1
|
Tram NDT, Marzinek JK, Perrin L, Mukherjee D, Selvarajan V, Bond PJ, Ee PLR. Structure-Guided Bacteria Specificity and Wide Activity Spectrum of Endotoxin-Responsive Peptide Nanonets. NANO LETTERS 2024; 24:13574-13582. [PMID: 39431594 DOI: 10.1021/acs.nanolett.4c03166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Peptide nanonets offer a promising avenue for constructing anti-infective biomaterials. Our group recently reported innovative designs of synthetic BTT nanonets that fibrillate selectively in response to bacterial endotoxins. Herein, we delved deeper into the molecular interactions between our peptides and these bacteria-specific biomolecules, which is an aspect critically missing from major works in the field. Using microscopic and biophysical techniques, we identified phosphate moieties in endotoxins as being the most essential to the initiation of peptide fibrillation. This was strongly supported by molecular dynamics simulations in an outer membrane environment with variable states of phosphorylation. To support the claim over bacterial specificity, we demonstrated a lack of nanonet formation in the presence of various phosphate-containing biomolecules native to human biology. The structural importance of phosphate moieties among pathogenic strains strongly indicates a wide clinical spectrum of our peptides, which was experimentally verified.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Jan Kazimierz Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Louis Perrin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Devika Mukherjee
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Vanitha Selvarajan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Peter John Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
2
|
Tang F, Peng W, Kou X, Chen Z, Zhang L. High-throughput screening identification of apigenin that reverses the colistin resistance of mcr-1-positive pathogens. Microbiol Spectr 2024; 12:e0034124. [PMID: 39248524 PMCID: PMC11448233 DOI: 10.1128/spectrum.00341-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/06/2024] [Indexed: 09/10/2024] Open
Abstract
The plasmid-mediated gene mcr-1 that makes bacteria resistant to the antibiotic colistin is spreading quickly, which means that colistin is no longer working well to treat Gram-negative bacterial infections. Herein, we utilized a computer-aided high-throughput screening drugs method to identify the natural product apigenin, a potential mcr-protein inhibitor, which effectively enhanced the antimicrobial activity of colistin. Several assays, including a checkerboard minimum inhibitory concentration assay, a time-kill assay, the combined disk test, molecular simulation dynamics, and animal infection models assay, were conducted to verify whether apigenin enhanced the ability of colistin to fight Gram-negative bacterial infections. The results showed that apigenin improved the antimicrobial activity of colistin against multidrug-resistant Enterobacteriaceae infection. Moreover, apigenin not only did not increase the toxic effect of colistin but also had the ability to effectively inhibit the frequency of bacterial resistance mutations to colistin. Studies clearly elucidated that apigenin could interfere with the thermal stability of the protein by binding to the mcr-1 protein. Additionally, the combination of apigenin and colistin could exert multiple effects, including disrupting bacterial membranes, the generation of bacterial nitric oxide and reactive oxygen species, as well as inhibiting bacterial adenosine triphosphate production. Furthermore, the addition of apigenin was able to significantly inhibit colistin-stimulated high expression levels of the bacterial mcr-1 gene. Finally, apigenin exhibited a characteristic anti-inflammatory effect while enhancing the antimicrobial activity of colistin against mcr-1-positive Escherichia coli (E. coli) infected animals. In conclusion, as a potential lead compound, apigenin is promising in combination with colistin in the future treatment of mcr-1-positive E. coli infections.IMPORTANCEThis study found that apigenin was able to inhibit the activity of the mcr-1 protein using a high-throughput virtual screening method. Apigenin effectively enhanced the antimicrobial activity of colistin against multidrug-resistant Enterobacteriaceae, including mcr-1-positive strains, in vitro and in vivo. This study will provide new options and strategies for the future treatment of multidrug-resistant pathogen infections.
