1
|
Surdel MC, Coburn J. Leptospiral adhesins: from identification to future perspectives. Front Microbiol 2024; 15:1458655. [PMID: 39206373 PMCID: PMC11350617 DOI: 10.3389/fmicb.2024.1458655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Leptospirosis is a significant zoonosis worldwide, with disease severity ranging from a mild non-specific illness to multi-organ dysfunction and hemorrhage. The disease is caused by pathogenic bacteria of the genus Leptospira, which are classified into pathogenic and saprophytic clades. Bacterial binding to host molecules and cells, coordinated by adhesin proteins, is an important step in pathogenesis. While many leptospiral adhesins have been identified, the vast majority have not been characterized in vivo. Herein, we present an overview of the current methodologies and successes in identifying adhesins in Leptospira, including known biological roles in vivo. We will also identify and discuss potential areas for future research.
Collapse
Affiliation(s)
- Matthew C. Surdel
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenifer Coburn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Kauser A, Parisini E, Suarato G, Castagna R. Light-Based Anti-Biofilm and Antibacterial Strategies. Pharmaceutics 2023; 15:2106. [PMID: 37631320 PMCID: PMC10457815 DOI: 10.3390/pharmaceutics15082106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.
Collapse
Affiliation(s)
- Ambreen Kauser
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Suarato
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, CNR-IEIIT, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
3
|
Bogdanchikova N, Maklakova M, Villarreal-Gómez LJ, Nefedova E, Shkil NN, Plotnikov E, Pestryakov A. Revealing the Second and the Third Causes of AgNPs Property to Restore the Bacterial Susceptibility to Antibiotics. Int J Mol Sci 2023; 24:ijms24097854. [PMID: 37175561 PMCID: PMC10178359 DOI: 10.3390/ijms24097854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The increase in bacterial resistance to antibiotics is a global problem for public health. In our previous works, it was shown that the application of AgNPs in cow mastitis treatment increased S. aureus and S. dysgalactiae susceptibility to 31 antibiotics due to a decrease in the bacterial efflux effect. The aim of the present work was to shed light on whether the change in adhesive and anti-lysozyme activities caused by AgNPs also contribute to the restoration of bacterial susceptibility to antibiotics. In vivo sampling was performed before and after cow mastitis treatments with antibiotics or AgNPs. The isolates were identified, and the adhesive and anti-lysozyme activities were assessed. These data were compared with the results obtained for in vitro pre-treatment of reference bacteria with AgNPs or antibiotics. The present study revealed that bacterial treatments in vitro and in vivo with AgNPs: (1) decrease the bacterial ability to adhere to cells to start an infection and (2) decrease bacterial anti-lysozyme activity, thereby enhancing the activity of lysozyme, a natural "antibiotic" present in living organisms. The obtained data contribute to the perspective of the future application of AgNPs for recovering the activity of antibiotics rapidly disappearing from the market.
Collapse
Affiliation(s)
- Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22800, BC, Mexico
| | - Maria Maklakova
- Facultad de Pedagogía e Innovación Educativa, Universidad Autónoma de Baja California, Av. Monclova Esq con Calle Río Mocorito S/n, Ex-Ejido Coahuila, Mexicali 21360, BC, Mexico
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario 1000, Unidad Valle de Las Palmas, Tijuana 22260, BC, Mexico
| | - Ekaterina Nefedova
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, 630501 Novosibirsk, Russia
| | - Nikolay N Shkil
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, 630501 Novosibirsk, Russia
| | - Evgenii Plotnikov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, 634014 Tomsk, Russia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
4
|
Jongjitwimol J, Baldock RA. Hydroquinine: a potential new avenue in drug discovery for drug-resistant bacteria? Expert Opin Drug Discov 2023; 18:227-229. [PMID: 36705530 DOI: 10.1080/17460441.2023.2174098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jirapas Jongjitwimol
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand.,Biomedical Sciences Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Robert A Baldock
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
5
|
Ghaneialvar H, Kayumov A, Aboualigalehdari E, Pakzad I, Tanideh N, Abbasi N, Haddadi MH. Docosahexaenoic acid-loaded chitosan/alginate membrane reduces biofilm formation by P. aeruginosa and promotes MSC-mediated burn wound healing. J Biomater Appl 2023; 37:1458-1469. [PMID: 36189675 DOI: 10.1177/08853282221131130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims: Chitosan, like docosahexaenoic acid (DHA) and mesenchymal stem cells (MSCs), is used in medicine as a wound healing accelerator. Thus, in this study, chitosan-alginate (CA) membranes containing DHA and MSCs were produced, and their antibacterial and antibiofilm activities against burn infections caused by Pseudomonas aeruginosa were investigated.Methods: Physicochemical properties were assessed by SEM, Fourier transform infrared (FTIR), and X-ray diffraction (XRD). Porosity, cytocompatibility, and antibacterial and antibiofilm activities were evaluated both in vitro and in vivo. The viability and apoptosis of MSCs were studied using flow cytometry. Wound healing effects were analyzed based on histopathological features, the wound contraction rate (WCR) ratio, and bacterial clearance.Results: The CA membranes showed antibiofilm activity both in vivo and in vitro, accompanied by reduced lasI and rhlI expressions and pyocyanin production. The membranes were highly porous and biocompatible and showed favorable physicochemical properties. Docosahexaenoic acid incorporation to CA membranes improved their antibacterial and antibiofilm activities, as well as MSCs' viability by reducing crystallinity and increasing porosity (p = .008). Treatment with CA-DHA-MSC accelerated burn wound healing (with complete healing being observed after 14 days, WCR = 85%) and augmented antibacterial and antibiofilm activities in vivo compared to CA-DHA and CA-MSC. The CA-DHA-MSC group delivered a significantly higher WCR and lower inflammation than the CA-MSC group (p = .0001).Conclusion: In combination with DHA-loaded CA membranes, MSCs reduced the healing time of burn wounds, offering a viable option for designing effective wound dressings.
