1
|
Aqeel SM, Abdulqader AA, Du G, Liu S. Integrated strategies for efficient production of Streptomyces mobaraensis transglutaminase in Komagataella phaffii. Int J Biol Macromol 2024; 273:133113. [PMID: 38885870 DOI: 10.1016/j.ijbiomac.2024.133113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Transglutaminase (TGase) from Streptomyces mobaraensis commonly used to improve protein-based foods due to its unique enzymatic reactions, which imply considerable attention in its production. Recently, TGase exhibit broad market potential in non-food industries. However, achieving efficient synthesis of TGase remains a significant challenge. Herein, we achieved a substantial amount of a fully functional and kinetically stable TGase produced by Komagataella phaffii (Pichia pastoris) using multiple strategies including Geneticin (G418) screening, combinatorial mutations, promoter optimization, and co-expression. The active TGase expression reached a maximum of 10.1 U mL-1 in shake flask upon 96 h of induction, which was 3.8-fold of the wild type. Also, the engineered strain exhibited a 6.4-fold increase in half-life and a 2-fold increase in specific activity, reaching 172.67 min at 60 °C (t1/2(60 °C)) and 65.3 U mg-1, respectively. Moreover, the high-cell density cultivation in 5-L fermenter was also applied to test the productivity at large scale. Following optimization at a fermenter, the secretory yield of TGase reached 47.96 U mL-1 in the culture supernatant. Given the complexity inherent in protein expression and secretion, our research is of great significance and offers a comprehensive guide for improving the production of a wide range of heterologous proteins.
Collapse
Affiliation(s)
- Sahibzada Muhammad Aqeel
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Al-Adeeb Abdulqader
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Abramczyk D, Del Carmen Sanchez Olmos M, Rojas AAR, Schindler D, Robertson D, McColm S, Marston AL, Barlow PN. A supernumerary synthetic chromosome in Komagataella phaffii as a repository for extraneous genetic material. Microb Cell Fact 2023; 22:259. [PMID: 38104077 PMCID: PMC10724962 DOI: 10.1186/s12934-023-02262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Komagataella phaffii (Pichia pastoris) is a methylotrophic commercially important non-conventional species of yeast that grows in a fermentor to exceptionally high densities on simple media and secretes recombinant proteins efficiently. Genetic engineering strategies are being explored in this organism to facilitate cost-effective biomanufacturing. Small, stable artificial chromosomes in K. phaffii could offer unique advantages by accommodating multiple integrations of extraneous genes and their promoters without accumulating perturbations of native chromosomes or exhausting the availability of selection markers. RESULTS Here, we describe a linear "nano"chromosome (of 15-25 kb) that, according to whole-genome sequencing, persists in K. phaffii over many generations with a copy number per cell of one, provided non-homologous end joining is compromised (by KU70-knockout). The nanochromosome includes a copy of the centromere from K. phaffii chromosome 3, a K. phaffii-derived autonomously replicating sequence on either side of the centromere, and a pair of K. phaffii-like telomeres. It contains, within its q arm, a landing zone in which genes of interest alternate with long (approx. 1-kb) non-coding DNA chosen to facilitate homologous recombination and serve as spacers. The landing zone can be extended along the nanochromosome, in an inch-worming mode of sequential gene integrations, accompanied by recycling of just two antibiotic-resistance markers. The nanochromosome was used to express PDI, a gene encoding protein disulfide isomerase. Co-expression with PDI allowed the production, from a genomically integrated gene, of secreted murine complement factor H, a plasma protein containing 40 disulfide bonds. As further proof-of-principle, we co-expressed, from a nanochromosome, both PDI and a gene for GFP-tagged human complement factor H under the control of PAOX1 and demonstrated that the secreted protein was active as a regulator of the complement system. CONCLUSIONS We have added K. phaffii to the list of organisms that can produce human proteins from genes carried on a stable, linear, artificial chromosome. We envisage using nanochromosomes as repositories for numerous extraneous genes, allowing intensive engineering of K. phaffii without compromising its genome or weakening the resulting strain.
Collapse
Affiliation(s)
| | | | | | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Robertson
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul N Barlow
- School of Chemistry, University of Edinburgh, Edinburgh, UK.
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Vieira IPV, Pimentel FSA, Coelho CM, De Marco JL, de Moraes LMP, Torres FAG. Use of an on/off tetracycline riboswitch to control protein production in Komagataella phaffii. AMB Express 2023; 13:131. [PMID: 37989852 PMCID: PMC10663417 DOI: 10.1186/s13568-023-01637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023] Open
Abstract
The methylotrophic yeast Komagataella phaffii is one of the most important microbial platforms to produce recombinant proteins. Despite its importance in the context of industrial biotechnology, the use of synthetic biology approaches in K. phaffii is hampered by the fact that few genetic tools are available for precise control of gene expression in this system. In this work, we used an RNA aptamer activated by tetracycline to modulate protein production at the translational level. Using lacZ as gene reporter, we have demonstrated significant reduction of the heterologous protein upon addition of tetracycline. Furthermore, this genetic control device was applied for the control of Ku70p. This protein is involved in non-homologous recombination and the control of its production paves the way for the development of strains exhibiting higher rates of homologous recombination.
Collapse
Affiliation(s)
| | - Felipe Seixas Arreguy Pimentel
- Laboratório de Biotecnologia de Leveduras, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Marques Coelho
- Laboratório de Biologia Sintética, Instituto de Ciências Biológicas, Universidade de Brasília, Distrito Federal, Brazil
| | - Janice Lisboa De Marco
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Distrito Federal, Brazil
| | - Lidia Maria Pepe de Moraes
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Distrito Federal, Brazil
| | | |
Collapse
|
4
|
Singh A, Narang A. P AOX1 expression in mixed-substrate continuous cultures of Komagataella phaffii ( Pichia pastoris) is completely determined by methanol consumption regardless of the secondary carbon source. Front Bioeng Biotechnol 2023; 11:1123703. [PMID: 37091330 PMCID: PMC10113526 DOI: 10.3389/fbioe.2023.1123703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
The expression of recombinant proteins by the AOX1 promoter of Komagataella phaffii is typically induced by adding methanol to the cultivation medium. Since growth on methanol imposes a high oxygen demand, the medium is often supplemented with an additional secondary carbon source which serves to reduce the consumption of methanol, and hence, oxygen. Early research recommended the use of glycerol as the secondary carbon source, but more recent studies recommend the use of sorbitol because glycerol represses P AOX1 expression. To assess the validity of this recommendation, we measured the steady state concentrations of biomass, residual methanol, and LacZ expressed from P AOX1 over a wide range of dilution rates (0.02-0.20 h-1) in continuous cultures of the Mut+ strain fed with methanol + glycerol (repressing) and methanol + sorbitol (non-repressing). We find that under these conditions, the specific P AOX1 expression rate (measured as either specific LacZ productivity or specific AOX productivity) is completely determined by the specific methanol consumption rate regardless of the type (repressing/non-repressing) of the secondary carbon source. In both cultures, the specific P AOX1 expression rate is proportional to the specific methanol consumption rate, provided that the latter is below 0.15 g/(gdw-h); beyond this threshold consumption rate, the specific P AOX1 expression rate of both cultures saturates to the same value. Analysis of the data in the literature shows that the same phenomenon also occurs in continuous cultures of Escherichia coli fed with mixtures of lactose plus repressing/non-repressing carbon sources. The specific P lac expression rate is completely determined by the specific lactose consumption rate, regardless of the type of secondary carbon source, glycerol or glucose.