Collapse
Affiliation(s)
- Feng Tang
- College of Animal Science and Veterinary Medicine, Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wenjing Peng
- College of Animal Science and Veterinary Medicine, Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xu Kou
- College of Animal Science and Veterinary Medicine, Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zeliang Chen
- College of Animal Science and Veterinary Medicine, Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Libo Zhang
- College of Animal Science and Veterinary Medicine, Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
3
|
Mondal AH, Khare K, Saxena P, Debnath P, Mukhopadhyay K, Yadav D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024; 12:772. [PMID: 38674716 PMCID: PMC11051878 DOI: 10.3390/microorganisms12040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Antibiotic resistance has emerged as a significant global public health issue, driven by the rapid adaptation of microorganisms to commonly prescribed antibiotics. Colistin, previously regarded as a last-resort antibiotic for treating infections caused by Gram-negative bacteria, is increasingly becoming resistant due to chromosomal mutations and the acquisition of resistance genes carried by plasmids, particularly the mcr genes. The mobile colistin resistance gene (mcr-1) was first discovered in E. coli from China in 2016. Since that time, studies have reported different variants of mcr genes ranging from mcr-1 to mcr-10, mainly in Enterobacteriaceae from various parts of the world, which is a major concern for public health. The co-presence of colistin-resistant genes with other antibiotic resistance determinants further complicates treatment strategies and underscores the urgent need for enhanced surveillance and antimicrobial stewardship efforts. Therefore, understanding the mechanisms driving colistin resistance and monitoring its global prevalence are essential steps in addressing the growing threat of antimicrobial resistance and preserving the efficacy of existing antibiotics. This review underscores the critical role of colistin as a last-choice antibiotic, elucidates the mechanisms of colistin resistance and the dissemination of resistant genes, explores the global prevalence of mcr genes, and evaluates the current detection methods for colistin-resistant bacteria. The objective is to shed light on these key aspects with strategies for combating the growing threat of resistance to antibiotics.
Collapse
Affiliation(s)
- Aftab Hossain Mondal
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kriti Khare
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Prachika Saxena
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Parbati Debnath
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
4
|
Liu JH, Liu YY, Shen YB, Yang J, Walsh TR, Wang Y, Shen J. Plasmid-mediated colistin-resistance genes: mcr. Trends Microbiol 2024; 32:365-378. [PMID: 38008597 DOI: 10.1016/j.tim.2023.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Colistin is regarded as a last-line drug against serious infections caused by multidrug-resistant Gram-negative bacterial pathogens. Therefore, the emergence of mobile colistin resistance (mcr) genes has attracted global concern and led to policy changes for the use of colistin in food animals across many countries. Currently, the distribution, function, mechanism of action, transmission vehicles, origin of mcr, and new treatment strategies against MCR-producing pathogens have been extensively studied. Here we review the prevalence, structure and function of mcr, the fitness cost and persistence of mcr-carrying plasmids, the impact of MCR on host immune response, as well as the control strategies to combat mcr-mediated colistin resistance.