Collapse
Affiliation(s)
- Hori Ghaneialvar
- 48443Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Airat Kayumov
- Kazan (Volga Region) Federal University, Kazan, Russia
| | - Elham Aboualigalehdari
- Department of Parasitology and Mycology, Faculty of Paramedical Science, 48443Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Pakzad
- Department of Microbiology, Faculty of Medicine, 48443Ilam University of Medical Sciences, Ilam, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Stem Cells Research Institute, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naser Abbasi
- 48443Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Department of Pharmacology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Bu F, Liu M, Xie Z, Chen X, Li G, Wang X. Targeted Anti-Biofilm Therapy: Dissecting Targets in the Biofilm Life Cycle. Pharmaceuticals (Basel) 2022; 15:1253. [PMID: 36297365 PMCID: PMC9611117 DOI: 10.3390/ph15101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/13/2024] Open
Abstract
Biofilm is a crucial virulence factor for microorganisms that causes chronic infection. After biofilm formation, the bacteria present improve drug tolerance and multifactorial defense mechanisms, which impose significant challenges for the use of antimicrobials. This indicates the urgent need for new targeted technologies and emerging therapeutic strategies. In this review, we focus on the current biofilm-targeting strategies and those under development, including targeting persistent cells, quorum quenching, and phage therapy. We emphasize biofilm-targeting technologies that are supported by blocking the biofilm life cycle, providing a theoretical basis for design of targeting technology that disrupts the biofilm and promotes practical application of antibacterial materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Surdel MC, Hahn BL, Anderson PN, Coburn J. Heterologous production of the adhesin LIC13411 from pathogenic Leptospira facilitates binding of non-pathogenic Leptospira in vitro and in vivo. Front Cell Infect Microbiol 2022; 12:917963. [PMID: 35937702 PMCID: PMC9354625 DOI: 10.3389/fcimb.2022.917963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/27/2022] [Indexed: 01/19/2023] Open
Abstract
Leptospirosis is an important cause of morbidity and mortality worldwide. Disease severity ranges from asymptomatic colonization to widespread hemorrhage and multiorgan dysfunction. The causative agents, Leptospira spp., are zoonotic Gram-negative spirochetes. One important step in pathogenesis is binding of bacterial adhesins to host components. Previously our laboratory identified two L. interrogans candidate adhesins, LIC11574 and LIC13411, that bind to VE-cadherin in vitro. In the current study, we demonstrate the ability of two strains of pathogenic L. interrogans to disrupt the localization of VE-cadherin, a protein important to maintaining inter-endothelial junctions. Purified MBP-LIC11574 and MBP-LIC13411 bind human dermal microvascular endothelial cells in a pattern reminiscent of VE-cadherin, but do not disrupt VE-cadherin localization. Genes encoding the candidate adhesins from pathogenic Leptospira were cloned in an overexpression vector and introduced into non-pathogenic L. biflexa, creating gain-of-function strains producing LIC11574 or LIC13411. Protein production and localization to the outer membrane were confirmed by Triton X-114 fractionation. Although these strains do not disrupt VE-cadherin localization, production of LIC13411 increases binding of non-pathogenic Leptospira to human endothelial cells and specifically to VE-cadherin. In a short-term murine model of infection, LIC13411 production led to increased burdens of the non-pathogen in the lung, liver, kidney, and bladder. These data confirm the role of LIC13411 as an adhesin in Leptospira spp. and implicate it in dissemination to multiple organs. Importantly, anti-adhesin therapy has been shown to have many benefits over classical antibiotics. Taken together, this work provides novel insight into the pathogenesis of Leptospira spp. and identifies LIC13411 as a potential prophylactic and therapeutic target.
Collapse
Affiliation(s)
- Matthew C. Surdel
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Beth L. Hahn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Phillip N. Anderson
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenifer Coburn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Jenifer Coburn,
| |
Collapse
|
8
|
Zhang C, Hu Z, Lone AG, Artami M, Edwards M, Zouboulis CC, Stein M, Harris-Tryon TA. Small proline-rich proteins (SPRRs) are epidermally produced antimicrobial proteins that defend the cutaneous barrier by direct bacterial membrane disruption. eLife 2022; 11:76729. [PMID: 35234613 PMCID: PMC8912919 DOI: 10.7554/elife.76729] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Human skin functions as a physical barrier, preventing the entry of foreign pathogens while also accommodating a myriad of commensal microorganisms. A key contributor to the skin landscape is the sebaceous gland. Mice devoid of sebocytes are prone to skin infection, yet our understanding of how sebocytes function in host defense is incomplete. Here we show that the small proline-rich proteins, SPRR1 and SPRR2 are bactericidal in skin. SPRR1B and SPPR2A were induced in human sebocytes by exposure to the bacterial cell wall component lipopolysaccharide (LPS). Colonization of germ-free mice was insufficient to trigger increased SPRR expression in mouse skin, but LPS injected into mouse skin triggered the expression of the mouse SPRR orthologous genes, Sprr1a and Sprr2a, through stimulation of MYD88. Both mouse and human SPRR proteins displayed potent bactericidal activity against MRSA (methicillin-resistant Staphylococcus aureus), Pseudomonas aeruginosa and skin commensals. Thus, Sprr1a-/-;Sprr2a-/- mice are more susceptible to MRSA and Pseudomonas aeruginosa skin infection. Lastly, mechanistic studies demonstrate that SPRR proteins exert their bactericidal activity through binding and disruption of the bacterial membrane. Taken together, these findings provide insight into the regulation and antimicrobial function of SPRR proteins in skin and how the skin defends the host against systemic infection.