Collapse
Affiliation(s)
| | - Atul Narang
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
5
|
Palkina KA, Balakireva AV, Belozerova OA, Chepurnykh TV, Markina NM, Kovalchuk SI, Tsarkova AS, Mishin AS, Yampolsky IV, Sarkisyan KS. Domain Truncation in Hispidin Synthase Orthologs from Non-Bioluminescent Fungi Does Not Lead to Hispidin Biosynthesis. Int J Mol Sci 2023; 24:1317. [PMID: 36674833 PMCID: PMC9866795 DOI: 10.3390/ijms24021317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Hispidin is a polyketide found in plants and fungi. In bioluminescent fungi, hispidin serves as a precursor of luciferin and is produced by hispidin synthases. Previous studies revealed that hispidin synthases differ in orthologous polyketide synthases from non-bioluminescent fungi by the absence of two domains with predicted ketoreductase and dehydratase activities. Here, we investigated the hypothesis that the loss of these domains in evolution led to the production of hispidin and the emergence of bioluminescence. We cloned three orthologous polyketide synthases from non-bioluminescent fungi, as well as their truncated variants, and assessed their ability to produce hispidin in a bioluminescence assay in yeast. Interestingly, expression of the full-length enzyme hsPKS resulted in dim luminescence, indicating that small amounts of hispidin are likely being produced as side products of the main reaction. Deletion of the ketoreductase and dehydratase domains resulted in no luminescence. Thus, domain truncation by itself does not appear to be a sufficient step for the emergence of efficient hispidin synthases from orthologous polyketide synthases. At the same time, the production of small amounts of hispidin or related compounds by full-length enzymes suggests that ancestral fungal species were well-positioned for the evolution of bioluminescence.
Collapse
Affiliation(s)
- Kseniia A. Palkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Planta LLC., 121205 Moscow, Russia
| | - Anastasia V. Balakireva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Planta LLC., 121205 Moscow, Russia
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Tatiana V. Chepurnykh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nadezhda M. Markina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Planta LLC., 121205 Moscow, Russia
| | - Sergey I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Aleksandra S. Tsarkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander S. Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Planta LLC., 121205 Moscow, Russia
| | - Ilia V. Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Karen S. Sarkisyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Planta LLC., 121205 Moscow, Russia
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
6
|
Gätjen D, Wieczorek M, Listek M, Tomszak F, Nölle V, Hanack K, Droste M. A switchable secrete-and-capture system enables efficient selection of Pichia pastoris clones producing high yields of Fab fragments. J Immunol Methods 2022; 511:113383. [PMID: 36356896 DOI: 10.1016/j.jim.2022.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Pichia pastoris (syn. Komagataella phaffii) represents a commonly used expression system in the biotech industry. High clonal variation of transformants, however, typically results in a broad range of specific productivities for secreted proteins. To isolate rare clones with exceedingly high product titers, an extensive number of clones need to be screened. In contrast to high-throughput screenings of P. pastoris clones in microtiter plates, secrete-and-capture methodologies have the potential to efficiently isolate high-producer clones among millions of cells through fluorescence-activated cell sorting (FACS). Here, we describe a novel approach for the non-covalent binding of fragment antigen-binding (Fab) proteins to the cell surface for the isolation of high-producing clones. Eight different single-chain variable fragment (scFv)-based capture matrices specific for the constant part of the Fabs were fused to the Saccharomyces cerevisiae alpha-agglutinin (SAG1) anchor protein for surface display in P. pastoris. By encoding the capture matrix on an episomal plasmid harboring inherently unstable autonomously replicating sequences (ARS), this secrete-and-capture system offers a switchable scFv display. Efficient plasmid clearance upon removal of selective pressure enabled the direct use of isolated clones for subsequent Fab production. Flow-sorted clones (n = 276) displaying high amounts of Fabs showed a significant increase in median Fab titers detected in the cell-free supernatant (CFS) compared to unsorted clones (n = 276) when cells were cultivated in microtiter plates (factor in the range of ∼21-49). Fab titers of clones exhibiting the highest product titer observed for each of the two approaches were increased by up to 8-fold for the sorted clone. Improved Fab yields of sorted cells vs. unsorted cells were confirmed in an upscaled shake flask cultivation of selected candidates (factor in the range of ∼2-3). Hence, the developed display-based selection method proved to be a valuable tool for efficient clone screening in the early stages of our bioprocess development.
Collapse
Affiliation(s)
- Dominic Gätjen
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany; Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Marek Wieczorek
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Martin Listek
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Florian Tomszak
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Miriam Droste
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany.
| |
Collapse
|
7
|
Schusterbauer V, Fischer JE, Gangl S, Schenzle L, Rinnofner C, Geier M, Sailer C, Glieder A, Thallinger GG. Whole Genome Sequencing Analysis of Effects of CRISPR/Cas9 in Komagataella phaffii: A Budding Yeast in Distress. J Fungi (Basel) 2022; 8:jof8100992. [PMID: 36294556 PMCID: PMC9605565 DOI: 10.3390/jof8100992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The industrially important non-conventional yeast Komagataella phaffii suffers from low rates of homologous recombination, making site specific genetic engineering tedious. Therefore, genome editing using CRISPR/Cas represents a simple and efficient alternative. To characterize on- and off-target mutations caused by CRISPR/Cas9 followed by non-homologous end joining repair, we chose a diverse set of CRISPR/Cas targets and conducted whole genome sequencing on 146 CRISPR/Cas9 engineered single colonies. We compared the outcomes of single target CRISPR transformations to double target experiments. Furthermore, we examined the extent of possible large deletions by targeting a large genomic region, which is likely to be non-essential. The analysis of on-target mutations showed an unexpectedly high number of large deletions and chromosomal rearrangements at the CRISPR target loci. We also observed an increase of on-target structural variants in double target experiments as compared to single target experiments. Targeting of two loci within a putatively non-essential region led to a truncation of chromosome 3 at the target locus in multiple cases, causing the deletion of 20 genes and several ribosomal DNA repeats. The identified de novo off-target mutations were rare and randomly distributed, with no apparent connection to unspecific CRISPR/Cas9 off-target binding sites.
Collapse
Affiliation(s)
- Veronika Schusterbauer
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
- Institute of Biomedical Imaging, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | | | - Sarah Gangl
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Lisa Schenzle
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | | | - Martina Geier
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Christian Sailer
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | - Anton Glieder
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Gerhard G. Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-873-5343
| |
Collapse
|
8
|
Kjeldsen A, Kay JE, Baxter S, McColm S, Serrano‐Amatriain C, Parker S, Robb E, Arnold SA, Gilmour C, Raper A, Robertson G, Fleming R, Smith BO, Fotheringham IG, Christie JM, Magneschi L. The fluorescent protein iLOV as a reporter for screening of high‐yield production of antimicrobial peptides in
Pichia pastoris. Microb Biotechnol 2022; 15:2126-2139. [PMID: 35312165 PMCID: PMC9249318 DOI: 10.1111/1751-7915.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris is commonly used for the production of recombinant proteins at scale. The identification of an optimally overexpressing strain following transformation can be time and reagent consuming. Fluorescent reporters like GFP have been used to assist identification of superior producers, but their relatively big size, maturation requirements and narrow temperature range restrict their applications. Here, we introduce the use of iLOV, a flavin‐based fluorescent protein, as a fluorescent marker to identify P. pastoris high‐yielding strains easily and rapidly. The use of this fluorescent protein as a fusion partner is exemplified by the production of the antimicrobial peptide NI01, a difficult target to overexpress in its native form. iLOV fluorescence correlated well with protein expression level and copy number of the chromosomally integrated gene. An easy and simple medium‐throughput plate‐based screen directly following transformation is demonstrated for low complexity screening, while a high‐throughput method using fluorescence‐activated cell sorting (FACS) allowed for comprehensive library screening. Both codon optimization of the iLOV_NI01 fusion cassettes and different integration strategies into the P. pastoris genome were tested to produce and isolate a high‐yielding strain. Checking the genetic stability, process reproducibility and following the purification of the active native peptide are eased by visualization of and efficient cleavage from the iLOV reporter. We show that this system can be used for expression and screening of several different antimicrobial peptides recombinantly produced in P. pastoris.