Collapse
Affiliation(s)
- Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Ying-Bo Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | | | - Yang Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Feizi H, Alizadeh M, Azimi H, Khodadadi E, Kamounah FS, Ganbarov K, Ghotaslou R, Rezaee MA, Kafil HS. Induction of proteome changes involved in the cloning of mcr-1 and mcr-2 genes in Escherichia coli DH5-α strain to evaluate colistin resistance. J Glob Antimicrob Resist 2024; 36:151-159. [PMID: 38154746 DOI: 10.1016/j.jgar.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVES Plasmid genes, termed mobile colistin resistance-1 (mcr-1) and mobile colistin resistance-2 (mcr-2), are associated with resistance to colistin in Escherichia coli (E. coli). These mcr genes result in a range of protein modifications contributing to colistin resistance. This study aims to discern the proteomic characteristics of E. coli-carrying mcr-1 and mcr-2 genes. Furthermore, it evaluates the expression levels of various proteins under different conditions (with and without colistin). METHODS Plasmid extraction was performed using an alkaline lysis-based plasmid extraction kit, whereas polymerase chain reaction was used to detect the presence of mcr-1 and mcr-2 plasmids. The E. coli DH5α strain served as the competent cell for accepting and transforming mcr-1 and mcr-2 plasmids. We assessed proteomic alterations in the E. coli DH5α strain both with and without colistin in the growth medium. Proteomic data were analysed using mass spectrometry. RESULTS The findings revealed significant protein changes in the E. coli DH5α strain following cloning of mcr-1 and mcr-2 plasmids. Of the 20 proteins in the DH5α strain, expression in 8 was suppressed following transformation. In the presence of colistin in the culture medium, 39 new proteins were expressed following transformation with mcr-1 and mcr-2 plasmids. The proteins with altered expression play various roles. CONCLUSION The results of this study highlight numerous protein alterations in E. coli resulting from mcr-1 and mcr-2-mediated resistance to colistin. This understanding can shed light on the resistance mechanism. Additionally, the proteomic variations observed in the presence and absence of colistin might indicate potential adverse effects of indiscriminate antibiotic exposure on treatment efficacy and heightened pathogenicity of microorganisms.
Collapse
Affiliation(s)
- Hadi Feizi
- Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Alizadeh
- Pharmaceutical Nanotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Azimi
- Department of Microbiology, Islamic Azad University of Zanjan, Zanjan, Iran
| | - Ehsaneh Khodadadi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Reza Ghotaslou
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Rubens RS, Arruda IDSA, Almeida RM, Nóbrega YKDM, Carneiro MDS, Dalmolin TV. Challenges in the Detection of Polymyxin Resistance: From Today to the Future. Microorganisms 2024; 12:101. [PMID: 38257928 PMCID: PMC10818861 DOI: 10.3390/microorganisms12010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance is known to be one of the greatest global threats to human health, and is one of the main causes of death worldwide. In this scenario, polymyxins are last-resort antibiotics to treat infections caused by multidrug-resistant bacteria. Currently, the reference test to evaluate the susceptibility of isolates to polymyxins is the broth microdilution method; however, this technique has numerous complications and challenges for use in laboratory routines. Several phenotypic methods have been reported as being promising for implementation in routine diagnostics, including the BMD commercial test, rapid polymyxin NP test, polymyxin elution test, culture medium with polymyxins, and the Polymyxin Drop Test, which require materials for use in routines and must be easy to perform. Furthermore, Sensititre®, molecular tests, MALDI-TOF MS, and Raman spectroscopy present reliable results, but the equipment is not found in most microbiology laboratories. In this context, this review discusses the main laboratory methodologies that allow the detection of resistance to polymyxins, elucidating the challenges and perspectives.
Collapse
Affiliation(s)
- Rebeca Siqueira Rubens
- Laboratório de Microbiologia e Imunologia Clínica (LabMIC), Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (R.S.R.); (I.d.S.A.A.); (R.M.A.); (Y.K.d.M.N.)
| | - Isabel de Souza Andrade Arruda
- Laboratório de Microbiologia e Imunologia Clínica (LabMIC), Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (R.S.R.); (I.d.S.A.A.); (R.M.A.); (Y.K.d.M.N.)
| | - Rosane Mansan Almeida
- Laboratório de Microbiologia e Imunologia Clínica (LabMIC), Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (R.S.R.); (I.d.S.A.A.); (R.M.A.); (Y.K.d.M.N.)
| | - Yanna Karla de Medeiros Nóbrega
- Laboratório de Microbiologia e Imunologia Clínica (LabMIC), Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (R.S.R.); (I.d.S.A.A.); (R.M.A.); (Y.K.d.M.N.)
| | | | - Tanise Vendruscolo Dalmolin
- Laboratório de Microbiologia e Imunologia Clínica (LabMIC), Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (R.S.R.); (I.d.S.A.A.); (R.M.A.); (Y.K.d.M.N.)