Collapse
Affiliation(s)
- Chenlu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zehan Hu
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Abdul G Lone
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Methinee Artami
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Marshall Edwards
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Christos C Zouboulis
- Department of Dermatology, Brandenburg Medical School Theodore Fontane, Dessau, Germany
| | - Maggie Stein
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Tamia A Harris-Tryon
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
9
|
Ozhathil DK, Wolf SE. Prevention and treatment of burn wound infections: the role of topical antimicrobials. Expert Rev Anti Infect Ther 2022; 20:881-896. [PMID: 35188850 DOI: 10.1080/14787210.2022.2044795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Infections related to the skin are the principal drivers of morbidity and mortality following severe burn, therefore a diverse armamentarium of topical antimicrobial agents were developed over the history of burn care. The last 30 years witnessed dramatic changes in the application of surgical intervention and utilization of topical therapies. AREAS COVERED We explore well-known topical antimicrobial products used in burn care. First, we investigate how fundamental changes in the practice of burn surgery influenced the choice of topical therapies used. Then, we examine antimicrobial creams and ointments commonly recognized due to their long record of use in burn care. Next, we dive into antimicrobial solutions commonly used as adjuncts to surgical intervention. Finally, we explore representative antimicrobial dressings, an ever-advancing roster of products opening the door to the next era in burn care. We also describe how these new agents relate to already established tools in present-day burn care. EXPERT OPINION In the current day, though the wisdom of early excision and wound closure remains valid, we continue to strive to minimize aggressive wound excision and disfiguring donor tissue collection while securing rapid wound closure. To this end, antimicrobial therapies are titrated to optimize operative outcomes and provide non-operative wound care when appropriate. Antimicrobial agents bridge the gap with the next generation of skin substitute and skin replacement therapies.
Collapse
Affiliation(s)
- Deepak K Ozhathil
- Department of Surgery, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas
| | - Steven E Wolf
- Division Chief, Burns, Trauma & Acute Care surgery, Department of Surgery, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555-1220
| |
Collapse
|
10
|
Potential Therapeutic Targets for Combination Antibody Therapy against Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2021; 10:antibiotics10121530. [PMID: 34943742 PMCID: PMC8698887 DOI: 10.3390/antibiotics10121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in antimicrobial therapy and even the advent of some effective vaccines, Pseudomonas aeruginosa (P. aeruginosa) remains a significant cause of infectious disease, primarily due to antibiotic resistance. Although P. aeruginosa is commonly treatable with readily available therapeutics, these therapies are not always efficacious, particularly for certain classes of patients (e.g., cystic fibrosis (CF)) and for drug-resistant strains. Multi-drug resistant P. aeruginosa infections are listed on both the CDC’s and WHO’s list of serious worldwide threats. This increasing emergence of drug resistance and prevalence of P. aeruginosa highlights the need to identify new therapeutic strategies. Combinations of monoclonal antibodies against different targets and epitopes have demonstrated synergistic efficacy with each other as well as in combination with antimicrobial agents typically used to treat these infections. Such a strategy has reduced the ability of infectious agents to develop resistance. This manuscript details the development of potential therapeutic targets for polyclonal antibody therapies to combat the emergence of multidrug-resistant P. aeruginosa infections. In particular, potential drug targets for combinational immunotherapy against P. aeruginosa are identified to combat current and future drug resistance.
Collapse
|
11
|
Pandian M, Kumar VA, Jayakumar R. Antiseptic chitosan bandage for preventing topical skin infections. Int J Biol Macromol 2021; 193:1653-1658. [PMID: 34742845 DOI: 10.1016/j.ijbiomac.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 01/16/2023]
Abstract
Infections on the wound surface are the major problem in restricting the healing process. To reduce the transmission and treat the infection, we have developed 0.05% and 0.1% octenidine dihydrochloride (Ocd) incorporated chitosan (Cs) based flexible bandages. Ocd is extensively used skin antiseptic for its mode of action over a broad spectrum of antimicrobial activity. The prepared antiseptic Cs-Ocd bandage was characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). In addition, swelling, degradation, cytocompability, antibacterial, and anti-biofilm property of the developed bandages were studied. This highly porous nature of Cs-Ocd bandage showed enhanced swelling property, slow degradation profile and controlled release of Ocd. The prepared antiseptic bandage exhibited synergistic effect showing good hemostatic potential with Cs, excellent antimicrobial and anti-biofilm activity with Ocd against Staphylococcus aureus (S. aureus) and Candida auris (C. auris). Thus, the developed Cs-Ocd bandage can be used as potential antiseptic bandage for skin infections.