Collapse
Affiliation(s)
- Annemette Kjeldsen
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
- Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow Bower Building Glasgow G12 8QQ UK
| | - Jack E. Kay
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - Scott Baxter
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - Stephen McColm
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | | | - Scott Parker
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - Ellis Robb
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - S. Alison Arnold
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - Craig Gilmour
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - Anna Raper
- The Roslin Institute & Royal (Dick) School of Veterinary Studies University of Edinburgh Easter Bush Midlothian EH25 9RG UK
| | - Graeme Robertson
- The Roslin Institute & Royal (Dick) School of Veterinary Studies University of Edinburgh Easter Bush Midlothian EH25 9RG UK
| | - Robert Fleming
- The Roslin Institute & Royal (Dick) School of Veterinary Studies University of Edinburgh Easter Bush Midlothian EH25 9RG UK
| | - Brian O. Smith
- Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow Bower Building Glasgow G12 8QQ UK
| | - Ian G. Fotheringham
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - John M. Christie
- Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow Bower Building Glasgow G12 8QQ UK
| | - Leonardo Magneschi
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| |
Collapse
|
9
|
Nishi T, Ito Y, Nakamura Y, Yamaji T, Hashiba N, Tamai M, Yasohara Y, Ishii J, Kondo A. One-Step In Vivo Assembly of Multiple DNA Fragments and Genomic Integration in Komagataella phaffii. ACS Synth Biol 2022; 11:644-654. [PMID: 35094517 DOI: 10.1021/acssynbio.1c00302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The methylotrophic yeast species Komagataella phaffii (synonym: Pichia pastoris) is widely used as a host for recombinant protein production. Although several genetic engineering techniques are being employed on K. phaffii, advanced methods such as in vivo DNA assembly in this yeast species are required for synthetic biology applications. In this study, we established a technique for accomplishing one-step in vivo assembly of multiple DNA fragments and genomic integration in K. phaffii. To concurrently achieve an accurate multiple DNA assembly and a high-efficient integration into the target genomic locus in vivo, a K. phaffii strain, lacking a non-homologous end joining-related protein, DNA ligase IV (Dnl4p), that has been reported to improve gene targeting efficiency by homologous recombination, was used. Using green fluorescent protein along with the lycopene biosynthesis, we showed that our method that included a Dnl4p-defective strain permits direct and easy engineering of K. phaffii strains.
Collapse
Affiliation(s)
- Teruyuki Nishi
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Biotechnology Research Laboratories, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, Takasago 676-8688, Japan
| | - Yoichiro Ito
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Yasuyuki Nakamura
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Taiki Yamaji
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe 650-0047, Japan
| | - Noriko Hashiba
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe 650-0047, Japan
| | - Masaya Tamai
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe 650-0047, Japan
| | - Yoshihiko Yasohara
- Biotechnology Research Laboratories, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, Takasago 676-8688, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| |
Collapse
|
10
|
Lin-Cereghino J, Naranjo CA, Lin-Cereghino GP. Competent Cell Preparation and Transformation of Pichia pastoris. Methods Mol Biol 2022; 2513:113-120. [PMID: 35781202 DOI: 10.1007/978-1-0716-2399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
During the past three decades, the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii) has gained widespread acceptance as a system of choice for heterologous protein expression. One of the reasons that this yeast is used so frequently is the simplicity of techniques required for its molecular genetic manipulation. There are several different protocols available for introducing DNA into P. pastoris using electroporation or heat shock. We describe here a shortened protocol for cell preparation and transformation that works reliably with either prototrophic markers or antibiotic selection in this host. This procedure utilizes the most efficient portions of the electroporation and heat-shock transformation protocols to yield a method that is both time-saving and effective.
Collapse
Affiliation(s)
- Joan Lin-Cereghino
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | | | | |
Collapse
|
11
|
Dou W, Zhu Q, Zhang M, Jia Z, Guan W. Screening and evaluation of the strong endogenous promoters in Pichia pastoris. Microb Cell Fact 2021; 20:156. [PMID: 34372831 PMCID: PMC8351359 DOI: 10.1186/s12934-021-01648-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/31/2021] [Indexed: 01/29/2023] Open
Abstract
Background Due to its ability to perform fast and high-density fermentation, Pichia pastoris is not only used as an excellent host for heterologous protein expression but also exhibits good potential for efficient biosynthesis of small-molecule compounds. However, basic research on P. pastoris lags far behind Saccharomyces cerevisiae, resulting in a lack of available biological elements. Especially, fewer strong endogenous promoter elements available for foreign protein expression or construction of biosynthetic pathways were carefully evaluated in P. pastoris. Thus, it will be necessary to identify more available endogenous promoters from P. pastoris. Results Based on RNA-seq and LacZ reporter system, eight strong endogenous promoters contributing to higher transcriptional expression levels and β-galactosidase activities in three frequently-used media were screened out. Among them, the transcriptional expression level contributed by P0019, P0107, P0230, P0392, or P0785 was basically unchanged during the logarithmic phase and stationary phase of growth. And the transcriptional level contributed by P0208 or P0627 exhibited a growth-dependent characteristic (a lower expression level during the logarithmic phase and a higher expression level during the stationary phase). After 60 h growth, the β-galactosidase activity contributed by P0208, P0627, P0019, P0407, P0392, P0230, P0785, or P0107 was relatively lower than PGAP but higher than PACT1. To evaluate the availability of these promoters, several of them were randomly applied to a heterogenous β-carotene biosynthetic pathway in P. pastoris, and the highest yield of β-carotene from these mutants was up to 1.07 mg/g. In addition, simultaneously using the same promoter multiple times could result in a notable competitive effect, which might significantly lower the transcriptional expression level of the target gene. Conclusions The novel strong endogenous promoter identified in this study adds to the number of promoter elements available in P. pastoris. And the competitive effect observed here suggests that a careful pre-evaluation is needed when simultaneously and multiply using the same promoter in one yeast strain. This work also provides an effective strategy to identify more novel biological elements for engineering applications in P. pastoris. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01648-6.
Collapse
Affiliation(s)
- Weiwang Dou
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Quanchao Zhu
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meihua Zhang
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Zuyuan Jia
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenjun Guan
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Kao MR, Yu SM, Ho THUD. Improvements of the productivity and saccharification efficiency of the cellulolytic β-glucosidase D2-BGL in Pichia pastoris via directed evolution. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:126. [PMID: 34059121 PMCID: PMC8166090 DOI: 10.1186/s13068-021-01973-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/17/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND β-Glucosidases are essential for cellulose hydrolysis by catalyzing the final cellulolytic degradation of cello-oligomers and cellobiose to glucose. D2-BGL is a fungal glycoside hydrolase family 3 (GH3) β-glucosidase isolated from Chaetomella raphigera with high substrate affinity, and is an efficient β-glucosidase supplement to Trichoderma reesei cellulase mixtures for the saccharification of lignocellulosic biomass. RESULTS We have carried out error-prone PCR to further increase catalytic efficiency of wild-type (WT) D2-BGL. Three mutants, each with substitution of two amino acids on D2-BGL, exhibited increased activity in a preliminary mutant screening in Saccharomyces cerevisiae. Effects of single amino acid replacements on catalysis efficiency and enzyme production have been investigated by subsequent expression in Pichia pastoris. Substitution F256M resulted in enhancing the tolerance to substrate inhibition and specific activity, and substitution D224G resulted in increasing the production of recombinant enzyme. The best D2-BGL mutant generated, Mut M, was constructed by combining beneficial mutations D224G, F256M and Y260D. Expression of Mut M in Pichia pastoris resulted in 2.7-fold higher production of recombinant protein, higher Vmax and greater substrate inhibition tolerance towards cellobiose relative to wild-type enzyme. Surprisingly, Mut M overexpression induced the ER unfolded protein response to a level lower than that with WT D2 overexpression in P. pastoris. When combined with the T. reesei cellulase preparation Celluclast 1.5L, Mut M hydrolyzed acid-pretreated sugarcane bagasse more efficiently than WT D2. CONCLUSIONS D2-BGL mutant Mut M was generated successfully by following directed evolution approach. Mut M carries three mutations that are not reported in other directed evolution studies of GH3 β-glucosidases, and this mutant exhibited greater tolerance to substrate inhibition and higher Vmax than wild-type enzyme. Besides the enhanced specific activity, Mut M also exhibited a higher protein titer than WT D2 when it was overexpressed in P. pastoris. Our study demonstrates that both catalytic efficiency and productivity of a cellulolytic enzyme can be enhanced via protein engineering.
