcriptional expression in the liver of javelin goby (Synechogobius hasta) after 0, 3, 7, or 14 days of starvation. Marked reductions in hepatic glycogen and triglycerides occurred from the seventh day of starvation until the end of the trial (p < 0.05). However, no alterations in hepatic cholesterol or protein were detected throughout the entire experiment (p > 0.05). During fasting, the activities of pyruvate kinase, lactate dehydrogenase, and glycogen phosphorylase a all rose firstly and then fell (p < 0.05). The activities of hepatic fatty acid synthase and acetyl-CoA carboxylase were minimized to their lowest levels at the end of food deprivation (p < 0.05), while lipase was elevated after 7-14 days of fasting (p < 0.05). Catalase, glutathione, and the total antioxidative capacity were increased and maintained their higher values in the later stage of fasting (p < 0.05), whereas malondialdehyde was not significantly changed (p > 0.05). Hepatic vein congestion, remarkable cytoplasmic vacuoles, and irregular cell shape were present in S. hasta which endured 3-7 days of fasting and were less pronounced when food shortage was prolonged. In terms of genes associated with glucose and lipid metabolism, the hepatic phosphofructokinase gene was constantly up-regulated during fasting (p < 0.05). However, the mRNA levels of glycogen synthase and glucose-6-phosphatase were obviously lower when the food scarcity extended to 7 days or more (p < 0.05). Fatty acid synthase, stearoyl-CoA desaturase 1, and peroxisome proliferator-activated receptor γ were substantially down-regulated in S. hasta livers after 7-14 days of food deprivation (p < 0.05). However, genes involved in lipolysis and fatty acid transport were transcriptionally enhanced to varying extents and peaked at the end of fasting (p < 0.05). Overall, starvation lasting 7 days or more could concurrently mobilize hepatic carbohydrates and fat as energy resources and diminished their hepatic accumulation by suppressing biosynthesis and enhancing catabolism and transport, ultimately metabolically and structurally perturbing the liver in S. hasta. This work presents preliminary data on the dynamic characteristics of hepatic glucose and lipid metabolism in S. hasta in response to starvation, which may shed light on the sophisticated mechanisms of energetic homeostasis in fish facing nutrient unavailability and may benefit the utilization/conservation of S. hasta.
Collapse
Affiliation(s)
- Xiangyu Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyang Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Honghui Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yanru Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zikui Yang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Rui Feng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Xiao F, Chen C, Zhang W, Wang J, Wu K. FOXO3/Rab7-Mediated Lipophagy and Its Role in Zn-Induced Lipid Metabolism in Yellow Catfish ( Pelteobagrus fulvidraco). Genes (Basel) 2024; 15:334. [PMID: 38540393 PMCID: PMC10969980 DOI: 10.3390/genes15030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Lipophagy is a selective autophagy that regulates lipid metabolism and reduces hepatic lipid deposition. However, the underlying mechanism has not been understood in fish. In this study, we used micronutrient zinc (Zn) as a regulator of autophagy and lipid metabolism and found that Ras-related protein 7 (rab7) was involved in Zn-induced lipophagy in hepatocytes of yellow catfish Pelteobagrus pelteobagrus. We then characterized the rab7 promoter and identified binding sites for a series of transcription factors, including Forkhead box O3 (FOXO3). Site mutation experiments showed that the -1358/-1369 bp FOXO3 binding site was responsible for Zn-induced transcriptional activation of rab7. Further studies showed that inhibition of rab7 significantly inhibited Zn-induced lipid degradation by lipophagy. Moreover, rab7 inhibitor also mitigated the Zn-induced increase of cpt1α and acadm expression. Our results suggested that Zn exerts its lipid-lowering effect partly through rab7-mediated lipophagy and FA β-oxidation in hepatocytes. Overall, our findings provide novel insights into the FOXO3/rab7 axis in lipophagy regulation and enhance the understanding of lipid metabolism by micronutrient Zn, which may help to reduce excessive lipid accumulation in fish.
Collapse
Affiliation(s)
- Fei Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Chuan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Wuxiao Zhang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Jiawei Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| |
Collapse
|
4
|
Peng D, Yang L, Liang XF, Chai F. Dietary zinc levels affect growth, appetite, and lipid metabolism of Chinese perch (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1017-1030. [PMID: 37718352 DOI: 10.1007/s10695-023-01238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/27/2023] [Indexed: 09/19/2023]
Abstract
An 84-day feeding experiment was conducted to investigate the effects of dietary Zn (zinc) on growth performance, food intake, and lipid metabolism of Chinese perch (Siniperca chuatsi). Five isonitrogenous and isolipidic diets with differential Zn contents (67, 100, 149, 230, and 410 mg/kg) were fed to 270 fish (35.47 ± 0.49 g). Results showed that fish growth and food intake increased markedly with the dietary 149 mg/kg Zn levels. Meanwhile, the food intake of 149 mg/kg group was significantly higher than that of other treatment groups after feeding for 8 weeks (P < 0.05). The qRT-PCR results showed that the expression of center appetite regulation factors in the hypothalamus was significantly regulated, and 149 mg/kg significantly increased mRNA expression of npy (neuropeptide Y) and decreased pomc (anorexigenic proopiomelanocortin) and cart (cocaine- and amphetamine-regulated transcript) gene expression. Meanwhile, the expressions of the main genes (such as leptin A and ghrelin) involved in peripheral appetite regulation factors were significantly up-regulated firstly and then reduced with the dietary Zn level increased, whereas the expression of cck (cholecystokinin) was significantly up-regulated. Serum AST (aspartate transaminase) and ALT (alanine transaminase) activities in fish fed the diets containing 230 and 410 mg/kg were significantly higher than that in other groups (P < 0.05). The lipid content of liver in 67 and 100 mg/kg groups was significantly higher than other groups (P < 0.05). Furthermore, dietary Zn significantly elevated the serum TG (triglyceride) and TCHO (total cholesterol) content levels (P < 0.05). Fish fed a high Zn diet (149, 230, and 410 mg/kg) dramatically down-regulated expression of srebp1 (sterol regulatory element binding proteins1c) and fas (fatty acid synthetase), but up-regulated expression of pparα (peroxisome proliferators-activated receptor-α) and cpt1 (carnitine palmitoyl transferase I) in the liver. The optimal dietary Zn inclusion level ranged from 146.69 to 152.86 mg/kg diet, based on two-slope broken-line regression analysis of WGR (weight gain rate) and FCR (feed conversion rate) for Chinese perch.