Collapse
Affiliation(s)
- Mahalakshmi Pandian
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - V Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India.
| |
Collapse
|
12
|
Nishiyama K, Yokoi T, Sugiyama M, Osawa R, Mukai T, Okada N. Roles of the Cell Surface Architecture of Bacteroides and Bifidobacterium in the Gut Colonization. Front Microbiol 2021; 12:754819. [PMID: 34721360 PMCID: PMC8551831 DOI: 10.3389/fmicb.2021.754819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
There are numerous bacteria reside within the mammalian gastrointestinal tract. Among the intestinal bacteria, Akkermansia, Bacteroides, Bifidobacterium, and Ruminococcus closely interact with the intestinal mucus layer and are, therefore, known as mucosal bacteria. Mucosal bacteria use host or dietary glycans for colonization via adhesion, allowing access to the carbon source that the host’s nutrients provide. Cell wall or membrane proteins, polysaccharides, and extracellular vesicles facilitate these mucosal bacteria-host interactions. Recent studies revealed that the physiological properties of Bacteroides and Bifidobacterium significantly change in the presence of co-existing symbiotic bacteria or markedly differ with the spatial distribution in the mucosal niche. These recently discovered strategic colonization processes are important for understanding the survival of bacteria in the gut. In this review, first, we introduce the experimental models used to study host-bacteria interactions, and then, we highlight the latest discoveries on the colonization properties of mucosal bacteria, focusing on the roles of the cell surface architecture regarding Bacteroides and Bifidobacterium.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsunari Yokoi
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ro Osawa
- Research Center for Food Safety and Security, Kobe University, Kobe, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
13
|
Huebinger RM, Do DH, Carlson DL, Yao X, Stones DH, De Souza Santos M, Vaz DP, Keen E, Wolf SE, Minei JP, Francis KP, Orth K, Krachler AM. Bacterial adhesion inhibitor prevents infection in a rodent surgical incision model. Virulence 2021; 11:695-706. [PMID: 32490711 PMCID: PMC7550027 DOI: 10.1080/21505594.2020.1772652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Surgical site infection risk continues to increase due to lack of efficacy in current standard of care drugs. New methods to treat or prevent antibiotic-resistant bacterial infections are needed. Multivalent Adhesion Molecules (MAM) are bacterial adhesins required for virulence. We developed a bacterial adhesion inhibitor using recombinant MAM fragment bound to polymer scaffold, mimicking MAM7 display on the bacterial surface. Here, we test MAM7 inhibitor efficacy to prevent Gram-positive and Gram-negative infections. Using a rodent model of surgical infection, incision sites were infected with antibiotic-resistant bioluminescent strains of Staphylococcus aureus or Pseudomonas aeruginosa. Infections were treated with MAM7 inhibitor or control suspension. Bacterial abundance was quantified for nine days post infection. Inflammatory responses and histology were characterized using fixed tissue sections. MAM7 inhibitor treatment decreased burden of S. aureus and P. aeruginosa below detection threshold. Bacterial load of groups treated with control were significantly higher than MAM7 inhibitor-treated groups. Treatment with inhibitor reduced colonization of clinically-relevant pathogens in an in vivo model of surgical infection. Use of MAM7 inhibitor to block initial adhesion of bacteria to tissue in surgical incisions may reduce infection rates, presenting a strategy to mitigate overuse of antibiotics to prevent surgical site infections.
Collapse
Affiliation(s)
- R M Huebinger
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - D H Do
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - D L Carlson
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - X Yao
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - D H Stones
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham , Birmingham, UK.,University of Gloucestershire, School of Natural and Social Sciences , Cheltenham, UK
| | - M De Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - D P Vaz
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, McGovern Medical School , Houston, TX, USA
| | - E Keen
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham , Birmingham, UK
| | - S E Wolf
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA.,UTMB Department of Surgery, Shriners Hospitals for Children , Galveston, TX, USA
| | - J P Minei
- Department of Surgery, Division of General and Acute Care Surgery, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | | | - K Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center , Dallas, TX, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center , Dallas, TX, USA
| | - A M Krachler
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, McGovern Medical School , Houston, TX, USA
| |
Collapse
|
14
|
Liu K, Han S, Gao W, Tang Y, Han X, Liu Z, Bao L, Zhi M, Wang H, Wang Y, Du H. Changes of Mineralogical Properties and Biological Activities of Gypsum and Its Calcined Products with Different Phase Structures. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6676797. [PMID: 33777161 PMCID: PMC7969087 DOI: 10.1155/2021/6676797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Raw gypsum (RG) and calcined gypsum (CG) are widely used in traditional Chinese medicine (TCM). RG is usually taken orally to resolve heat and diminish inflammation, while CG is only used externally to treat ulcerations and empyrosis. Calcination at different temperatures, three phase CG structures, namely, bassanite, anhydrite III, and anhydrite II, may be generated. We herein investigated the relationship between the phase structure and the efficacy of CG and the optimum phase structure for CG. RG has a compact structure, small pore size, weak anti-inflammatory effect, but no antibacterial effect, and has almost no effect on the repair of scalds. CG150 (bassanite) has a loose texture, large pore size and specific surface area, and certain antibacterial and anti-inflammatory effects, but it has a poor repair effect on scalds. CG750 (anhydrite II) has a compact structure, small pore size and specific surface area, and low antibacterial and anti-inflammatory effects, but it has a certain repair effect on scalds. Only CG350 (anhydrite III) has good performance in texture, pore size, specific surface area, antibacterial, anti-inflammatory, and scald repair. Our research has proved that the mineral properties and biological activities of CG are different due to different phase structures. CG350, namely, anhydrite III, is considered by our research to be the optimal phase structure as CG.
Collapse
Affiliation(s)
- Kaiyang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ya'nan Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xitao Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ziqin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Liyuan Bao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Meiru Zhi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongyue Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingli Wang
- Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
15
|
Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora. Int J Biol Macromol 2020; 162:762-773. [DOI: 10.1016/j.ijbiomac.2020.06.175] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
16
|
Synthesis of Antibacterial Gelatin/Sodium Alginate Sponges and Their Antibacterial Activity. Polymers (Basel) 2020; 12:polym12091926. [PMID: 32858972 PMCID: PMC7564498 DOI: 10.3390/polym12091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, sponges with the antibiotic tetracycline hydrochloride (TCH) loaded into alginate incorporated with gelatin (G/SA) were fabricated. The G/SA sponges were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) analysis. G/SA sponges show a three-dimensional network structure with high porosity. An excellent swelling behavior and a controlled TCH release performance are observed from G/SA sponges. Moreover, they exhibit good antibacterial activity against both Gram-positive and Gram-negative bacteria.