| |
Collapse
|
7
|
Sánchez-León I, Pérez-Nadales E, Marín-Sanz JA, García-Martínez T, Martínez-Martínez L. Heteroresistance to colistin in wild-type Klebsiella pneumoniae isolates from clinical origin. Microbiol Spectr 2023; 11:e0223823. [PMID: 37962370 PMCID: PMC10714954 DOI: 10.1128/spectrum.02238-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Colistin is one of the last remaining therapeutic options for dealing with Enterobacteriaceae. Unfortunately, heteroresistance to colistin is also rapidly increasing. We described the prevalence of colistin heteroresistance in a variety of wild-type strains of Klebsiella pneumoniae and the evolution of these strains with colistin heteroresistance to a resistant phenotype after colistin exposure and withdrawal. Resistant mutants were characterized at the molecular level, and numerous mutations in genes related to lipopolysaccharide formation were observed. In colistin-treated patients, the evolution of K. pneumoniae heteroresistance to resistance phenotype could lead to higher rates of therapeutic failure.
Collapse
Affiliation(s)
- Irene Sánchez-León
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| | - Elena Pérez-Nadales
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Antonio Marín-Sanz
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Computer Sciences, University of Cordoba, Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| | - Luis Martínez-Martínez
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Unit of Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| |
Collapse
|
8
|
Materon IC, Palzkill T. Structural biology of MCR-1-mediated resistance to polymyxin antibiotics. Curr Opin Struct Biol 2023; 82:102647. [PMID: 37399693 PMCID: PMC10527939 DOI: 10.1016/j.sbi.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Polymyxins, a last resort antibiotic, target the outer membrane of pathogens and are used to address the increasing prevalence of multidrug-resistant Gram-negative bacteria. The plasmid-encoded enzyme MCR-1 confers polymyxin resistance to bacteria by modifying the outer membrane. Transferable resistance to polymyxins is a major concern; therefore, MCR-1 is an important drug target. In this review, we discuss recent structural and mechanistic aspects of MCR-1 function, its variants and homologs, and how they are relevant to polymyxin resistance. Specifically, we discuss work on polymyxin-mediated disruption of the outer and inner membranes, computational studies on the catalytic mechanism of MCR-1, mutagenesis and structural analysis concerning residues important for substrate binding in MCR-1, and finally, advancements in inhibitors targeting MCR-1.
Collapse
Affiliation(s)
- Isabel Cristina Materon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Hanpaibool C, Ounjai P, Yotphan S, Mulholland AJ, Spencer J, Ngamwongsatit N, Rungrotmongkol T. Enhancement by pyrazolones of colistin efficacy against mcr-1-expressing E. coli: an in silico and in vitro investigation. J Comput Aided Mol Des 2023; 37:479-489. [PMID: 37488458 DOI: 10.1007/s10822-023-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Owing to the emergence of antibiotic resistance, the polymyxin colistin has been recently revived to treat acute, multidrug-resistant Gram-negative bacterial infections. Positively charged colistin binds to negatively charged lipids and damages the outer membrane of Gram-negative bacteria. However, the MCR-1 protein, encoded by the mobile colistin resistance (mcr) gene, is involved in bacterial colistin resistance by catalysing phosphoethanolamine (PEA) transfer onto lipid A, neutralising its negative charge, and thereby reducing its interaction with colistin. Our preliminary results showed that treatment with a reference pyrazolone compound significantly reduced colistin minimal inhibitory concentrations in Escherichia coli expressing mcr-1 mediated colistin resistance (Hanpaibool et al. in ACS Omega, 2023). A docking-MD combination was used in an ensemble-based docking approach to identify further pyrazolone compounds as candidate MCR-1 inhibitors. Docking simulations revealed that 13/28 of the pyrazolone compounds tested are predicted to have lower binding free energies than the reference compound. Four of these were chosen for in vitro testing, with the results demonstrating that all the compounds tested could lower colistin MICs in an E. coli strain carrying the mcr-1 gene. Docking of pyrazolones into the MCR-1 active site reveals residues that are implicated in ligand-protein interactions, particularly E246, T285, H395, H466, and H478, which are located in the MCR-1 active site and which participate in interactions with MCR-1 in ≥ 8/10 of the lowest energy complexes. This study establishes pyrazolone-induced colistin susceptibility in E. coli carrying the mcr-1 gene, providing a method for the development of novel treatments against colistin-resistant bacteria.