Collapse
Affiliation(s)
- Di Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Wuhan, 430070, China
| | - Linwei Yang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Wuhan, 430070, China.
| | - Farui Chai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Wuhan, 430070, China
| |
Collapse
|
5
|
Li C, Fu Y, Tian Y, Zang Z, Gentekaki E, Wang Z, Warren A, Li L. Comparative transcriptome and antioxidant biomarker response reveal molecular mechanisms to cope with zinc ion exposure in the unicellular eukaryote Paramecium. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131364. [PMID: 37080029 DOI: 10.1016/j.jhazmat.2023.131364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The development of industry has resulted in excessive environmental zinc exposure which has caused various health problems in a wide range of organisms including humans. The mechanisms by which aquatic microorganisms respond to environmental zinc stress are still poorly understood. Paramecium, a well-known ciliated protozoan and a popular cell model in heavy metal stress response studies, was chosen as the test unicellular eukaryotic organism in the present research. In this work, Paramecium cf. multimicronucleatum cells were exposed in different levels of zinc ion (0.1 and 1.0 mg/L) for different periods of exposure (1 and 4 days), and then analyzed population growth, transcriptomic profiles and physiological changes in antioxidant enzymes to explore the toxicity and detoxification mechanisms during the zinc stress response. Results demonstrated that long-term zinc exposure could have restrained population growth in ciliates, however, the response mechanism to zinc exposure in ciliates is likely to show a dosage-dependent and time-dependent manner. The differentially expressed genes (DEGs) were identified the characters by high-throughput sequencing, which remarkably enriched in the phagosome, indicating that the phagosome pathway might mediate the uptake of zinc, while the pathways of ABC transporters and Na+/K+-transporting ATPase contributed to the efflux transport of excessive zinc ions and the maintenance of osmotic balance, respectively. The accumulation of zinc ions triggered a series of adverse effects, including damage to DNA and proteins, disturbance of mitochondrial function, and oxidative stress. In addition, we found that gene expression changed significantly for metal ion binding, energy metabolism, and oxidation-reduction processes. RT-qPCR of ten genes involved in important biological functions further validated the results of the transcriptome analysis. We also continuously monitored changes in activity of four antioxidant enzymes (SOD, CAT, POD and GSH-PX), all of which peaked on day 4 in cells subjected to zinc stress. Collectively, our results indicate that excessive environmental zinc exposure initially causes damage to cellular structure and function and then initiates detoxification mechanisms to maintain homeostasis in P. cf. multimicronucleatum cells.
Collapse
Affiliation(s)
- Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yingxuan Tian
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Zihan Zang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Zhenyuan Wang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China.
| |
Collapse
|
6
|
Chen X, Xu Y, Cui X, Zhang S, Zhong X, Ke J, Wu Y, Liu Z, Wei C, Ding Z, Xu J, Cheng H. Starvation Affects the Muscular Morphology, Antioxidant Enzyme Activity, Expression of Lipid Metabolism-Related Genes, and Transcriptomic Profile of Javelin Goby ( Synechogobius hasta). AQUACULTURE NUTRITION 2022; 2022:7057571. [PMID: 36860464 PMCID: PMC9973160 DOI: 10.1155/2022/7057571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/03/2022] [Indexed: 06/18/2023]
Abstract
Fish in natural and cultivated environments can be challenged by starvation. However, inducing starvation in a controlled manner cannot only reduce feed consumption but also reduces aquatic eutrophication and even improves farmed fish quality. This study investigated the effects of starvation on the muscular function, morphology, and regulatory signaling in javelin goby (Synechogobius hasta) by evaluating the biochemical, histological, antioxidant, and transcriptional changes in the musculature of S. hasta subjected to 3, 7, and 14 days fasting. The muscle glycogen and triglyceride levels in S. hasta were gradually reduced under starvation, reaching their lowest at the end of the trial (P < 0.05). The levels of glutathione and superoxide dismutase were significantly elevated after 3-7 days of starvation (P < 0.05), but later returned to the level of the control group. The muscle of starved S. hasta developed structural abnormalities in some areas after 7 days of food deprivation, and more vacuolation and more atrophic myofibers were observed in 14-day fasted fish. The transcript levels of stearoyl-CoA desaturase 1 (scd1), the key gene involved in the biosynthesis of monounsaturated fatty acids, were markedly lower in the groups starved for 7 or more days (P < 0.05). However, the relative expressions of genes associated with lipolysis were decreased in the fasting experiment (P < 0.05). Similar declines in the transcriptional response to starvation were found in muscle fatp1 and ppar γ abundance (P < 0.05). Furthermore, the de novo transcriptome of muscle tissue from the control, 3-day and 14-day starved S. hasta generated 79,255 unigenes. The numbers of differentially expressed genes (DEGs) identified by pairwise comparisons among three groups were 3276, 7354, and 542, respectively. The enrichment analysis revealed that the DEGs were primarily involved in metabolism-related pathways, including ribosome, TCA pathway, and pyruvate metabolism. Moreover, the qRT-PCR results of 12 DEGs validated the expression trends observed in the RNA-seq data. Taken together, these findings demonstrated the specific phenotypical and molecular responses of muscular function and morphology in starved S. hasta, which may offer preliminary reference data for optimizing operational strategies incorporating fasting/refeeding cycles in aquaculture.
Collapse
Affiliation(s)
- Xiangning Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yili Xu
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangyu Cui
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Siying Zhang
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangqi Zhong
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntao Ke
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuze Wu
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
7
|
Zhao T, Lv WH, Hogstrand C, Zhang DG, Xu YC, Xu YH, Luo Z. Sirt3-Sod2-mROS-Mediated Manganese Triggered Hepatic Mitochondrial Dysfunction and Lipotoxicity in a Freshwater Teleost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8020-8033. [PMID: 35653605 DOI: 10.1021/acs.est.2c00585] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exposure to excessive manganese (Mn) is toxic to humans and animals. However, the toxic effects and mechanisms of excessive Mn influencing the vertebrates have been highly overlooked. In the present study, dietary Mn overload significantly increased hepatic lipid and Mn contents, decreased superoxide dismutase 2 (Sod2) activity, increased the Sod2 acetylation level, and induced mitochondrial dysfunction; Mn induced mitochondrial dysfunction through Mtf1/sirtuin 3 (Sirt3)-mediated acetylation of Sod2 at the sites K55 and K70. Meanwhile, mitochondrial oxidative stress was involved in Mn-induced lipotoxicity. Mechanistically, Mn-induced lipotoxicity was via oxidative stress-induced Hsf1 nucleus translocation and its DNA binding capacity to the regions of a peroxisome proliferator-activated receptor g (pparg) promoter, which in turn induced the transcription of lipogenic-related target genes. For the first time, our study demonstrated that Mn-induced hepatic lipotoxicity via a mitochondrial oxidative stress-dependent Hsf1/Pparg pathway and Mtf1/sirt3-mediated Sod2 acetylation participated in mitochondrial dysfunction. Considering that lipid metabolism and lipotoxicity are widely used as the biomarkers for environmental assessments of pollutants, our study provided innovative and important insights into Mn toxicological and environmental evaluation in aquatic environments.
Collapse
Affiliation(s)
- Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Hong Lv
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London SE1 9NH, U.K
| | - Dian-Guang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Huan Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
8
|
Gao H, Fan X, Wu QC, Chen C, Xiao F, Wu K. Structural and Functional Analysis of SHP Promoter and Its Transcriptional Response to FXR in Zn-Induced Changes to Lipid Metabolism. Int J Mol Sci 2022; 23:ijms23126523. [PMID: 35742980 PMCID: PMC9224202 DOI: 10.3390/ijms23126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc alleviates hepatic lipid deposition, but the transcriptional regulatory mechanisms are still unclear. In this study, we characterized the promoter of an SHP (short heterodimer partner) in a teleost Pelteobagrus fulvidraco. The binding sites of an FXR (farnesoid X receptor) were predicted by the SHP promoter, indicating that the FXR mediated its transcriptional activity. The site mutagenesis and the EMSA (electrophoretic mobility shift assay) found that the -375/-384 bp FXR site on the SHP promoter was the functional binding locus responsible for the Zn-induced transcriptional activation. A further study of yellow catfish hepatocytes suggested that the activation of the FXR/SHP is responsible for the effect of Zn on the decreasing lipid content. Thus, this study provides direct evidence of the interaction between the FXR and SHP promoter in fish, and accordingly elucidates the potential transcriptional mechanism by which Zn reduces hepatic lipid accumulation.