Collapse
Affiliation(s)
- Mu-Rong Kao
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 115 Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402 Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, 402 Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402 Taiwan
| | - Tuan-H ua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402 Taiwan
| |
Collapse
|
13
|
Collins JH, Keating KW, Jones TR, Balaji S, Marsan CB, Çomo M, Newlon ZJ, Mitchell T, Bartley B, Adler A, Roehner N, Young EM. Engineered yeast genomes accurately assembled from pure and mixed samples. Nat Commun 2021; 12:1485. [PMID: 33674578 PMCID: PMC7935868 DOI: 10.1038/s41467-021-21656-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Yeast whole genome sequencing (WGS) lacks end-to-end workflows that identify genetic engineering. Here we present Prymetime, a tool that assembles yeast plasmids and chromosomes and annotates genetic engineering sequences. It is a hybrid workflow-it uses short and long reads as inputs to perform separate linear and circular assembly steps. This structure is necessary to accurately resolve genetic engineering sequences in plasmids and the genome. We show this by assembling diverse engineered yeasts, in some cases revealing unintended deletions and integrations. Furthermore, the resulting whole genomes are high quality, although the underlying assembly software does not consistently resolve highly repetitive genome features. Finally, we assemble plasmids and genome integrations from metagenomic sequencing, even with 1 engineered cell in 1000. This work is a blueprint for building WGS workflows and establishes WGS-based identification of yeast genetic engineering.
Collapse
Affiliation(s)
- Joseph H Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Kevin W Keating
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Trent R Jones
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Shravani Balaji
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Celeste B Marsan
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Marina Çomo
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Zachary J Newlon
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Tom Mitchell
- Synthetic Biology, Raytheon BBN Technologies, Cambridge, MA, USA
| | - Bryan Bartley
- Synthetic Biology, Raytheon BBN Technologies, Cambridge, MA, USA
| | - Aaron Adler
- Synthetic Biology, Raytheon BBN Technologies, Cambridge, MA, USA
| | - Nicholas Roehner
- Synthetic Biology, Raytheon BBN Technologies, Cambridge, MA, USA
| | - Eric M Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
14
|
Enhanced in vitro anticancer activity of yeast expressed recombinant glucose oxidase versus commercial enzyme. Appl Microbiol Biotechnol 2021; 105:2377-2384. [PMID: 33616698 DOI: 10.1007/s00253-021-11179-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
Cancer treatments continue to have many disadvantages. Reactive oxygen species, such as H2O2, in high concentrations, can cause cytotoxicity to cells, being even greater in cancer cells. One of the H2O2-producing enzymes is glucose oxidase; its application in cancer treatment should be explored. In this work, the extracellular expression of the mutated recombinant enzyme glucose oxidase was carried out in the eukaryotic expression system Pichia pastoris SMD1168, through the modification and optimization of the gox gene of Aspergillus niger to improve its expression in yeast and its purification. Also, the secretion signal of the alpha-mating factor from Saccharomyces cerevisiae was added to the gene for extracellular expression, and it was inserted into the expression vector pPIC3.5k. The extracellular expression of the enzyme facilitated purification by anion exchange chromatography; the purification was corroborated by SDS-PAGE, with a molecular weight of its subunit between 63 kDa and 100 kDa. The mutated recombinant enzyme glucose oxidase showed greater anticancer activity compared to the commercial glucose oxidase and could have potential for cancer treatment. KEY POINTS: • Pichia pastoris is an excellent eukaryotic expression system for proteins that need post-translational modifications. • Extracellular expression facilitates protein purification. • Glucose oxidase has potential application in cancer treatment.
Collapse
|
15
|
Ito Y, Terai G, Ishigami M, Hashiba N, Nakamura Y, Bamba T, Kumokita R, Hasunuma T, Asai K, Ishii J, Kondo A. Exchange of endogenous and heterogeneous yeast terminators in Pichia pastoris to tune mRNA stability and gene expression. Nucleic Acids Res 2021; 48:13000-13012. [PMID: 33257988 PMCID: PMC7736810 DOI: 10.1093/nar/gkaa1066] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream of the terminator. The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has frequently been used as a platform for metabolic engineering but knowledge regarding P. pastoris terminators is limited. To explore terminator sequences available to tune protein expression levels in P. pastoris, we created a 'terminator catalog' by testing 72 sequences, including terminators from S. cerevisiae or P. pastoris and synthetic terminators. Altogether, we found that the terminators have a tunable range of 17-fold. We also found that S. cerevisiae terminator sequences maintain function when transferred to P. pastoris. Successful tuning of protein expression levels was shown not only for the reporter gene used to define the catalog but also using betaxanthin production as an example application in pathway flux regulation. Moreover, we found experimental evidence that protein expression levels result from mRNA abundance and in silico evidence that levels reflect the stability of mRNA 3'-UTR secondary structure. In combination with promoter selection, the novel terminator catalog constitutes a basic toolbox for tuning protein expression levels in metabolic engineering and synthetic biology in P. pastoris.
Collapse
Affiliation(s)
- Yoichiro Ito
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Goro Terai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan
| | - Misa Ishigami
- Technology Research Association of Highly Efficient Gene Design, Kobe 650-0047, Japan
| | - Noriko Hashiba
- Technology Research Association of Highly Efficient Gene Design, Kobe 650-0047, Japan
| | - Yasuyuki Nakamura
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takahiro Bamba
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Ryota Kumokita
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Kiyoshi Asai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
16
|
Bernauer L, Radkohl A, Lehmayer LGK, Emmerstorfer-Augustin A. Komagataella phaffii as Emerging Model Organism in Fundamental Research. Front Microbiol 2021; 11:607028. [PMID: 33505376 PMCID: PMC7829337 DOI: 10.3389/fmicb.2020.607028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023] Open
Abstract
Komagataella phaffii (Pichia pastoris) is one of the most extensively applied yeast species in pharmaceutical and biotechnological industries, and, therefore, also called the biotech yeast. However, thanks to more advanced strain engineering techniques, it recently started to gain attention as model organism in fundamental research. So far, the most studied model yeast is its distant cousin, Saccharomyces cerevisiae. While these data are of great importance, they limit our knowledge to one organism only. Since the divergence of the two species 250 million years ago, K. phaffii appears to have evolved less rapidly than S. cerevisiae, which is why it remains more characteristic of the common ancient yeast ancestors and shares more features with metazoan cells. This makes K. phaffii a valuable model organism for research on eukaryotic molecular cell biology, a potential we are only beginning to fully exploit. As methylotrophic yeast, K. phaffii has the intriguing property of being able to efficiently assimilate methanol as a sole source of carbon and energy. Therefore, major efforts have been made using K. phaffii as model organism to study methanol assimilation, peroxisome biogenesis and pexophagy. Other research topics covered in this review range from yeast genetics including mating and sporulation behavior to other cellular processes such as protein secretion, lipid biosynthesis and cell wall biogenesis. In this review article, we compare data obtained from K. phaffii with S. cerevisiae and other yeasts whenever relevant, elucidate major differences, and, most importantly, highlight the big potential of using K. phaffii in fundamental research.
Collapse
Affiliation(s)
- Lukas Bernauer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
| | - Astrid Radkohl
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
| | | | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
- acib—Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
17
|
The Mut+ strain of Komagataella phaffii (Pichia pastoris) expresses PAOX1 5 and 10 times faster than Muts and Mut− strains: evidence that formaldehyde or/and formate are true inducers of PAOX1. Appl Microbiol Biotechnol 2020; 104:7801-7814. [DOI: 10.1007/s00253-020-10793-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/14/2020] [Accepted: 07/19/2020] [Indexed: 01/10/2023]
|
18
|
Vogl T, Fischer JE, Hyden P, Wasmayer R, Sturmberger L, Glieder A. Orthologous promoters from related methylotrophic yeasts surpass expression of endogenous promoters of Pichia pastoris. AMB Express 2020; 10:38. [PMID: 32100120 PMCID: PMC7042429 DOI: 10.1186/s13568-020-00972-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 11/18/2022] Open
Abstract
Methylotrophic yeasts such as Komagataella phaffii (syn. Pichia pastoris, Pp), Hansenula polymorpha (Hp), Candida boidinii (Cb) and Pichia methanolica (Pm) are widely used protein production platforms. Typically, strong, tightly regulated promoters of genes coding for their methanol utilization (MUT) pathways are used to drive heterologous gene expression. Despite highly similar open reading frames in the MUT pathways of the four yeasts, the regulation of the respective promoters varies strongly between species. While most endogenous Pp MUT promoters remain tightly repressed after depletion of a repressing carbon, Hp, Cb and Pm MUT promoters are derepressed to up to 70% of methanol induced levels, enabling methanol free production processes in their respective host background. Here, we have tested a series of orthologous promoters from Hp, Cb and Pm in Pp. Unexpectedly, when induced with methanol, the promoter of the HpMOX gene reached very similar expression levels as the strong methanol, inducible, and most frequently used promoter of the Pp alcohol oxidase 1 gene (PPpAOX1). The HpFMD promoter even surpassed PPpAOX1 up to three-fold, when induced with methanol, and reached under methanol-free/derepressed conditions similar expression as the methanol induced PPpAOX1. These results demonstrate that orthologous promoters from related yeast species can give access to otherwise unobtainable regulatory profiles and may even considerably surpass endogenous promoters in P. pastoris.