Collapse
Affiliation(s)
- Chonnikan Hanpaibool
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence On Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok, 10400, Thailand
| | - Sirilata Yotphan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Kompes G, Duvnjak S, Reil I, Hendriksen RS, Sørensen LH, Zdelar-Tuk M, Habrun B, Cvetnić L, Bagarić A, Špičić S. First Report and Characterization of the mcr-1 Positive Multidrug-Resistant Escherichia coli Strain Isolated from Pigs in Croatia. Microorganisms 2023; 11:2442. [PMID: 37894098 PMCID: PMC10609023 DOI: 10.3390/microorganisms11102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The emergence and rapid spread of the plasmid-mediated colistin-resistant mcr-1 gene introduced a serious threat to public health. In 2021, a multi-drug resistant, mcr-1 positive Escherichia coli EC1945 strain, was isolated from pig caecal content in Croatia. Antimicrobial susceptibility testing and whole genome sequencing were performed. Bioinformatics tools were used to determine the presence of resistance genes, plasmid Inc groups, serotype, sequence type, virulence factors, and plasmid reconstruction. The isolated strain showed phenotypic and genotypic resistance to nine antimicrobial classes. It was resistant to colistin, gentamicin, ampicillin, cefepime, cefotaxime, ceftazidime, sulfamethoxazole, chloramphenicol, nalidixic acid, and ciprofloxacin. Antimicrobial resistance genes included mcr-1, blaTEM-1B, blaCTX-M-1, aac(3)-IId, aph(3')-Ia, aadA5, sul2, catA1, gyrA (S83L, D87N), and parC (A56T, S80I). The mcr-1 gene was located within the conjugative IncX4 plasmid. IncI1, IncFIB, and IncFII plasmids were also detected. The isolate also harbored 14 virulence genes and was classified as ST744 and O101:H10. ST744 is a member of the ST10 group which includes commensal, extraintestinal pathogenic E. coli isolates that play a crucial role as a reservoir of genes. Further efforts are needed to identify mcr-1-carrying E. coli isolates in Croatia, especially in food-producing animals to identify such gene reservoirs.
Collapse
Affiliation(s)
- Gordan Kompes
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (M.Z.-T.); (B.H.); (L.C.); (A.B.); (S.Š.)
| | - Sanja Duvnjak
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (M.Z.-T.); (B.H.); (L.C.); (A.B.); (S.Š.)
| | - Irena Reil
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (M.Z.-T.); (B.H.); (L.C.); (A.B.); (S.Š.)
| | - Rene S. Hendriksen
- Research Group for Global Capacity Building, National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark; (R.S.H.); (L.H.S.)
| | - Lauge Holm Sørensen
- Research Group for Global Capacity Building, National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark; (R.S.H.); (L.H.S.)
| | - Maja Zdelar-Tuk
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (M.Z.-T.); (B.H.); (L.C.); (A.B.); (S.Š.)
| | - Boris Habrun
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (M.Z.-T.); (B.H.); (L.C.); (A.B.); (S.Š.)
| | - Luka Cvetnić
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (M.Z.-T.); (B.H.); (L.C.); (A.B.); (S.Š.)
| | - Antonela Bagarić
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (M.Z.-T.); (B.H.); (L.C.); (A.B.); (S.Š.)
| | - Silvio Špičić
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (M.Z.-T.); (B.H.); (L.C.); (A.B.); (S.Š.)