Collapse
Affiliation(s)
- Han Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
| | - Xing Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
| | - Qi-Chun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
| | - Chuan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
| | - Fei Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China
- Correspondence: or
| |
Collapse
|
9
|
Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, Henninger N, Reiter RJ, Bruno A, Joshipura K, Aslkhodapasandhokmabad H, Klionsky DJ, Ren J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225:107848. [PMID: 33823204 PMCID: PMC8263472 DOI: 10.1016/j.pharmthera.2021.107848] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts, Worcester, Massachusetts, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067, Puerto Rico
| | | | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington Seattle, Seattle, WA 98195, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Zeng H, Zhang P, Ye H, Ji Y, Hogstrand C, Green I, Xiao J, Fu Q, Guo Z. Waterborne zinc bioaccumulation influences glucose metabolism in orange-spotted grouper embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117325. [PMID: 34030065 DOI: 10.1016/j.envpol.2021.117325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Fish embryos, as an endogenous system, strictly regulate an energy metabolism that is particularly sensitive to environmental pressure. This study used orange-spotted grouper embryos and stable isotope 67Zn to test the hypothesis that waterborne Zn exposure had a significant effect on energy metabolism in embryos. The fish embryos were exposed to a gradient level of waterborne 67Zn, and then sampled to quantify 67Zn bioaccumulation and mRNA expressions of key genes involved glucose metabolism. The results indicated that the bioaccumulated 67Zn generally increased with increasing waterborne 67Zn concentrations, while it tended to be saturated at waterborne 67Zn > 0.7 mg L-1. As we hypothesized, the expression of PK and PFK gene involved glycolysis pathway was significantly up-regulated under waterborne 67Zn exposure >4 mg L-1. Waterborne 67Zn exposure >2 mg L-1 significantly suppressed PCK and G6PC gene expression involved gluconeogenesis pathway, and also inhibited the AKT2, GSK-3beta and GLUT4 genes involved Akt signaling pathway. Our findings first characterized developmental stage-dependent Zn uptake and genotoxicity in fish embryos. We suggest fish embryos, as a small-scale modeling biosystem, have a large potential and wide applicability for determining cytotoxicity/genotoxicity of waterborne metal in aquatic ecosystem.
Collapse
Affiliation(s)
- Huiling Zeng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Peifeng Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Hengzhen Ye
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yuxiang Ji
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Christer Hogstrand
- Metals Metabolism Group, School of Life Course Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Iain Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Qiongyao Fu
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Zhiqiang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
11
|
Chen X, Gao Y, Wu G, Gu J, Cai Y, Xu J, Cheng H. Molecular cloning, tissue expression, and transcriptional regulation of fabp1 and fabp2 in javelin goby (Synechogobius hasta) in response to starvation stress. Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110484. [PMID: 32745520 DOI: 10.1016/j.cbpb.2020.110484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/15/2023]
Abstract
Fatty acid binding proteins (FABPs) are intracellular lipid chaperones with low molecular weight, which are widely distributed in a variety of tissues, participating in fatty acid transport, cell proliferation, and angiogenesis. In this study, full-length sequences of two fabp genes (fabp1 and fabp2) from javelin goby (Synechogobius hasta) were cloned via RACE PCR, followed by bioinformatic analyses and gene expression evaluation. The fabp1 and fabp2 cDNA sequences were 493 and 626 bp in length, encoding 126 and 132 amino acids, respectively. Phylogenetic analysis revealed that both genes from S. hasta were clustered with those of other fish species in accordance with their known taxonomic relationships. fabp1 and fabp2 mRNA showed distinct expression patterns in different tissues, with fabp1 being most expressed in the liver and fabp2 in the intestine. Furthermore, the expression of fabp1 in the liver was significantly up-regulated during starvation, whereas fabp2 mRNA level in the intestine initially increased and then decreased, indicating that the transcriptional responses of the two genes could be influenced by malnourishment/starvation. Changes in the transcriptional levels of fabp1 and fabp2 also suggested that glycogen was catabolized in the liver of S. hasta at the beginning of starvation prior to lipid depletion, whereas lipids served as fuel reserves in the intestine during short-term starvation. In conclusion, this study provides fundamental insights into the role of Fabps in S. hasta lipid metabolism.
Collapse
Affiliation(s)
- Xiangning Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China.
| | - Yingli Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China
| | - Guanju Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaze Gu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuefeng Cai
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
12
|
Qi Y, Zhang Z, Liu S, Aluo Z, Zhang L, Yu L, Li Y, Song Z, Zhou L. Zinc Supplementation Alleviates Lipid and Glucose Metabolic Disorders Induced by a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5189-5200. [PMID: 32290656 DOI: 10.1021/acs.jafc.0c01103] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Zinc deficiency is a risk factor for the development of obesity and diabetes. Studies have shown lower serum zinc levels in obese individuals and those with diabetes. We speculate that zinc supplementation can alleviate obesity and diabetes and, to some extent, their complications. To test our hypothesis, we investigated the effects of zinc supplementation on mice with high-fat diet (HFD)-induced hepatic steatosis in vivo and in vitro by adding zinc to the diet of mice and the medium of HepG2 cells. Both results showed that high levels of zinc could alleviate the glucose and lipid metabolic disorders induced by a HFD. High zinc can reduce glucose production, promote glucose absorption, reduce lipid deposition, improve HFD-induced liver injury, and regulate energy metabolism. This study provides novel insight into the treatment of non-alcoholic fatty liver disease and glucose metabolic disorder.