Collapse
|
17
|
Nguyen BVG, Nagakubo T, Toyofuku M, Nomura N, Utada AS. Synergy between Sophorolipid Biosurfactant and SDS Increases the Efficiency of P. aeruginosa Biofilm Disruption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6411-6420. [PMID: 32479089 DOI: 10.1021/acs.langmuir.0c00643] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biofilms are communities of bacteria encased in self-secreted extracellular polymeric substances (EPS) that adhere stubbornly to submerged surfaces. Once established, these communities can cause serious chronic illnesses in medical settings, while they can promote corrosion and biofouling in industrial settings. Due to the difficulty of their removal, strongly oxidizing chemicals and detergents can be used to degrade and remove biofilms by killing the cells and degrading the matrix; however, the choice of compounds is limited in delicate environments due to the potential damage they may cause. In the case of detergents, most are synthesized from nonrenewable petrochemicals that have a degree of aquatic toxicity. There is a growing need to identify and characterize alternatives to synthetic surfactants. Biosurfactants, which are surfactants produced by microorganisms, are a promising alternative since they can be synthesized from renewable resources, have low environmental toxicity, and have been shown to have higher degrees of specificity in the mechanism of action. Sophorolipids are a class of glycolipid surfactants produced by yeast that have demonstrated great promise due to large yields from renewable feedstocks and for antimicrobial properties; however, the effect of the application of sophorolipids to Gram-negative bacterial biofilms has not been well studied. We investigate the antibiofilm properties of sophorolipids by demonstrating its ability to cause the catastrophic disruption of Pseudomonas aeruginosa PAO1 biofilms in microfluidic channels. We show that while sophorolipids inflict little damage to the bacteria, they weaken the EPS biofilm matrix, leading to surface-detachment and breakup of the biofilm. Furthermore, we find that sophorolipids act cooperatively with the widely used surfactant, sodium dodecyl sulfate. When combined, concentrations ∼100-fold lower than the minimum effective concentration, when used independently, recover potency. Biosurfactants are typically expensive to produce, thus our work demonstrates a means to improve efficacy while simultaneously reducing both cost and the amount of environmentally harmful substances used.
Collapse
|
18
|
Ke X, Li M, Wang X, Liang J, Wang X, Wu S, Long M, Hu C. An injectable chitosan/dextran/β -glycerophosphate hydrogel as cell delivery carrier for therapy of myocardial infarction. Carbohydr Polym 2020; 229:115516. [DOI: 10.1016/j.carbpol.2019.115516] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
19
|
Nickl S, Fochtmann-Frana A, Nedomansky J, Hitzl W, Kamolz LP, Haslik W. Air-fluidized therapy in the treatment of severe burns: A retrospective study from a burn intensive care unit in Austria. Burns 2019; 46:136-142. [PMID: 31420263 DOI: 10.1016/j.burns.2019.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/30/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Air-fluidized therapy (AFT) has long been used in the treatment of severe burns. In patients with extensive burns involving the posterior trunk, we aim to keep affected posterior areas dry and to postpone their treatment, initially applying available split-thickness skin grafts in functionally more important regions. We retrospectively assessed the impact of AFT on the survival of patients treated in the burn intensive care unit (ICU) of the Medical University of Vienna, Austria, between 2003 and 2016. METHODS This retrospective single-center study included patients aged ≥18 years with burned total body surface area (TBSA) ≥20% and IIb-III° thermal injuries on the posterior trunk who received AFT. Survival rates were compared with those predicted by the abbreviated burn severity index (ABSI). Demographic, clinical, and surgical data were analyzed. RESULTS Seventy-five of 110 patients with posterior trunk burns received AFT. Their survival rate exceeded that predicted by the ABSI score (mean ABSI, 10.0 ± 2.0; 73.3% (95% CI: 62-83%) survival rate vs. 20-40% predicted; p < 0.0001); no such difference was observed in the non-AFT group (mean, 8.8 ± 1.9; 65.7% (95% CI: 48-81%) survival rate vs. 50-70% predicted). Patients receiving AFT had significantly greater TBSA (median, 50% (35-60) vs. 30% (25-45) and longer ICU stays (median, 63 (36-92) vs. 18 (9-52) days; both p < 0.0001). Fifty-one (68.0%) patients in the AFT group and 26 (74.3%) patients in the non-AFT group underwent posterior trunk surgery (p = 0.66) a median of 16 (10-26) and 5 (2.5-9.5) days, respectively, after admission (p < 0.0001). CONCLUSIONS Patients receiving AFT had significantly better survival than predicted by ABSI score in contrast to patients not receiving AFT although burn injuries in this group were more severe (greater TBSA, higher ABSI). As intensive care was similar in these groups aside from AFT, the better survival could be attributed to this additional therapy.
Collapse
Affiliation(s)
- Stefanie Nickl
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Austria.
| | - Alexandra Fochtmann-Frana
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Austria.
| | - Jakob Nedomansky
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Austria.
| | - Wolfgang Hitzl
- Research Office (Biostatistics), Paracelsus Medical University Salzburg, Austria; Department of Ophthalmology and Optometry, Paracelsus Medical University Salzburg, Austria.