Collapse
|
19
|
Nieto-Taype MA, Garrigós-Martínez J, Sánchez-Farrando M, Valero F, Garcia-Ortega X, Montesinos-Seguí JL. Rationale-based selection of optimal operating strategies and gene dosage impact on recombinant protein production in Komagataella phaffii (Pichia pastoris). Microb Biotechnol 2019; 13:315-327. [PMID: 31657146 PMCID: PMC7017824 DOI: 10.1111/1751-7915.13498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022] Open
Abstract
Its features as a microbial and eukaryotic organism have turned Komagataella phaffii (Pichia pastoris) into an emerging cell factory for recombinant protein production (RPP). As a key step of the bioprocess development, this work aimed to demonstrate the importance of tailor designing the cultivation strategy according to the production kinetics of the cell factory. For this purpose, K. phaffii clones constitutively expressing (PGAP) Candida rugosa lipase 1 (Crl1) with different gene dosage were used as models in continuous and fed‐batch cultures. Production parameters were much greater with a multicopy clone (MCC) than with the single‐copy clone (SCC). Regarding production kinetics, the specific product generation rate (qP) increased linearly with increasing specific growth rate (µ) in SCC; by contrast, qP exhibited saturation in MCC. A transcriptional analysis in chemostat cultures suggested the presence of eventual post‐transcriptional bottlenecks in MCC. After the strain characterization, in order to fulfil overall development of the bioprocess, the performance of both clones was also evaluated in fed‐batch mode. Strikingly, different optimal strategies were determined for both models due to the different production kinetic patterns observed as a trade‐off for product titre, yields and productivity. The combined effect of gene dosage and adequate µ enables rational process development with a view to optimize K. phaffii RPP bioprocesses.
Collapse
Affiliation(s)
- Miguel Angel Nieto-Taype
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Javier Garrigós-Martínez
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marc Sánchez-Farrando
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Xavier Garcia-Ortega
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - José Luis Montesinos-Seguí
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
20
|
Fischer JE, Glieder A. Current advances in engineering tools for Pichia pastoris. Curr Opin Biotechnol 2019; 59:175-181. [DOI: 10.1016/j.copbio.2019.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/02/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
|
21
|
Ahmad M, Winkler CM, Kolmbauer M, Pichler H, Schwab H, Emmerstorfer‐Augustin A. Pichia pastoris protease-deficient and auxotrophic strains generated by a novel, user-friendly vector toolbox for gene deletion. Yeast 2019; 36:557-570. [PMID: 31148217 PMCID: PMC6771850 DOI: 10.1002/yea.3426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 05/26/2019] [Indexed: 01/24/2023] Open
Abstract
Targeted gene knockouts play an important role in the study of gene function. For the generation of knockouts in the industrially important yeast Pichia pastoris, several protocols have been published to date. Nevertheless, creating a targeted knockout in P. pastoris still is a time-consuming process, as the existing protocols are labour intensive and/or prone to accumulate nucleotide mutations. In this study, we introduce a novel, user-friendly vector-based system for the generation of targeted knockouts in P. pastoris. Upon confirming the successful knockout, respective selection markers can easily be recycled. Excision of the marker is mediated by Flippase (Flp) recombinase and occurs at high frequency (≥95%). We validated our knockout system by deleting 20 (confirmed and putative) protease genes and five genes involved in biosynthetic pathways. For the first time, we describe gene deletions of PRO3 and PHA2 in P. pastoris, genes involved in proline, and phenylalanine biosynthesis, respectively. Unexpectedly, knockout strains of PHA2 did not display the anticipated auxotrophy for phenylalanine but rather showed a bradytroph phenotype on minimal medium hinting at an alternative but less efficient pathway for production of phenylalanine exists in P. pastoris. Overall, all knockout vectors can easily be adapted to the gene of interest and strain background by efficient exchange of target homology regions and selection markers in single cloning steps. Average knockout efficiencies for all 25 genes were shown to be 40%, which is comparably high.
Collapse
Affiliation(s)
- Mudassar Ahmad
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
| | | | - Markus Kolmbauer
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
| | - Harald Pichler
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria,Austrian Centre of Industrial Biotechnology (ACIB)GrazAustria
| | - Helmut Schwab
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria,Austrian Centre of Industrial Biotechnology (ACIB)GrazAustria
| | | |
Collapse
|
22
|
Ito Y, Watanabe T, Aikawa S, Nishi T, Nishiyama T, Nakamura Y, Hasunuma T, Okubo Y, Ishii J, Kondo A. Deletion of DNA ligase IV homolog confers higher gene targeting efficiency on homologous recombination in Komagataella phaffii. FEMS Yeast Res 2019; 18:5054040. [PMID: 30010892 DOI: 10.1093/femsyr/foy074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/12/2018] [Indexed: 01/24/2023] Open
Abstract
The non-conventional yeast Komagataella phaffii, formerly Pichia pastoris, is a popular host for recombinant protein production. The relatively lower gene targeting efficiency observed in this species occurs due to high levels of non-homologous recombination activity. In the current study, we explored the function of the K. phaffii homolog of DNA ligase IV (Dnl4p) by creating a DNL4-disrupted strain. To assess the roles of non-homologous end joining (NHEJ)-related proteins in this species, strains deleted for either or both genes encoding Dnl4p or the telomeric Ku complex subunit (Ku70p) were generated. These deletions were constructed by either of two distinct marker-recycling methods (yielding either a seamless gene deletion or a Cre-loxP-mediated gene deletion). The resulting dnl4- and/or ku70-deleted K. phaffii strains were used to evaluate gene targeting efficiency in gene knock-out and gene knock-in experiments. The Dnl4p-defective strain showed improved gene targeting efficiency for homologous recombination compared to the wild-type and Ku70p-deffective strains. The dnl4 ku70 double knock-out strain exhibited a further improvement in gene targeting efficiency. Thus, the K. phaffii dnl4 and dnl4 ku70 deletion strains are expected to serve as useful platforms for functional analysis and strain development in this species.