Collapse
Affiliation(s)
- Yilin Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhier Aluo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lifang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
13
|
Chen SW, Wu K, Lv WH, Song CC, Luo Z. Molecular characterization of ten zinc (Zn) transporter genes and their regulation to Zn metabolism in freshwater teleost yellow catfish Pelteobagrus fulvidraco. J Trace Elem Med Biol 2020; 59:126433. [PMID: 31735605 DOI: 10.1016/j.jtemb.2019.126433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Zn is an essential trace element for vertebrates, and Zn uptake and transport is related with the ZIP family of Zn transporters. Meantime, Zn also influenced the expression of ZIP family members. METHODS We cloned and characterized the full-length cDNA sequences of ten Zn transport-relevant genes (ZIP1, ZIP3, ZIP6, ZIP7, ZIP8, ZIP9, ZIP10, ZIP11, ZIP13 and ZIP14) from yellow catfish Pelteobagrus fulvidraco, investigated their mRNA tissue expression. These ZIP mRNA expression was also assessed in the primary hepatocytes and intestinal epithelial cells of yellow catfish in response to three Zn levels (0, 30 μM and 60 μM, respectively). RESULTS All these genes shared the similar domains with the corresponding members in mammals. The mRNA expression of the ten ZIP genes was detected in nine-tested tissues, but variable among these tissues. Flow cytometry analysis and confocal microscopy observation indicated that intracellular free Zn2+ concentration in hepatocytes and intestinal epithelial cells increased with increasing Zn incubation concentration at both 24 h and 48 h. Zn incubation differentially influenced mRNA levels of ZIP transporters in the hepatocytes and intestinal epithelial cells, in a time- and cells-dependent manners. In the hepatocytes, at 24 h, compared to the control, Zn addition down-regulated mRNA levels of ZIP1, ZIP3, ZIP6, ZIP7, ZIP8, ZIP9, ZIP11 and ZIP14; however, ZIP10 mRNA levels were lower in 60 μM Zn group than those in the control and 30 μM Zn group. At 48 h, mRNA levels of ZIP1, ZIP6, ZIP7, ZIP9, ZIP10 and ZIP14 declined with increasing Zn incubation concentrations; ZIP3 mRNA levels were the lowest in 60 μM Zn group and showed no significant differences between the control and 30 μM Zn group. In the intestinal epithelial cells, at 24 h, Zn addition down-regulated mRNA levels of ZIP1, ZIP6, ZIP7, ZIP8, ZIP9, ZIP10, ZIP11, ZIP13 and ZIP14; ZIP3 mRNA levels were lower in 60 μM Zn group than those in the control and 30 μM Zn group. At 48 h, Zn addition up-regulated mRNA levels of ZIP6 and ZIP9, but down-regulated mRNA levels of ZIP8, ZIP10 and ZIP13. ZIP7, ZIP11 and ZIP14 mRNA abundances were the lowest in 60 μM Zn group and showed no significant differences between the control and 30 μM Zn group. CONCLUSION For the first time, our study characterized ten ZIP family members in yellow catfish, explored their mRNA tissue expression. Their regulation to Zn addition were also investigated in the hepatocytes and intestinal epithelial cells of yellow catfish. Our study revealed the mechanism of cells exposed to Zn addition and provided novel insights for the regulatory mechanism of Zn homeostasis.
Collapse
Affiliation(s)
- Shu-Wei Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Hong Lv
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang-Chun Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
14
|
Wu K, Zhao T, Hogstrand C, Xu YC, Ling SC, Chen GH, Luo Z. FXR-mediated inhibition of autophagy contributes to FA-induced TG accumulation and accordingly reduces FA-induced lipotoxicity. Cell Commun Signal 2020; 18:47. [PMID: 32192487 PMCID: PMC7082988 DOI: 10.1186/s12964-020-0525-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Excessive dietary fat intake induces lipid deposition and contributes to the progress of nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanisms are still unclear. METHODS Yellow catfish were given two experimental diets with dietary lipid levels of 11.3 and 15.4%, respectively, for 56 days, and the contents of triglyceride (TG), nonesterified free fatty acids (NEFA) and bile acid (BA), RNA-seq, enzymatic activities and mRNA expression were deteremined in the liver tissues. Hepatocytes from yellow catfish liver tissues were isolated and cultured. Fatty acids (FA) (palmitic acid: OA, oleic acid =1:1), pathway inhibitors (MA, autophagy inhibitor; guggulsterone, FXR inhibitor) and agonist (rapamyicn, autophagy agonist; GW4064, FXR agonist) were used to incubate the cells. TG and NEFA contents, ultrastructural observation, autophagic vesicles and intracellular LD,apoptosis,western blot and Co-IP, and Immunofluorescence analysis, enzymatic activities and Q-PCR were decided. RESULTS Using RNA sequencing, we found that high fat diets induced changes in expression of many genes associated with the pathways of lipid metabolism and autophagy. The mRNA profiles of the differentially expressed genes (DEG) indicated that high dietary fat-induced lipid deposition was predominantly influenced by the inhibition of autophagy. Using primary hepatocytes, we found that fatty acids (FA) suppressed autophagy, which in turn reduced cellular free FA level by decreasing triglyceride (TG) breakdown. Moreover, our study indicated that farnesoid X receptor (FXR)-cyclic AMP-responsive element-binding protein (CREB) axis was the pivotal physiological switch regulating FA-induced changes of autophagy and lipid metabolism, which represented cellular defenses against FA-induced lipotoxicity. CONCLUSION This discovery may provide new targets for treating pathological changes involved in the dysfunction of autophagy and metabolism, including NAFLD. Video Abstract.
Collapse
Affiliation(s)
- Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Yi-Chuang Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shi-Cheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
15
|
Zhao Y, Cao X, Fu L, Gao J. n-3 PUFA reduction caused by fabp2 deletion interferes with triacylglycerol metabolism and cholesterolhomeostasis in fish. Appl Microbiol Biotechnol 2020; 104:2149-2161. [PMID: 31950220 DOI: 10.1007/s00253-020-10366-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/29/2019] [Accepted: 01/09/2020] [Indexed: 01/20/2023]
Abstract
Fatty acid-binding protein 2 (Fabp2), which is involved in the transport of long-chain fatty acids, is widely studied in mammals. Nevertheless, the role of this protein in teleost fish is mostly unknown. Here, we produced a fabp2-/- zebrafish (KO) animal model. Compared with wild-type zebrafish (WT), KO had a markedly decreased content of intestinal n-3 poly-unsaturated fatty acids (n-3 PUFAs) and increased levels of intestinal, hepatic, and serum triacylglycerols (TAG). The intestinal transcriptome analysis of KO and WT revealed an obviously disrupted TAG metabolism and up-regulated bile secretion in KO. Expression levels of the genes related to fatty acid transport and cholesterol (CL) absorption in the intestine of KO were significantly lower than those of WT, while the expression levels of genes related to intestinal TAG synthesis and hepatic CL synthesis were in the opposite direction. To confirm these findings, we further established fabp2 transgenic zebrafish (TG). Compared with WT, TG had a markedly increased content of intestinal n-3 PUFAs, a significantly decreased level of hepatic TAG, and significantly higher expression of genes related to fatty acid transport and CL absorption in the intestine. In conclusion, this study suggests that teleost fish fabp2 could promote intestinal n-3 PUFA absorption to mediate TAG synthesis and CL homeostasis, by regulating the genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Yan Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, No. 1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Lele Fu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, No. 1 Shizishan Stress, Hongshan District, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
16
|
Wu LX, Wei CC, Yang SB, Zhao T, Luo Z. Effects of Fat and Fatty Acids on the Formation of Autolysosomes in the Livers from Yellow Catfish Pelteobagrus Fulvidraco. Genes (Basel) 2019; 10:E751. [PMID: 31557940 PMCID: PMC6826758 DOI: 10.3390/genes10100751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
The autophagy-lysosome pathway, which involves many crucial genes and proteins, plays crucial roles in the maintenance of intracellular homeostasis by the degradation of damaged components. At present, some of these genes and proteins have been identified but their specific functions are largely unknown. This study was performed to clone and characterize the full-length cDNA sequences of nine key autolysosome-related genes (vps11, vps16, vps18, vps33b, vps41, lamp1, mcoln1, ctsd1 and tfeb) from yellow catfish Pelteobagrus fulvidraco. The expression of these genes and the transcriptional responses to a high-fat diet and fatty acids (FAs) (palmitic acid (PA) and oleic acid (OA)) were investigated. The mRNAs of these genes could be detected in heart, liver, muscle, spleen, brain, mesenteric adipose tissue, intestine, kidney and ovary, but varied with the tissues. In the liver, the mRNA levels of the nine autolysosome-related genes were lower in fish fed a high-fat diet than those fed the control, indicating that a high-fat diet inhibited formation of autolysosomes. Palmitic acid (a saturated FA) significantly inhibited the formation of autolysosomes at 12 h, 24 h and 48 h incubation. In contrast, oleic acid (an unsaturated FA) significantly induced the formation of autolysosomes at 12 h, but inhibited them at 24 h. At 48 h, the effects of OA incubation on autolysosomes were OA concentration-dependent in primary hepatocytes of P. fulvidraco. The results of flow cytometry and laser confocal observations confirmed these results. PA and OA incubation also increased intracellular non-esterified fatty acid (NEFA) concentration at 12 h, 24 h and 48 h, and influenced mRNA levels of fatty acid binding protein (fabp) and fatty acid transport protein 4 (fatp4) which facilitate FA transport in primary hepatocytes of P. fulvidraco. The present study demonstrated the molecular characterization of the nine autolysosome-related genes and their transcriptional responses to fat and FAs in fish, which provides the basis for further exploring their regulatory mechanism in vertebrates.