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Austria; COREMED - Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, Austria.
| | - Werner Haslik
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Austria.
| |
Collapse
|
20
|
Lin Z, Wu T, Wang W, Li B, Wang M, Chen L, Xia H, Zhang T. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int J Biol Macromol 2019; 140:330-342. [PMID: 31421174 DOI: 10.1016/j.ijbiomac.2019.08.087] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022]
Abstract
The increase in severe infections caused by antibiotic drug resistance and the decrease in the number of new antibacterial drugs approved for use in the last few decades are driving the need for the development of new antimicrobial strategies. Antimicrobial peptides (AMPs) are a potential new class of antimicrobial drugs that are expected to solve the problem of global antibiotic drug resistance. Herein, the AMP Tet213 was immobilised onto the substrates of alginate (ALG), hyaluronic acid (HA), and collagen (COL) to form the ALG/HA/COL-AMP wound dressing. This wound dressing exhibited a high degree of swelling and the appropriate porosity, mechanical properties, and biodegradability. The Tet213-immobilised ALG/HA/COL dressings exhibited antimicrobial activity against three pathogenic bacterial strains (Gram-negative E. coli and Gram-positive MRSA and S. aureus) and facilitated the proliferation of NIH 3T3 fibroblast cells. In addition, the ALG/HA/COL-AMP antimicrobial dressings promoted wound healing, re-epithelialisation, collagen deposition, and angiogenesis. Moreover, the wound-healing effects of ALG/HA/COL-AMP surpassed the gauze and ALG/HA/COL compared to commercially available silver-based dressings (Aguacel Ag). These results suggest that the Tet213-conjugated ALG/HA/COL wound dressing, with its multiple biological activities, is a promising wound-dressing material.
Collapse
Affiliation(s)
- Zefeng Lin
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, Guangzhou 510010, China
| | - Tingting Wu
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Wanshun Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510010, China
| | - Binglin Li
- The First School of Clinical Medicine, Southern Medical University, 510515, China
| | - Ming Wang
- The First School of Clinical Medicine, Southern Medical University, 510515, China
| | - Lingling Chen
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China; The First School of Clinical Medicine, Southern Medical University, 510515, China
| | - Hong Xia
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, Guangzhou 510010, China.
| | - Tao Zhang
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, Guangzhou 510010, China.
| |
Collapse
|
21
|
Roberts PA, Huebinger RM, Keen E, Krachler AM, Jabbari S. Mathematical model predicts anti-adhesion-antibiotic-debridement combination therapies can clear an antibiotic resistant infection. PLoS Comput Biol 2019; 15:e1007211. [PMID: 31335907 PMCID: PMC6677339 DOI: 10.1371/journal.pcbi.1007211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/02/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022] Open
Abstract
As antimicrobial resistance increases, it is crucial to develop new treatment strategies to counter the emerging threat. In this paper, we consider combination therapies involving conventional antibiotics and debridement, coupled with a novel anti-adhesion therapy, and their use in the treatment of antimicrobial resistant burn wound infections. Our models predict that anti-adhesion-antibiotic-debridement combination therapies can eliminate a bacterial infection in cases where each treatment in isolation would fail. Antibiotics are assumed to have a bactericidal mode of action, killing bacteria, while debridement involves physically cleaning a wound (e.g. with a cloth); removing free bacteria. Anti-adhesion therapy can take a number of forms. Here we consider adhesion inhibitors consisting of polystyrene microbeads chemically coupled to a protein known as multivalent adhesion molecule 7, an adhesin which mediates the initial stages of attachment of many bacterial species to host cells. Adhesion inhibitors competitively inhibit bacteria from binding to host cells, thus rendering them susceptible to removal through debridement. An ordinary differential equation model is developed and the antibiotic-related parameters are fitted against new in vitro data gathered for the present study. The model is used to predict treatment outcomes and to suggest optimal treatment strategies. Our model predicts that anti-adhesion and antibiotic therapies will combine synergistically, producing a combined effect which is often greater than the sum of their individual effects, and that anti-adhesion-antibiotic-debridement combination therapy will be more effective than any of the treatment strategies used in isolation. Further, the use of inhibitors significantly reduces the minimum dose of antibiotics required to eliminate an infection, reducing the chances that bacteria will develop increased resistance. Lastly, we use our model to suggest treatment regimens capable of eliminating bacterial infections within clinically relevant timescales.
Collapse
Affiliation(s)
- Paul A. Roberts
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ryan M. Huebinger
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Emma Keen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Anne-Marie Krachler
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
| | - Sara Jabbari
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
22
|
Fejfarová V, Tibenská H, Niklová J, Bém R, Dubský M, Wosková V, Němcová A, Jirkovská A, Jude E, Lánská V. Benefits of Acidifying Agents in Local Therapy of Diabetic Foot Ulcers Infected by Pseudomonas sp: A Pilot Study. INT J LOW EXTR WOUND 2019; 18:262-268. [PMID: 31155991 DOI: 10.1177/1534734619848573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infections caused by Pseudomonas sp are difficult to resolve by antibiotics (ATBs) and local therapy. The aim of our pilot study was to assess the effect of different local agents-particularly acidifying solutions-on the healing of diabetic foot ulcers (DFUs), eradication of pathogens, and economic costs related to DFU therapy. In this case study, we monitored 32 DFU patients infected by Pseudomonas species. Patients were divided into 2 groups according to the local therapy provided: group 1 (n = 15)-modern local treatment; group 2 (n = 17)-acidifying antiseptic solutions. The study groups differed only with regard to ATB usage prior to enrolment in the study (P = .004), but did not differ with regard to age, diabetes control, peripheral arterial disease, or microcirculation status. During the follow-up period, DFUs healed in 20% of cases in group 1, but there were no cases of healing in group 2 (NS). The length of ATB therapy, the number of new osteomyelitis, lower limb amputations, and the changes of DFUs status/proportions did not differ significantly between study groups. Pseudomonas was eradicated in 67% of cases in group 1 and in 65% of cases in group 2. The local treatment given to group 2 patients was associated with lower costs (P < .0001). Conclusion. Acidifying agents had the same effect as modern healing agents on wound healing, the number of amputations, and the eradication of Pseudomonas. Moreover, therapy performed using acidifying solutions proved in our pilot study markedly cheaper.