Collapse
Affiliation(s)
- Yoichiro Ito
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Toru Watanabe
- Biotechnology Research Laboratories, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Shimpei Aikawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Teruyuki Nishi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Biotechnology Research Laboratories, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Tozo Nishiyama
- Biotechnology Research Laboratories, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Yasuyuki Nakamura
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuji Okubo
- Biotechnology Research Laboratories, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
23
|
Sallada ND, Harkins LE, Berger BW. Effect of gene copy number and chaperone coexpression on recombinant hydrophobin HFBI biosurfactant production in Pichia pastoris. Biotechnol Bioeng 2019; 116:2029-2040. [PMID: 30934110 DOI: 10.1002/bit.26982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/07/2019] [Accepted: 03/28/2019] [Indexed: 11/07/2022]
Abstract
Hydrophobins are small highly surface-active fungal proteins with potential as biosurfactants in a wide array of applications. However, practical implementation of hydrophobins at large scale has been hindered by low recombinant yields. In this study, the effects of increasing hydrophobin gene copy number and overexpressing endoplasmic reticulum resident chaperone proteins Kar2p, Pdi1p, and Ero1p were explored as a means to enhance recombinant yields of the class II hydrophobin HFBI in the eukaryotic expression host Pichia pastoris. One-, 2-, and 3-copy-HFBI strains were attained using an in vitro multimer ligation approach, with strains displaying copy number stability following subsequent transformations as measured by quantitative polymerase chain reaction. Increasing HFBI copy number alone had no effect on increasing HFBI secretion, but increasing copy number in concert with chaperone overexpression synergistically increased HFBI secretion. Overexpression of PDI1 or ERO1 caused insignificant changes in HFBI secretion in 1- and 2-copy strains, but a statistically significant HFBI secretion increase in 3-copy strain. KAR2 overexpression consistently resulted in enhanced HFBI secretion in all copy number strains, with 3-copy-HFBI secreting 22±1.6 fold more than the 1-copy-HFBI/no chaperone strain. The highest increase was seen in 3-copy-HFBI/Ero1p overexpressing strain with 30±4.0 fold increase in HFBI secretion over 1-copy-HFBI/no chaperone strain. This corresponded to an expression level of approximately 330 mg/L HFBI in the 5 ml small-scale format used in this study.
Collapse
Affiliation(s)
- Nathanael D Sallada
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, Charlottesville, Virginia
| | - Lauren E Harkins
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, Charlottesville, Virginia
| | - Bryan W Berger
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, Charlottesville, Virginia.,Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
24
|
Functional expression of porcine interferon-α using a combinational strategy in Pichia pastoris GS115. Enzyme Microb Technol 2019; 122:55-63. [DOI: 10.1016/j.enzmictec.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022]
|
25
|
Cankorur-Cetinkaya A, Narraidoo N, Kasavi C, Slater NKH, Archer DB, Oliver SG. Process development for the continuous production of heterologous proteins by the industrial yeast, Komagataella phaffii. Biotechnol Bioeng 2018; 115:2962-2973. [PMID: 30267565 PMCID: PMC6283250 DOI: 10.1002/bit.26846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
The current trend in industrial biotechnology is to move from batch or fed-batch fermentations to continuous operations. The success of this transition will require the development of genetically stable production strains, the use of strong constitutive promoters, and the development of new medium formulations that allow an appropriate balance between cell growth and product formation. We identified genes that showed high expression in Komagataella phaffii during different steady-state conditions and explored the utility of promoters of these genes (Chr1-4_0586 and FragB_0052) in optimizing the expression of two different r-proteins, human lysozyme (HuLy), and the anti-idiotypic antibody fragment, Fab-3H6, in comparison with the widely used glyceraldehyde-3-phosphate dehydrogenase promoter. Our results showed that the promoter strength was highly dependent on the cultivation conditions and thus constructs should be tested under a range of conditions to determine both the best performing clone and the ideal promoter for the expression of the protein of interest. An important benefit of continuous production is that it facilitates the use of the genome-scale metabolic models in the design of strains and cultivation media. In silico flux distributions showed that production of either protein increased the flux through aromatic amino acid biosynthesis. Tyrosine supplementation increased the productivity for both proteins, whereas tryptophan addition did not cause any significant change and, phenylalanine addition increased the expression of HuLy but decreased that of Fab-3H6. These results showed that a genome-scale metabolic model can be used to assess the metabolic burden imposed by the synthesis of a specific r-protein and then this information can be used to tailor a cultivation medium to increase production.
Collapse
Affiliation(s)
- Ayca Cankorur-Cetinkaya
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nathalie Narraidoo
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ceyda Kasavi
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nigel K H Slater
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge University West Site, Cambridge, United Kingdom
| | - David B Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Stephen G Oliver
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler EM, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat Commun 2018; 9:3589. [PMID: 30181586 DOI: 10.1038/s41467-018-0591-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/25/2018] [Indexed: 05/22/2023] Open
Abstract
Numerous synthetic biology endeavors require well-tuned co-expression of functional components for success. Classically, monodirectional promoters (MDPs) have been used for such applications, but MDPs are limited in terms of multi-gene co-expression capabilities. Consequently, there is a pressing need for new tools with improved flexibility in terms of genetic circuit design, metabolic pathway assembly, and optimization. Here, motivated by nature's use of bidirectional promoters (BDPs) as a solution for efficient gene co-expression, we generate a library of 168 synthetic BDPs in the yeast Komagataella phaffii (syn. Pichia pastoris), leveraging naturally occurring BDPs as a parts repository. This library of synthetic BDPs allows for rapid screening of diverse expression profiles and ratios to optimize gene co-expression, including for metabolic pathways (taxadiene, β-carotene). The modular design strategies applied for creating the BDP library could be relevant in other eukaryotic hosts, enabling a myriad of metabolic engineering and synthetic biology applications.
Collapse
Affiliation(s)
- Thomas Vogl
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Thomas Kickenweiz
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Julia Pitzer
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010, Graz, Austria
| | - Lukas Sturmberger
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010, Graz, Austria
| | - Astrid Weninger
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Bradley W Biggs
- Manus Biosynthesis, 1030 Massachusetts Avenue, Suite 300, Cambridge, MA, 02138, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Eva-Maria Köhler
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Armin Baumschlager
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Jasmin Elgin Fischer
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Patrick Hyden
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Marlies Wagner
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Martina Geier
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010, Graz, Austria
| | | | - Anton Glieder
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
27
|
Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat Commun 2018; 9:3589. [PMID: 30181586 PMCID: PMC6123417 DOI: 10.1038/s41467-018-05915-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023] Open
Abstract
Numerous synthetic biology endeavors require well-tuned co-expression of functional components for success. Classically, monodirectional promoters (MDPs) have been used for such applications, but MDPs are limited in terms of multi-gene co-expression capabilities. Consequently, there is a pressing need for new tools with improved flexibility in terms of genetic circuit design, metabolic pathway assembly, and optimization. Here, motivated by nature’s use of bidirectional promoters (BDPs) as a solution for efficient gene co-expression, we generate a library of 168 synthetic BDPs in the yeast Komagataella phaffii (syn. Pichia pastoris), leveraging naturally occurring BDPs as a parts repository. This library of synthetic BDPs allows for rapid screening of diverse expression profiles and ratios to optimize gene co-expression, including for metabolic pathways (taxadiene, β-carotene). The modular design strategies applied for creating the BDP library could be relevant in other eukaryotic hosts, enabling a myriad of metabolic engineering and synthetic biology applications. Classic monodirectional promoters are of limited use for multiple gene co-expression. Here the authors generate a library of 168 bidirectional promoters for the yeast K. phaffii (syn. P. pastoris) with diverse expression profiles to optimize metabolic pathway design.
Collapse
|
28
|
A Stable, Autonomously Replicating Plasmid Vector Containing Pichia pastoris Centromeric DNA. Appl Environ Microbiol 2018; 84:AEM.02882-17. [PMID: 29802190 DOI: 10.1128/aem.02882-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/20/2018] [Indexed: 01/07/2023] Open
Abstract
The methylotrophic yeast Pichia pastoris is widely used to produce recombinant proteins, taking advantage of this species' high-density cell growth and strong ability to secrete proteins. Circular plasmids containing the P. pastoris-specific autonomously replicating sequence (PARS1) permit transformation of P. pastoris with higher efficiency than obtained following chromosomal integration by linearized DNA. Unfortunately, however, existing autonomously replicating plasmids are known to be inherently unstable. In this study, we used transcriptome sequencing (RNA-seq) data and genome sequence information to independently identify, on each of the four chromosomes, centromeric DNA sequences consisting of long inverted repeat sequences. By examining the chromosome 2 centromeric DNA sequence (Cen2) in detail, we demonstrate that an ∼111-bp region located at one end of the putative centromeric sequence had autonomous replication activity. In addition, the full-length Cen2 sequence, which contains two long inverted repeat sequences and a nonrepetitive central core region, is needed for the accurate replication and distribution of plasmids in P. pastoris Thus, we constructed a new, stable, autonomously replicating plasmid vector that harbors the entire Cen2 sequence; this episome facilitates genetic manipulation in P. pastoris, providing high transformation efficiency and plasmid stability.IMPORTANCE Secretory production of recombinant proteins is the most important application of the methylotrophic yeast Pichia pastoris, a species that permits mass production of heterologous proteins. To date, the genetic engineering of P. pastoris has relied largely on integrative vectors due to the lack of user-friendly tools. Autonomously replicating Pichia plasmids are expected to facilitate genetic manipulation; however, the existing systems, which use autonomously replicating sequences (ARSs) such as the P. pastoris-specific ARS (PARS1), are known to be inherently unstable for plasmid replication and distribution. Recently, the centromeric DNA sequences of P. pastoris were identified in back-to-back studies published by several groups; therefore, a new episomal plasmid vector with centromere DNA as a tool for genetic manipulation of P. pastoris is ready to be developed.