Collapse
Affiliation(s)
- Li-Xiang Wu
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chuan-Chuan Wei
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shui-Bo Yang
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tao Zhao
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhi Luo
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
17
|
Anti-angiogenic activity of Gracilaria coronopifolia J.G. Agardh extract by lowering the levels of trace metals (iron, zinc and copper) in duck chorioallantoic membrane and in vitro activation of AMP-kinase. Mol Biol Rep 2019; 46:4151-4160. [PMID: 31102149 DOI: 10.1007/s11033-019-04864-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/09/2019] [Indexed: 01/05/2023]
Abstract
AMP-activated protein kinase (AMPK) is an intracellular energy sensor important in metabolic regulation, cell growth, and survival. However, the specific role of AMPK signaling pathway in the inhibition of angiogenesis remains unclear. The study highlights the activity on AMP activated protein kinase signaling pathways of a marine algae, Gracilaria coronopifolia, and its effects on angiogenesis. It was found that the most potent extract, GCD, inhibited angiogenesis significantly in the duck chorioallantoic membrane assay and also activated the enzyme AMP-kinase, in vitro. The dichloromethane extract was found most active in inhibiting angiogenesis in the duck chorioallantoic membrane (IC50 = 1.21 μg/mL) followed by GCH (IC50 = 3.08 μg/mL) (p = 0.479) and GCM (IC50 = 8.93 μg/mL) (p = 0.042). Benferroni post hoc analysis revealed that there was no significant difference between the percent inhibitions of GCH and GCM extracts (p = 0.479). Consequently, angiogenic inhibition caused lowering of iron, zinc, and copper levels in the duck CAM. Thin layer chromatography and gas chromatography-mass spectrometry revealed the components of each extracts. Notably, this is the first report on the kinase activity of a red algae G. coronopifolia extracts and a colorimetric-based quantification of angiogenesis based on metal content of CAM. Our data also suggest a novel therapeutic approach for inhibiting angiogenesis through the AMPK pathway.
Collapse
|
18
|
Li DD, Luo Z, Ling SC, Wu K, Chen GH, Cheng J. Mitochondrial apoptotic pathway mediated the Zn-induced lipolysis in yellow catfish Peteobagrus fulvidraco. CHEMOSPHERE 2018; 208:907-915. [PMID: 30068034 DOI: 10.1016/j.chemosphere.2018.05.200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
In the study, effects of waterborne zinc (Zn) exposure on apoptosis were investigated, and the potential mechanism of apoptosis participating in the Zn-induced variations of lipid metabolism was explored in a low vertebrate, yellow catfish Pelteobagrus fulvidraco. We found that Zn induced occurrence of apoptosis of livers and hepatocytes in yellow catfish. Waterborne Zn also increased hepatic transcriptional levels of p53, cytochrome c (Cycs), caspase 3a (Casp3a) and caspase 3b (Casp3b) of yellow catfish. Zn increased caspase 3 activity and reduced the mitochondrial permeability transition (MTP) in yellow catfish hepatocytes. Z-VAD-fmk (caspase inhibitor) and CsA pretreatment (MTP inhibitor) attenuated the Zn-induced apoptosis and reduction in MTP. Z-VAD-fmk pretreatments attenuated the Zn-induced increase in transcriptional levels of p53, Cycs and Casp3b although the differences were not statistically significant between the Zn group and Zn + Z-VAD-fmk group. In contrast, Zn and N-acetylcysteine (NAC) did not significantly influence the reactive oxygen species (ROS) production. Zn significantly reduced triglyceride (TG) content, increased the activities of carnitine palmitoyltransferase 1 (CPT I), hormone-sensitive lipase (HSL) and adipose TAG lipase (ATGL), and the transcriptional levels of p53, Cycs and caspase 3b of the hepatocytes; these Zn-induced effects on TG contents, activities of CPT I, HSL and ATGL, and mRNA levels of p53, Cycs and caspase 3b could partly be reversed by Z-VAD-fmk, suggesting that Zn induced the mitochondrial-mediated apoptosis and reduced lipid accumulation. Taken together, our study demonstrated the importance of mitochondria-mediated apoptosis in Zn-induced lipolysis, which suggested a new mechanism for elucidating metal element influencing lipid metabolism.
Collapse
Affiliation(s)
- Dan-Dan Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| | - Shi-Cheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Cheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Nishiuchi M, Sakai K, Tajima H, Katayama K, Kimura F, Hoshi S, Goto T, Shirakawa H, Komai M. Orexigenic action of oral zinc: metabolomic analysis in the rat hypothalamus. Biosci Biotechnol Biochem 2018; 82:2168-2175. [PMID: 30240332 DOI: 10.1080/09168451.2018.1516543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We previously reported an orexigenic action of oral zinc administration in male Sprague-Dawley (SD) rats during an early stage of feeding with a zinc-deficient diet, without decreased zinc concentrations in tissues. The overall conclusion was that orally but not intraperitoneally administered zinc stimulates food intake in short-term zinc-deficient-diet fed rats. We here investigate the mechanism of the orexigenic action of zinc using GC-MS/MS-targeted metabolomic analysis in the rat hypothalamus. Four-week-old, male SD/Slc rats were used, and after 2 days of feeding with a zinc-deficient diet, 3 mg of ZnSO4 in 5 mL saline solution were administered to each rat either orally or intraperitoneally. Three hours after administration, the rats were sacrificed and the hypothalamus were excised and analyzed. We found that the oral administration group showed increased concentrations of 3-aminopropanoic acid (β-alanine), hypotaurine, dopamine, and biotin. In light of metabolomic analysis of these results, we indicate directions for further research.