Collapse
Affiliation(s)
| | - Hana Tibenská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jitka Niklová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Robert Bém
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Andrea Němcová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Edward Jude
- Tameside Hospital NHS Foundation Trust, Ashton under Lyne, Lanc, UK
| | - Věra Lánská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
23
|
A new approach for analyzing an adhesive bacterial protein in the mouse gastrointestinal tract using optical tissue clearing. Sci Rep 2019; 9:4731. [PMID: 30894579 PMCID: PMC6426832 DOI: 10.1038/s41598-019-41151-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/27/2019] [Indexed: 02/01/2023] Open
Abstract
Several bacterial moonlighting proteins act as adhesion factors, which are important for bacterial colonization of the gastrointestinal (GI) tract. However, little is known about the adherence properties of moonlighting proteins in the GI tract. Here, we describe a new approach for visualizing the localization of moonlighting protein-coated fluorescent microbeads in the whole GI tract by using a tissue optical clearing method, using elongation factor Tu (EF-Tu) as an example. As a bacterial cell surface-localized protein mimic, recombinant EF-Tu from Lactobacillus reuteri was immobilized on microbeads. EF-Tu-coating promoted the interaction of the microbeads with a Caco-2 cell monolayer. Next, the microbeads were orally administered to mice. GI whole tissues were cleared in aqueous fructose solutions of increasing concentrations. At 1 h after administration, the microbeads were diffused from the stomach up to the cecum, and after 3 h, they were diffused throughout the intestinal tract. In the lower digestive tract, EF-Tu-beads were significantly more abundant than non-coated control beads, suggesting that EF-Tu plays an important role in the persistence of the microbeads in the GI tract. The new approach will help in evaluating how moonlighting proteins mediate bacterial colonization.
Collapse
|
24
|
Ardekani NT, Khorram M, Zomorodian K, Yazdanpanah S, Veisi H, Veisi H. Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. Int J Biol Macromol 2018; 125:743-750. [PMID: 30543881 DOI: 10.1016/j.ijbiomac.2018.12.085] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 02/07/2023]
Abstract
Infections, especially those caused by multi-drug resistant pathogens, result in serious problems in wound healing process. In this study, Zataria multiflora (ZM) essential oil, as a strong natural antimicrobial agent, is incorporated into poly (vinyl alcohol)-based nanofiber mats to fabricate a novel wound dressing. Different amounts of ZM essential oil (0, 2, 5 and 10% (v/v)) were incorporated into chitosan/poly(vinyl alcohol)/gelatin (CS/PVA/Gel) solutions and then were successfully electrospun into beadless and uniform fibers with 95 ± 14, 154 ± 27, 187 ± 40 and 218 ± 58 nm in diameters, respectively. The produced nanofiber mats (CS/PVA/Gel/ZM) were chemically crosslinked by glutaraldehyde vapor. The chemical compositions of ZM essential oil and nanofiber mats were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR), respectively. The antimicrobial activity of the CS/PVA/Gel/ZM nanofiber mats was determined by the AATCC100 method. The nanofiber mat loaded with 10% of ZM essential oil completely inhibited the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans after 24 h of incubation. Swelling investigations showed that the produced nanofibers have a substantial ability to take up water, in the range of 400-900%. Mechanical properties of the nanofiber mats were studied by tensile testing. Furthermore, they were found to be non-toxic by biocompatibility assays on mouse fibroblast (L929) cells. The obtained results have demonstrated that CS/PVA/Gel nanofiber mats, loaded with ZM essential oil, are promising alternatives to conventional wound dressings.
Collapse
Affiliation(s)
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Yazdanpanah
- Departments of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Veisi
- Department of Chemistry, Payame Noor university, Tehran, Iran
| | - Hojat Veisi
- Department of Chemistry, Payame Noor university, Tehran, Iran
| |
Collapse
|
25
|
Roberts PA, Huebinger RM, Keen E, Krachler AM, Jabbari S. Predictive modelling of a novel anti-adhesion therapy to combat bacterial colonisation of burn wounds. PLoS Comput Biol 2018; 14:e1006071. [PMID: 29723210 PMCID: PMC5933687 DOI: 10.1371/journal.pcbi.1006071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/05/2018] [Indexed: 11/28/2022] Open
Abstract
As the development of new classes of antibiotics slows, bacterial resistance to existing antibiotics is becoming an increasing problem. A potential solution is to develop treatment strategies with an alternative mode of action. We consider one such strategy: anti-adhesion therapy. Whereas antibiotics act directly upon bacteria, either killing them or inhibiting their growth, anti-adhesion therapy impedes the binding of bacteria to host cells. This prevents bacteria from deploying their arsenal of virulence mechanisms, while simultaneously rendering them more susceptible to natural and artificial clearance. In this paper, we consider a particular form of anti-adhesion therapy, involving biomimetic multivalent adhesion molecule 7 coupled polystyrene microbeads, which competitively inhibit the binding of bacteria to host cells. We develop a mathematical model, formulated as a system of ordinary differential equations, to describe inhibitor treatment of a Pseudomonas aeruginosa burn wound infection in the rat. Benchmarking our model against in vivo data from an ongoing experimental programme, we use the model to explain bacteria population dynamics and to predict the efficacy of a range of treatment strategies, with the aim of improving treatment outcome. The model consists of two physical compartments: the host cells and the exudate. It is found that, when effective in reducing the bacterial burden, inhibitor treatment operates both by preventing bacteria from binding to the host cells and by reducing the flux of daughter cells from the host cells into the exudate. Our model predicts that inhibitor treatment cannot eliminate the bacterial burden when used in isolation; however, when combined with regular or continuous debridement of the exudate, elimination is theoretically possible. Lastly, we present ways to improve therapeutic efficacy, as predicted by our mathematical model.