Collapse
|
29
|
Gidijala L, Uthoff S, van Kampen SJ, Steinbüchel A, Verhaert RMD. Presence of protein production enhancers results in significantly higher methanol-induced protein production in Pichia pastoris. Microb Cell Fact 2018; 17:112. [PMID: 30005638 PMCID: PMC6045890 DOI: 10.1186/s12934-018-0961-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 01/03/2023] Open
Abstract
Background The yeast Komagataella phaffii, better known as Pichia pastoris, is a commonly used host for recombinant protein production. Here expression vectors are reported that address the different steps of the transcription–translation–secretion pathway of heterologous protein production. Results Transcription and translation enhancing elements were introduced in an expression cassette for the production of recombinant Aspergillus niger feruloyl esterase A. The yield was increased by threefold as compared to the yield without these elements. Multiple copy strains were selected using a zeocin resistance marker in the expression cassette and showed another sixfold higher yield. Modification of the C-terminal amino acid sequence of the secretion signal did not significantly improve the production yield. Similar data were obtained for the production of another protein, recombinant human interleukin 8. Upscaling to fed-batch fermentation conditions resulted in a twofold increase for reference strains, while for strains with enhancing elements a tenfold improvement was observed. Conclusions Pichia pastoris is used for recombinant protein production in industrial fermentations. By addressing the transcription and translation of mRNA coding for recombinant protein, significant yield improvement was obtained. The yield improvement obtained under microscale conditions was maintained under fed-batch fermentation conditions. These data demonstrate the potential of these expression vectors for large scale application as improved production of proteins has major implications on the economics and sustainability of biocatalyst dependent production processes e.g. for the production of pharmaceuticals and for the bioconversions of complex molecules.
Collapse
Affiliation(s)
- Loknath Gidijala
- ProteoNic BV, J.H. Oortweg 19-21, 2333 CH, Leiden, The Netherlands
| | - Stefan Uthoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149, Münster, Germany
| | - Sebastiaan J van Kampen
- ProteoNic BV, J.H. Oortweg 19-21, 2333 CH, Leiden, The Netherlands.,Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149, Münster, Germany.,Environmental Sciences Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | |
Collapse
|
30
|
Zirpel B, Degenhardt F, Zammarelli C, Wibberg D, Kalinowski J, Stehle F, Kayser O. Optimization of Δ 9-tetrahydrocannabinolic acid synthase production in Komagataella phaffii via post-translational bottleneck identification. J Biotechnol 2018; 272-273:40-47. [PMID: 29549004 DOI: 10.1016/j.jbiotec.2018.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/05/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
Δ9-Tetrahydrocannabinolic acid (THCA) is a secondary natural product from the plant Cannabis sativa L. with therapeutic indications like analgesics for cancer pain or reducing spasticity associated with multiple sclerosis. Here, we investigated the influence of the co-expression of 12 helper protein genes from Komagataella phaffii (formerly Pichia pastoris) on the functional expression of the Δ9-tetrahydrocannabinolic acid synthase (THCAS) heterologously expressed in K. phaffii by screening 21 clones of each transformation. Our findings substantiate the necessity of a suitable screening system when interfering with the secretory network of K. phaffii. We found that co-production of the chaperones CNE1p and Kar2p, the foldase PDI1p, the UPR-activator Hac1p as well as the FAD synthetase FAD1p enhanced THCAS activity levels within the K. phaffii cells. The strongest influence showed co-expression of Hac1s - increasing the volumetric THCAS activities 4.1-fold on average. We also combined co-production of Hac1p with the other beneficial helper proteins to further enhance THCAS activity levels. An optimized strain overexpressing Hac1s, FAD1 and CNE1 was isolated that showed 20-fold increased volumetric, intracellular THCAS activity compared to the starting strain. We used this strain for a whole cell bioconversion of cannabigerolic acid (CBGA) to THCA. After 8 h of incubation at 37 °C, the cells produced 3.05 g L-1 THCA corresponding to 12.5% gTHCA gCDW-1.
Collapse
Affiliation(s)
- Bastian Zirpel
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Friederike Degenhardt
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Chantale Zammarelli
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Felix Stehle
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Oliver Kayser
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany.
| |
Collapse
|
31
|
Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris. Appl Environ Microbiol 2018; 84:AEM.02712-17. [PMID: 29330186 DOI: 10.1128/aem.02712-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Pichia pastoris (syn. Komagataella phaffii) is one of the most common eukaryotic expression systems for heterologous protein production. Expression cassettes are typically integrated in the genome to obtain stable expression strains. In contrast to Saccharomyces cerevisiae, where short overhangs are sufficient to target highly specific integration, long overhangs are more efficient in P. pastoris and ectopic integration of foreign DNA can occur. Here, we aimed to elucidate the influence of ectopic integration by high-throughput screening of >700 transformants and whole-genome sequencing of 27 transformants. Different vector designs and linearization approaches were used to mimic the most common integration events targeted in P. pastoris Fluorescence of an enhanced green fluorescent protein (eGFP) reporter protein was highly uniform among transformants when the expression cassettes were correctly integrated in the targeted locus. Surprisingly, most nonspecifically integrated transformants showed highly uniform expression that was comparable to specific integration, suggesting that nonspecific integration does not necessarily influence expression. However, a few clones (<10%) harboring ectopically integrated cassettes showed a greater variation spanning a 25-fold range, surpassing specifically integrated reference strains up to 6-fold. High-expression strains showed a correlation between increased gene copy numbers and high reporter protein fluorescence levels. Our results suggest that for comparing expression levels between strains, the integration locus can be neglected as long as a sufficient numbers of transformed strains are compared. For expression optimization of highly expressible proteins, increasing copy number appears to be the dominant positive influence rather than the integration locus, genomic rearrangements, deletions, or single-nucleotide polymorphisms (SNPs).IMPORTANCE Yeasts are commonly used as biotechnological production hosts for proteins and metabolites. In the yeast Saccharomyces cerevisiae, expression cassettes carrying foreign genes integrate highly specifically at the targeted sites in the genome. In contrast, cassettes often integrate at random genomic positions in nonconventional yeasts, such as Pichia pastoris (syn. Komagataella phaffii). Hence, cells from the same transformation event often behave differently, with significant clonal variation necessitating the screening of large numbers of strains. The importance of this study is that we systematically investigated the influence of integration events in more than 700 strains. Our findings provide novel insight into clonal variation in P. pastoris and, thus, how to avoid pitfalls and obtain reliable results. The underlying mechanisms may also play a role in other yeasts and hence could be generally relevant for recombinant yeast protein production strains.