Collapse
Affiliation(s)
- Mika Nishiuchi
- a Laboratory of Nutrition, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan.,b Department of Human Health and Nutrition , Shokei Gakuin University , Miyagi , Japan
| | - Kumiko Sakai
- c Institute for Research Promotion, Faculty of Medicine , Oita University , Oita , Japan
| | - Hiroyuki Tajima
- d Department of Human Psychology , Shokei Gakuin University , Natori , Japan
| | - Kazuo Katayama
- b Department of Human Health and Nutrition , Shokei Gakuin University , Miyagi , Japan
| | - Fumiko Kimura
- b Department of Human Health and Nutrition , Shokei Gakuin University , Miyagi , Japan
| | - Seiko Hoshi
- b Department of Human Health and Nutrition , Shokei Gakuin University , Miyagi , Japan
| | - Tomoko Goto
- e Department of Food and Nutritional Science , Miyagi Gakuin Women's University , Sendai , Japan
| | - Hitoshi Shirakawa
- a Laboratory of Nutrition, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Michio Komai
- a Laboratory of Nutrition, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
20
|
Muscle transcriptome resource for growth, lipid metabolism and immune system in Hilsa shad, Tenualosa ilisha. Genes Genomics 2018; 41:1-15. [PMID: 30196475 DOI: 10.1007/s13258-018-0732-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
The information on the genes involved in muscle growth, lipid metabolism and immune systems would help to understand the mechanisms during the spawning migration in Hilsa shad, which in turn would be useful in its future domestication process. The primary objective of this study was to generate the transcriptome profile of its muscle through RNA seq. The total RNA was isolated and library was prepared from muscle tissue of Tenualosa ilisha, which was collected from Padma River at Farakka, India. The prepared library was then sequenced by Illumina HiSeq platform, HiSeq 2000, using paired-end strategy. A total of 8.68 GB of pair-end reads of muscle transcriptome was generated, and 43,384,267 pair-end reads were assembled into 3,04,233 contigs, of which 23.99% of assembled contigs has length ≥ 150 bp. The total GO terms were categorised into cellular component, molecular function and biological process through PANTHER database. Fifty-three genes related to muscle growth were identified and genes in different pathways were: 75 in PI3/AKT, 46 in mTOR, 76 in MAPK signalling, 24 in Janus kinase-signal transducer and activator of transcription, 45 in AMPK and 27 in cGMP pathways. This study also mined the genes involved in lipid metabolism, in which glycerophospholipid metabolism contained highest number of genes (32) and four were found to be involved in fatty acid biosynthesis. There were 58 immune related genes found, in which 31 were under innate and 27 under adaptive immunity. The present study included a large genomic resource of T. ilisha muscle generated through RNAseq, which revealed the essential dataset for our understanding of regulatory processes, specifically during the seasonal spawning migration. As Hilsa is a slow growing fish, the genes identified for muscle growth provided the basic information to study myogenesis. In addition, genes identified for lipid metabolism and immune system would provide resources for lipid synthesis and understanding of Hilsa defense mechanisms, respectively.
Collapse
|
21
|
Wu K, Luo Z, Hogstrand C, Chen GH, Wei CC, Li DD. Zn Stimulates the Phospholipids Biosynthesis via the Pathways of Oxidative and Endoplasmic Reticulum Stress in the Intestine of Freshwater Teleost Yellow Catfish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9206-9214. [PMID: 30052432 DOI: 10.1021/acs.est.8b02967] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The hypothesis of our study was that waterborne Zn exposure evoked phospholipids (PL) biosynthesis to compensate for the loss of membrane integrity, and the pathways of oxidative stress and endoplasmic reticulum (ER) stress mediated the Zn-evoked changes of PL biosynthesis. Thus, we conducted RNA sequencing to analyze the differences in the intestinal transcriptomes between the control and Zn-treated P. fulvidraco. The 56-day Zn exposure increased the intestinal Zn accumulation, and mRNA levels of 816 genes were markedly up-regulated, while that of 263 genes were down-regulated. Many differentially expressed genes in the pathways of PL biosynthesis and protein processing in ER were identified. Their expression profiles indicated that waterborne Zn exposure injured protein metabolism, induced PL biosynthesis caused oxidative stress and ER stress, and activated the unfolded protein response. Then, using the primary enterocytes, we identified the mechanism of oxidative and ER stress mediating Zn-induced PL biosynthesis, and indicated that the activation of these pathways constituted adaptive mechanisms to reduce Zn toxicity. Our study demonstrated that Zn exposure via the water increased Zn accumulation and PL biosynthesis, and that oxidative stress and ER stress were interdependent and mediated the Zn-induced PL biosynthesis of the intestine in the freshwater teleost.
Collapse
Affiliation(s)
- Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College , Huazhong Agricultural University , Wuhan 430070 , China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College , Huazhong Agricultural University , Wuhan 430070 , China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province , Changde 415000 , China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division , School of Medicine, King's College London , Franklin-Wilkins Building, 150 Stamford Street , London , SE1 9NH , U.K
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College , Huazhong Agricultural University , Wuhan 430070 , China
| | - Chuan-Chuan Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College , Huazhong Agricultural University , Wuhan 430070 , China
| | - Dan-Dan Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College , Huazhong Agricultural University , Wuhan 430070 , China
| |
Collapse
|
22
|
Chen GH, Luo Z, Hogstrand C, Wu K, Ling SC. SREBP1, PPARG and AMPK pathways mediated the Cu-induced change in intestinal lipogenesis and lipid transport of yellow catfish Pelteobagrus fulvidraco. Food Chem 2018; 269:595-602. [PMID: 30100477 DOI: 10.1016/j.foodchem.2018.07.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/08/2018] [Accepted: 07/08/2018] [Indexed: 12/23/2022]
Abstract
Cu could act as a modifier and influence lipid metabolism, but the potential mechanism was not explored. Juvenile yellow catfish were fed diet containing 0.71 (low Cu), 3.93 (intermediate Cu) and 88.81 (high Cu) mg Cu kg-1, for 8 weeks to explore the modulation of intestinal lipid metabolism following dietary Cu addition. Using specific pathway inhibitors (Fatostatin for SREBP1, T0070907 for PPARG and Compound C for AMPK), primary enterocytes of yellow catfish were used to explore the molecular mechanisms of Cu reducing intestinal lipid deposition. Dietary Cu addition triggered Cu accumulation but suppressed lipid deposition in the fore- and mid-intestine. The reduced lipid deposition was attributable to the suppressed lipogenesis and lipid absorption, and accelerated lipid transport. The PPARG, SREBP1 and AMPK signaling pathways mediated the Cu-induced changes in lipogenesis, lipid uptake and lipid transport in the intestine of yellow catfish.
Collapse
Affiliation(s)
- Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan University of Arts and Science, Changde 415000, China.