Collapse
Affiliation(s)
- Paul A. Roberts
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ryan M. Huebinger
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Emma Keen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Anne-Marie Krachler
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
| | - Sara Jabbari
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
26
|
Elhosseiny NM, Attia AS. Acinetobacter: an emerging pathogen with a versatile secretome. Emerg Microbes Infect 2018; 7:33. [PMID: 29559620 PMCID: PMC5861075 DOI: 10.1038/s41426-018-0030-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
Acinetobacter baumannii is a notorious pathogen that has emerged as a healthcare nightmare in recent years because it causes serious infections that are associated with high morbidity and mortality rates. Due to its exceptional ability to acquire resistance to almost all available antibiotics, A. baumannii is currently ranked as the first pathogen on the World Health Organization’s priority list for the development of new antibiotics. The versatile range of effectors secreted by A. baumannii represents a large proportion of the virulence arsenal identified in this bacterium to date. Thus, these factors, together with the secretory machinery responsible for their extrusion into the extracellular milieu, are key targets for novel therapeutics that are greatly needed to combat this deadly pathogen. In this review, we provide a comprehensive, up-to-date overview of the organization and regulatory aspects of the Acinetobacter secretion systems, with a special emphasis on their versatile substrates that could be targeted to fight the deadly infections caused by this elusive pathogen.
Collapse
Affiliation(s)
- Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
27
|
Al-Saedi F, Vaz DP, Stones DH, Krachler AM. 3-Sulfogalactosyl-dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity. J Biol Chem 2017; 292:19792-19803. [PMID: 28982977 PMCID: PMC5712619 DOI: 10.1074/jbc.m117.817908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial adhesion to host receptors is an early and essential step in bacterial colonization, and the nature of adhesin–receptor interactions determines bacterial localization and thus the outcome of these interactions. Here, we determined the host receptors for the multivalent adhesion molecule (MAM) from the gut commensal Escherichia coli HS (MAMHS), which contains an array of seven mammalian cell entry domains. The MAMHS adhesin interacted with a range of host receptors, through recognition of a shared 3-O-sulfogalactosyl moiety. This functional group is also found in mucin, a component of the intestinal mucus layer and thus one of the prime adherence targets for commensal E. coli. Mucin gels impeded the motility of E. coli by acting as a physical barrier, and the barrier effect was enhanced by specific interactions between mucin and MAMHS in a sulfation-dependent manner. Desulfation of mucin by pure sulfatase or the sulfatase-producing commensal Bacteroides thetaiotaomicron decreased binding of E. coli to mucin and increased the attachment of bacteria to the epithelial surface via interactions with surface-localized sulfated lipid and protein receptors. Together, our results demonstrate that the E. coli adhesin MAMHS facilitates retention of a gut commensal by attachment to mucin. They further suggest that the amount of sulfatase secreted by mucin-foraging bacteria such as B. thetaiotaomicron, inhabiting the same niche, may affect the capacity of the mucus barrier to retain commensal E. coli.
Collapse
Affiliation(s)
- Fitua Al-Saedi
- From the Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT Birmingham, United Kingdom and
| | - Diana Pereira Vaz
- From the Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT Birmingham, United Kingdom and.,the Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas 77030
| | - Daniel H Stones
- From the Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT Birmingham, United Kingdom and
| | - Anne Marie Krachler
- the Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas 77030
| |
Collapse
|
28
|
Sellmyer MA, Lee I, Hou C, Weng CC, Li S, Lieberman BP, Zeng C, Mankoff DA, Mach RH. Bacterial infection imaging with [ 18F]fluoropropyl-trimethoprim. Proc Natl Acad Sci U S A 2017; 114:8372-8377. [PMID: 28716936 PMCID: PMC5547613 DOI: 10.1073/pnas.1703109114] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is often overlap in the diagnostic features of common pathologic processes such as infection, sterile inflammation, and cancer both clinically and using conventional imaging techniques. Here, we report the development of a positron emission tomography probe for live bacterial infection based on the small-molecule antibiotic trimethoprim (TMP). [18F]fluoropropyl-trimethoprim, or [18F]FPTMP, shows a greater than 100-fold increased uptake in vitro in live bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) relative to controls. In a rodent myositis model, [18F]FPTMP identified live bacterial infection without demonstrating confounding increased signal in the same animal from other etiologies including chemical inflammation (turpentine) and cancer (breast carcinoma). Additionally, the biodistribution of [18F]FPTMP in a nonhuman primate shows low background in many important tissues that may be sites of infection such as the lungs and soft tissues. These results suggest that [18F]FPTMP could be a broadly useful agent for the sensitive and specific imaging of bacterial infection with strong translational potential.
Collapse
Affiliation(s)
- Mark A Sellmyer
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Iljung Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Chi-Chang Weng
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Shihong Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Brian P Lieberman
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Chenbo Zeng
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
29
|
Kamal AAM, Maurer CK, Allegretta G, Haupenthal J, Empting M, Hartmann RW. Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|