Collapse
|
32
|
Vogl T, Sturmberger L, Fauland PC, Hyden P, Fischer JE, Schmid C, Thallinger GG, Geier M, Glieder A. Methanol independent induction in
Pichia pastoris
by simple derepressed overexpression of single transcription factors. Biotechnol Bioeng 2018; 115:1037-1050. [DOI: 10.1002/bit.26529] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas Vogl
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | | | - Pia C. Fauland
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Patrick Hyden
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Jasmin E. Fischer
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Christian Schmid
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Gerhard G. Thallinger
- Institute of Computational BiotechnologyGraz University of TechnologyGrazAustria
- OMICS Center GrazBioTechMed GrazGrazAustria
| | - Martina Geier
- Austrian Centre of Industrial Biotechnology (ACIB GmbH)GrazAustria
| | - Anton Glieder
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| |
Collapse
|
33
|
Yu XW, Sun WH, Wang YZ, Xu Y. Identification of novel factors enhancing recombinant protein production in multi-copy Komagataella phaffii based on transcriptomic analysis of overexpression effects. Sci Rep 2017; 7:16249. [PMID: 29176680 PMCID: PMC5701153 DOI: 10.1038/s41598-017-16577-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
The methylotrophic yeast Komagataella phaffii (Pichia pastoris) has been developed into a highly successful system for heterologous protein expression in both academia and industry. However, overexpression of recombinant protein often leads to severe burden on the physiology of K. phaffii and triggers cellular stress. To elucidate the global effect of protein overexpression, we set out to analyze the differential transcriptome of recombinant strains with 12 copies and a single copy of phospholipase A2 gene (PLA2) from Streptomyces violaceoruber. Through GO, KEGG and heat map analysis of significantly differentially expressed genes, the results indicated that the 12-copy strain suffered heavy cellular stress. The genes involved in protein processing and stress response were significantly upregulated due to the burden of protein folding and secretion, while the genes in ribosome and DNA replication were significantly downregulated possibly contributing to the reduced cell growth rate under protein overexpression stress. Three most upregulated heat shock response genes (CPR6, FES1, and STI1) were co-overexpressed in K. phaffii and proved their positive effect on the secretion of reporter enzymes (PLA2 and prolyl endopeptidase) by increasing the production up to 1.41-fold, providing novel helper factors for rational engineering of K. phaffii.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China.
| | - Wei-Hong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Ying-Zheng Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China.
| |
Collapse
|
34
|
Royle KE, Polizzi K. A streamlined cloning workflow minimising the time-to-strain pipeline for Pichia pastoris. Sci Rep 2017; 7:15817. [PMID: 29150665 PMCID: PMC5693959 DOI: 10.1038/s41598-017-16172-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Although recent advances in E. coli self-assembly have greatly simplified cloning, these have not yet been harnessed for the high-throughput generation of expression strains in the early research and discovery phases of biopharmaceutical production. Here, we have refined the technique and incorporated it into a streamlined workflow for the generation of Pichia pastoris expression strains, reducing the timeline by a third and removing the reliance on DNA editing enzymes, which often require troubleshooting and increase costs. We have validated the workflow by cloning 24 human proteins of biopharmaceutical value, either as direct therapeutics or as research targets, which span a continuous range in size and GC content. This includes demonstrating the applicability of the workflow to three-part assemblies for a monoclonal antibody and its single-chain antibody fragments derivatives. This workflow should enable future research into recombinant protein production by P. pastoris and a synthetic biology approach to this industrial host.
Collapse
Affiliation(s)
- Kate E Royle
- Department of Life Sciences, Imperial College London, London, UK.,Centre for Synthetic Biology and Innovation, Imperial College London, London, UK
| | - Karen Polizzi
- Department of Life Sciences, Imperial College London, London, UK. .,Centre for Synthetic Biology and Innovation, Imperial College London, London, UK.
| |
Collapse
|
35
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
36
|
Zahrl RJ, Peña DA, Mattanovich D, Gasser B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res 2017; 17:4093073. [DOI: 10.1093/femsyr/fox068] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
|
37
|
Schwarzhans JP, Luttermann T, Wibberg D, Winkler A, Hübner W, Huser T, Kalinowski J, Friehs K. A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production. Front Microbiol 2017; 8:780. [PMID: 28512458 PMCID: PMC5411459 DOI: 10.3389/fmicb.2017.00780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Pichia pastoris is a non-conventional methylotrophic yeast that is widely used for recombinant protein production, typically by stably integrating the target gene into the genome as part of an expression cassette. However, the comparatively high clonal variability associated with this approach usually necessitates a time intense screening step in order to find strains with the desired productivity. Some of the factors causing this clonal variability can be overcome using episomal vectors containing an autonomously replicating sequence (ARS). Here, we report on the discovery, characterization, and application of a fragment of mitochondrial DNA from P. pastoris for use as an ARS. First encountered as an off-target event in an experiment aiming for genomic integration, the newly created circular plasmid named “pMito” consists of the expression cassette and a fragment of mitochondrial DNA. Multiple matches to known ARS consensus sequence motifs, but no exact match to known chromosomal ARS from P. pastoris were detected on the fragment, indicating the presence of a novel ARS element. Different variants of pMito were successfully used for transformation and their productivity characteristics were assayed. All analyzed clones displayed a highly uniform expression level, exceeding by up to fourfold that of a reference with a single copy integrated in its genome. Expressed GFP could be localized exclusively to the cytoplasm via super-resolution fluorescence microscopy, indicating that pMito is present in the nucleus. While expression levels were homogenous among pMito clones, an apparent upper limit of expression was visible that could not be explained based on the gene dosage. Further investigation is necessary to fully understand the bottle-neck hindering this and other ARS vectors in P. pastoris from reaching their full capability. Lastly, we could demonstrate that the mitochondrial ARS from P. pastoris is also suitable for episomal vector transformation in Saccharomyces cerevisiae, widening the potential for biotechnological application. pMito displayed strong potential to reduce clonal variability in experiments targeting recombinant protein production. These findings also showcase the as of yet largely untapped potential of mitochondrial ARS from different yeasts for biotechnological applications.
Collapse
Affiliation(s)
- Jan-Philipp Schwarzhans
- Fermentation Engineering, Faculty of Technology, Bielefeld UniversityBielefeld, Germany.,Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Tobias Luttermann
- Fermentation Engineering, Faculty of Technology, Bielefeld UniversityBielefeld, Germany.,Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, CeBiTec, Bielefeld UniversityBielefeld, Germany
| | - Anika Winkler
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld UniversityBielefeld, Germany
| | - Thomas Huser
- Biomolecular Photonics, Faculty of Physics, Bielefeld UniversityBielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Karl Friehs
- Fermentation Engineering, Faculty of Technology, Bielefeld UniversityBielefeld, Germany
| |
Collapse
|
38
|
Kranz A, Vogel A, Degner U, Kiefler I, Bott M, Usadel B, Polen T. High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads. J Biotechnol 2017; 258:197-205. [PMID: 28433722 DOI: 10.1016/j.jbiotec.2017.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 02/08/2023]
Abstract
State of the art and novel high-throughput DNA sequencing technologies enable fascinating opportunities and applications in the life sciences including microbial genomics. Short high-quality read data already enable not only microbial genome sequencing, yet can be inadequately to solve problems in genome assemblies and for the analysis of structural variants, especially in engineered microbial cell factories. Single-molecule real-time sequencing technologies generating long reads promise to solve such assembly problems. In our study, we wanted to increase the average read length of long nanopore reads with R9 chemistry and conducted a hybrid approach for the analysis of structural variants to check the genome stability of a recombinant Gluconobacter oxydans 621H strain (IK003.1) engineered for improved growth. Therefore we combined accurate Illumina sequencing technology and low-cost single-molecule nanopore sequencing using the MinION® device from Oxford Nanopore. In our hybrid approach with a modified library protocol we could increase the average size of nanopore 2D reads to about 18.9kb. Combining the long MinION nanopore reads with the high quality short Illumina reads enabled the assembly of the engineered chromosome into a single contig and comprehensive detection and clarification of 7 structural variants including all three known genetically engineered modifications. We found the genome of IK003.1 was stable over 70 generations of strain handling including 28h of process time in a bioreactor. The long read data revealed a novel 1420 bp transposon-flanked and ORF-containing sequence which was hitherto unknown in the G. oxydans 621H reference. Further analysis and genome sequencing showed that this region is already present in G. oxydans 621H wild-type strains. Our data of G. oxydans 621H wild-type DNA from different resources also revealed in 73 annotated coding sequences about 91 uniform nucleotide differences including InDels. Together, our results contribute to an improved high quality genome reference for G. oxydans 621H which is available via ENA accession PRJEB18739.
Collapse
Affiliation(s)
- Angela Kranz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander Vogel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany; IBG-2 Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ursula Degner
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ines Kiefler
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Björn Usadel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany; IBG-2 Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|