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Shi-Cheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Wei CC, Luo Z, Hogstrand C, Xu YH, Wu LX, Chen GH, Pan YX, Song YF. Zinc reduces hepatic lipid deposition and activates lipophagy via Zn 2+/MTF-1/PPARα and Ca 2+/CaMKKβ/AMPK pathways. FASEB J 2018; 32:fj201800463. [PMID: 29912588 DOI: 10.1096/fj.201800463] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zinc (Zn) deficiency is the most consistently discovered nutritional manifestations of fatty liver disease. Although Zn is known to stimulate hepatic lipid oxidation, little is known about its underlying mechanism of action in lipolysis. Given the potential role of lipophagy in lipid metabolism, the purpose of this study was to test the hypothesis that Zn attenuates hepatic lipid accumulation by modulating lipophagy. The present study indicated that Zn is a potent promoter of lipophagy. Zn administration significantly alleviated hepatocellular lipid accumulation and increased the release of free fatty acids in association with enhanced fatty acid oxidation and inhibited lipogenesis, which was accompanied by activation of autophagy. Moreover, Zn reduced lipid accumulation and stimulated lipolysis by autophagy-mediated lipophagy. Zn-induced up-regulation of autophagy and lipid depletion is free Zn2+-dependent in the cytosols. Zn-induced autophagy and lipid turnover involved up-regulation of the calcium/calmodulin-dependent protein kinase kinase-β (Ca2+/CaMKKβ)/AMPK pathway. Meanwhile, Zn2+-activated autophagy and lipid depletion were via enhancing metal response element-binding transcription factor (MTF)-1 DNA binding at PPARα promoter region, which in turn induced transcriptional activation of the key genes related to autophagy and lipolysis. Zn activated the pathways of Zn2+/MTF-1/ Peroxisome proliferator-activated receptor (PPAR)α and Ca2+/CaMKKβ/AMPK, resulting in the up-regulation of lipophagy and accordingly reduced hepatic lipid accumulation. Our study, for the first time, provided innovative evidence of the direct relationship between metal elements (Zn) and lipid metabolism. The present study also indicated the novel mechanism for Zn-induced lipolysis by the activation of Zn2+/MTF-1/PPARα and Ca2+/CaMKKβ/AMPK pathways, which induced the occurrence of lipophagy. These results provide new insight into Zn nutrition and its potential beneficial effects on the prevention of fatty liver disease in vertebrates.-Wei, C.-C., Luo, Z., Hogstrand, C., Xu, Y.-H., Wu, L.-X., Chen, G.-H., Pan, Y.-X., Song, Y.-F. Zinc reduces hepatic lipid deposition and activates lipophagy via Zn2+/MTF-1/PPARα and Ca2+/CaMKKβ/AMPK pathways.
Collapse
Affiliation(s)
- Chuan-Chuan Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, United Kingdom
| | - Yi-Huan Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Li-Xiang Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Ling SC, Luo Z, Chen GH, Zhang DG, Liu X. Waterborne Zn influenced Zn uptake and lipid metabolism in two intestinal regions of juvenile goby Synechogobius hasta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:578-584. [PMID: 29127820 DOI: 10.1016/j.ecoenv.2017.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
The present study explored the influence of Zn addition in the water on Zn transport and lipid metabolism of two intestinal regions in goby Synechogobius hasta. Zn contents in water were 0.004 (control), 0.181 and 0.361mg Zn L-1, respectively. The experiment lasted for 28 days. TG and Zn contents, mRNA contents of genes of Zn transport and lipid metabolism, and enzyme activity from anterior and mid-intestine tissues were analyzed. In anterior intestine, Zn addition in the water increased Zn contents, and mRNA concentrations of ZIP4, ZIP5, ATGL, PPARα, ZNF202 and KLF7, decreased TG contents, 6PGD and G6PD activities, and mRNA contents of 6PGD, G6PD, FAS, PPARγ, ICDH and KLF4. In mid-intestine tissue, the highest Zn and TG contents were observed for 0.18mg Zn/l group, in parallel with the highest expressions of ZnT1, ZIP4, ZIP5, 6PGD, FAS, ICDH, PPARγ, PPARα, ZNF202, KLF4 and KLF7, and with the highest FAS, 6PGD and G6PD activities. Thus, in the anterior intestine, Zn addition increased lipolysis and decreased lipogenesis, and accordingly reduced TG content. However, the highest mid-intestinal TG content in 0.18mg Zn/l group was due to the up-regulated lipogenesis. Although lipolysis was also increased, the incremental lipid synthesis was enough to compensate for lipid degradation, which led TG accumulation. Our results, for the first time, show an anterior/mid functional regionalization of the intestine in lipid metabolism and Zn transport of S. hasta following Zn exposure.
Collapse
Affiliation(s)
- Shi-Cheng Ling
- Laboratory of Nutrition Physiology and Feed Formulation, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Laboratory of Nutrition Physiology and Feed Formulation, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Guang-Hui Chen
- Laboratory of Nutrition Physiology and Feed Formulation, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Dian-Guang Zhang
- Laboratory of Nutrition Physiology and Feed Formulation, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Liu
- Panjin Guanghe Crab Co. Ltd., Panjin 124200, China
| |
Collapse
|
25
|
Yao YL, Han X, Song J, Zhang J, Li YM, Lian LH, Wu YL, Nan JX. Acanthoic acid protectsagainst ethanol-induced liver injury: Possible role of AMPK activation and IRAK4 inhibition. Toxicol Lett 2017; 281:127-138. [DOI: 10.1016/j.toxlet.2017.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
|
26
|
Molecular characterization and functional analysis of PPARα promoter in yellow catfish Pelteobagrus fulvidraco. Gene 2017. [DOI: 10.1016/j.gene.2017.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Identification of apoptosis-related genes Bcl2 and Bax from yellow catfish Pelteobagrus fulvidraco and their transcriptional responses to waterborne and dietborne zinc exposure. Gene 2017; 633:1-8. [PMID: 28864113 DOI: 10.1016/j.gene.2017.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/04/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Apoptosis plays a key role in the physiology of multicellular organisms, and has been well studied in mammals, but not in teleosts. Zinc (Zn) has been shown to be an important regulator of apoptosis and apoptosis involves in the regulation of lipid metabolism. Moreover, our recent study indicated that waterborne and dietborne Zn exposure differently influenced lipid metabolism in Pelteobagrus fulvidraco, but further mechanism remained unknown. The hypothesis of the present study is that apoptosis mediated the Zn-induced changes of lipid metabolism of P. fulvidraco subjected to different exposure pathways. To this end, we cloned full-length cDNA sequences of Bcl2 and three Bax subtypes involved in apoptosis in P. fulvidraco, explored their mRNA expressions in responses to different Zn exposure pathways. Bcl2 and three Bax subtypes shared similar domain structure as typical pro- and anti-apoptotic Bcl2 family members. Their mRNAs were widely expressed among various tissues, but at variable levels. Waterborne Zn exposure down-regulated mRNA levels of Baxg and ratios of Baxa/Bcl2, and Baxg/Bcl2, but showed no significant effects on mRNA abundances of Bcl2, Baxa and Baxb, and the ratio of Baxb/Bcl2. In contrast, dietborne Zn exposure up-regulated mRNA levels of Bcl2, Baxa, Baxb and Baxg, but reduced the ratios of Baxa/Bcl2, Baxb/Bcl2, and Baxg/Bcl2. Considering their important roles of these genes in apoptosis induced by Zn, apoptosis may mediate the Zn-induced changes of hepatic lipid metabolism of Pelteobagrus fulvidraco under different Zn exposure pathways. For the first time, we characterized the full-length cDNA sequences of Bcl2 and three Bax subtypes, determined their expression profiles and transcriptional responses to different Zn exposure pathways, which would contribute to our understanding of the molecular basis of apoptosis, and also provide new insights into physiological responses to different Zn exposure pathways.