| |
Collapse
|
11
|
Riquelme MP, Martinez RW, Brito B, García P, Legarraga P, Wozniak A. Chromosome-Mediated Colistin Resistance in Clinical Isolates of Klebsiella pneumoniae and Escherichia coli: Mutation Analysis in the Light of Genetic Background. Infect Drug Resist 2023; 16:6451-6462. [PMID: 37789836 PMCID: PMC10544214 DOI: 10.2147/idr.s427398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/10/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Colistin resistance mechanisms involving mutations in chromosomal genes associated with LPS modification are not completely understood. Mutations in genes coding for the MgrB regulator frequently account for colistin resistance in Klebsiella pneumoniae, whereas mutations in genes coding for PhoPQ and PmrAB are frequent in E. coli. Our aim was to perform a genetic analysis of chromosomal mutations in colistin-resistant (MIC ≥4 µg/mL) clinical isolates of K. pneumoniae (n = 8) and E. coli (n = 7) of different STs. Methods Isolates were obtained in a 3-year period in a university hospital in Santiago, Chile. Susceptibility to colistin, aminoglycosides, cephalosporins, carbapenems and ciprofloxacin was determined through broth microdilution. Whole genome sequencing was performed for all isolates and chromosomal gene sequences were compared with sequences of colistin-susceptible isolates of the same sequence types. Results None of the isolates carried mcr genes. Most of the isolates were susceptible to all the antibiotics analyzed. E. coli isolates were ST69, ST127, ST59, ST131 and ST14, and K. pneumoniae isolates were ST454, ST45, ST6293, ST380 and ST25. All the isolates had mutations in chromosomal genes analyzed. K. pneumoniae had mutations mainly in mgrB gene, whereas E. coli had mutations in pmrA, pmrB and pmrE genes. Most of the amino acid changes in LPS-modifying enzymes of colistin-resistant isolates were found in colistin-susceptible isolates of the same and/or different ST. Eleven of them were found only in colistin-resistant isolates. Conclusion Colistin resistance mechanisms depend on genetic background, and are due to chromosomal mutations, which implies a lower risk of transmission than plasmid-mediated genes. Colistin resistance is not associated with multidrug-resistance, nor to high-risk sequence types.
Collapse
Affiliation(s)
- María Paz Riquelme
- Department of Clinical Laboratories - School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo W Martinez
- Genomics & Resistant Microbes Group (Germ) - Instituto de Ciencias e Innovación en Medicina (ICIM); School of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), SantiagoChile
| | - Bárbara Brito
- Australian Institute for Microbiology & Infection - Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Patricia García
- Department of Clinical Laboratories - School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), SantiagoChile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Paulette Legarraga
- Department of Clinical Laboratories - School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Aniela Wozniak
- Department of Clinical Laboratories - School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), SantiagoChile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| |
Collapse
|
12
|
Rogga V, Kosalec I. Untying the anchor for the lipopolysaccharide: lipid A structural modification systems offer diagnostic and therapeutic options to tackle polymyxin resistance. Arh Hig Rada Toksikol 2023; 74:145-166. [PMID: 37791675 PMCID: PMC10549895 DOI: 10.2478/aiht-2023-74-3717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/01/2023] [Accepted: 07/01/2023] [Indexed: 10/05/2023] Open
Abstract
Polymyxin antibiotics are the last resort for treating patients in intensive care units infected with multiple-resistant Gram-negative bacteria. Due to their polycationic structure, their mode of action is based on an ionic interaction with the negatively charged lipid A portion of the lipopolysaccharide (LPS). The most prevalent polymyxin resistance mechanisms involve covalent modifications of lipid A: addition of the cationic sugar 4-amino-L-arabinose (L-Ara4N) and/or phosphoethanolamine (pEtN). The modified structure of lipid A has a lower net negative charge, leading to the repulsion of polymyxins and bacterial resistance to membrane disruption. Genes encoding the enzymatic systems involved in these modifications can be transferred either through chromosomes or mobile genetic elements. Therefore, new approaches to resistance diagnostics have been developed. On another note, interfering with these enzymatic systems might offer new therapeutic targets for drug discovery. This literature review focuses on diagnostic approaches based on structural changes in lipid A and on the therapeutic potential of molecules interfering with these changes.