Collapse
|
28
|
Chen GH, Luo Z, Chen F, Shi X, Song YF, You WJ, Liu X. PPARα, PPARγ and SREBP-1 pathways mediated waterborne iron (Fe)-induced reduction in hepatic lipid deposition of javelin goby Synechogobius hasta. Comp Biochem Physiol C Toxicol Pharmacol 2017; 197:8-18. [PMID: 28411055 DOI: 10.1016/j.cbpc.2017.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 01/20/2023]
Abstract
The 42-day experiment was conducted to investigate the effects and mechanism of waterborne Fe exposure influencing hepatic lipid deposition in Synechogobius hasta. For that purpose, S. hasta were exposed to four Fe concentrations (0 (control), 0.36, 0.72 and 1.07μM Fe) for 42days. On days 21 and 42, morphological parameters, hepatic lipid deposition and Fe contents, and activities and mRNA levels of enzymes and genes related to lipid metabolism, including lipogenic enzymes (6PGD, G6PD, ME, ICDH, FAS and ACC) and lipolytic enzymes (CPTI, HSL), were analyzed. With the increase of Fe concentration, hepatic Fe content tended to increase but HSI and lipid content tended to decrease. On day 21, Fe exposure down-regulated the lipogenic activities of 6PGD, G6PD, ICDH and FAS as well as the mRNA levels of G6PD, ACCa, FAS, SREBP-1 and PPARγ, but up-regulated CPT I, HSLa and PPARα mRNA levels. On day 42, Fe exposure down-regulated the lipogenic activities of 6PGD, G6PD, ICDH and FAS as well as the mRNA levels of 6PGD, ACCa, FAS and SREBP-1, but up-regulated CPT I, HSLa, PPARα and PPARγ mRNA levels. Using primary S. hasta hepatocytes, specific pathway inhibitors (GW6471 for PPARα and fatostatin for SREBP-1) and activator (troglitazone for PPARγ) were used to explore the signaling pathways of Fe reducing lipid deposition. The GW6471 attenuated the Fe-induced down-regulation of mRNA levels of 6PGD, G6PD, ME, FAS and ACCa, and attenuated the Fe-induced up-regulation of mRNA levels of CPT I, HSLa and PPARα. Compared with single Fe-incubated group, the mRNA levels of G6PD, ME, FAS, ACCa, ACCb and PPARγ were up-regulated while the CPT I mRNA levels were down-regulated after troglitazone pre-treatment; fatostatin pre-treatment down-regulated the mRNA levels of 6PGD, ME, FAS, ACCa, ACCb and SREBP-1, and increased the CPT I and HSLa mRNA levels. Based on these results above, our study indicated that Fe exposure reduced hepatic lipid deposition by down-regulating lipogenesis and up-regulating lipolysis, and PPARα, PPARγ and SREBP-1 pathways mediated the Fe-induced reduction of hepatic lipid deposition in S. hasta.
Collapse
Affiliation(s)
- Guang-Hui Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Feng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Shi
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Jing You
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Liu
- Postgraduate Research Base, Panjin Guanghe Fishery Co. Ltd., Panjin 124200, China
| |
Collapse
|
29
|
Kong W, Huang C, Tang Y, Zhang D, Wu Z, Chen X. Effect of Bacillus subtilis on Aeromonas hydrophila-induced intestinal mucosal barrier function damage and inflammation in grass carp (Ctenopharyngodon idella). Sci Rep 2017; 7:1588. [PMID: 28484272 PMCID: PMC5431481 DOI: 10.1038/s41598-017-01336-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
Our study explored the effect of oral intubation of Bacillus subtilis on Aeromonas hydrophila-induced intestinal mucosal barrier function damage and inflammation in grass carp. The mid-intestine mucosal tissue was collected for ATPase activity measurement. Intestinal mucosa was also ultrastructurally examined with transmission electron microscope (TEM), and its permeability was determined using Evans blue (EB) and D-lactic acid. The mid-intestine pro-inflammation cytokine, MyD88 and tight junction (TJ) protein mRNA expression levels were measured using real-time quantitative PCR. The results revealed that B. subtilis was found to prevent the decrease in the activity of Na+, K+-ATPase and Ca2+, Mg2+-ATPase, as well as the increase in EB and D-lactic acid concentration and inflammation induced by A. hydrophila in grass carp. Compared with A. hydrophila groups, B. subtilis safeguarded the integrity of intestinal villi and tight junction structure and restrained A. hydrophila-induced down-regulation of TJ proteins zonula occludens-1 (ZO-1) and occludin. B. subtilis also restrained up-regulation of TJ protein claudin b, pro-inflammation cytokine tumour necrosis factor α (TNF-α), cytokine interleukin 8 (IL-8), IL-1β, and adaptor protein myeloid differentiation factor 88 (MyD88) mRNA levels. Thus, oral intubation of B. subtilis could reduce A. hydrophila-induced intestinal mucosal barrier function damage and inflammation.
Collapse
Affiliation(s)
- Weiguang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Can Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Tang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Ding Zhang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Zhixin Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| | - Xiaoxuan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
30
|
Wei CC, Luo Z, Song YF, Pan YX, Wu K, You WJ. Identification of autophagy related genes LC3 and ATG4 from yellow catfish Pelteobagrus fulvidraco and their transcriptional responses to waterborne and dietborne zinc exposure. CHEMOSPHERE 2017; 175:228-238. [PMID: 28222377 DOI: 10.1016/j.chemosphere.2017.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Autophagy mediates the regulation of lipid metabolism. Moreover, our recent study indicated that waterborne and dietborne zinc (Zn) exposure differentially influenced lipid metabolism in a fish species of significance for aquaculture, yellow catfish Pelteobagrus fulvidraco, but further mechanism remained unknown. The hypothesis of the present study is that autophagy mediated the Zn-induced changes of lipid metabolism of yellow catfish subjected to different exposure pathways. To this end, we cloned key genes involved in autophagy in yellow catfish, explored their mRNA expressions in responses to different Zn exposure pathways. Full-length cDNA sequences of two LC3 subtypes and six ATG4 isoforms were isolated from yellow catfish. More ATG4 members were firstly identified in fish that might have arisen by teleost-specific whole genome duplication events. All of these members shared similar domain structure to their orthologous genes of vertebrates. Their mRNAs were widely expressed in various tissues, but at variable levels. Extra Zn addition in water or diets induced (P < 0.05) mRNA expression of ATG4Da, ATG4Db and LC3B. Considering their important roles of these genes in lipid metabolism, ATG4Da, ATG4Db and LC3B may mediate the changes of Zn-induced hepatic lipid metabolism of yellow catfish under different Zn exposure pathways. For the first time, we characterized the full-length cDNA sequences of six ATG4 isoforms and two LC3 subtypes, determined their tissue expression profiles and transcriptional responses to different Zn exposure pathways, which would contribute to our understanding of the molecular basis of autophagy, and also provide new insights into physiological responses to different Zn exposure pathways.
Collapse
Affiliation(s)
- Chuan-Chuan Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Jing You
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|