Collapse
Affiliation(s)
- Vanessa Rogga
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Microbiology, Zagreb, Croatia
| | - Ivan Kosalec
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Microbiology, Zagreb, Croatia
| |
Collapse
|
13
|
Feng J, Zhuang Y, Luo J, Xiao Q, Wu Y, Chen Y, Chen M, Zhang X. Prevalence of colistin-resistant mcr-1-positive Escherichia coli isolated from children patients with diarrhoea in Shanghai, 2016-2021. J Glob Antimicrob Resist 2023; 34:166-175. [PMID: 37355039 DOI: 10.1016/j.jgar.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVES The emergence of the plasmid-mediated colistin resistance 1 (mcr-1) of Escherichia coli has become a global health concern. This study reports the prevalence of mcr-1 among E. coli isolates from patients with diarrheal disease in Shanghai and the genetic characterization of mcr-1-harbouring plasmids. METHODS A total of 1723 E. coli strains were collected from the faeces of patients with diarrheal disease in all sentinel hospitals in Shanghai from 2016 to 2021. Antimicrobial susceptibility testing was performed by broth microdilution and plasmid conjunction transfer assay was carried out using E. coli C600 as the recipient. The mcr-1-positive E. coli strains (MCRPEC) were subjected to molecular characterization and bioinformatic analysis of the mcr-1-bearing plasmids that they harboured. RESULTS Only 5 (0.28%) strains were found to harbour the mcr-1 gene using PCR screening. Plasmid conjugation assay and whole-genome sequencing indicated that EC16500, one MCRPEC strain that co-exhibited mcr-1, blaTEM-1, blaOXA-1, qnrS1, qnrS2, arr-3, and catB3, could be conjugated to EC C600 by horizontal transfer with an average efficiency of 3.2 × 10-5. The plasmid pEC16500 harboured similar backbones as p70_2_15, pECGD-8-33, pNCYU-29-19-1_MCR1, and pIBMC_mcr1, and was shown to be encoded within a type IV secretion system (T4SS)-containing 32.6 kbp IncX4, next to the pap2-like membrane-associated gene, to form a 2.4-kb cassette. Furthermore, sequencing and phylogenetic analyses revealed a similarity between other MCR-1-homolog proteins, indicating that the five E. coli isolates were colistin-resistant. CONCLUSION Our data represents a significant snapshot of colistin resistance mcr-1 genes and highlights the need to increase active surveillance, especially among children under five years of age, in Shanghai. Great effort needs to be taken to avoid further dissemination of plasmid-mediated colistin resistance among clinically relevant Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jiayuan Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Quan Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Yitong Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Yong Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China.
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China.
| |
Collapse
|
14
|
Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Phosphoethanolamine Transferases as Drug Discovery Targets for Therapeutic Treatment of Multi-Drug Resistant Pathogenic Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1382. [PMID: 37760679 PMCID: PMC10525099 DOI: 10.3390/antibiotics12091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance caused by multidrug-resistant (MDR) bacteria is a major challenge to global public health. Polymyxins are increasingly being used as last-in-line antibiotics to treat MDR Gram-negative bacterial infections, but resistance development renders them ineffective for empirical therapy. The main mechanism that bacteria use to defend against polymyxins is to modify the lipid A headgroups of the outer membrane by adding phosphoethanolamine (PEA) moieties. In addition to lipid A modifying PEA transferases, Gram-negative bacteria possess PEA transferases that decorate proteins and glycans. This review provides a comprehensive overview of the function, structure, and mechanism of action of PEA transferases identified in pathogenic Gram-negative bacteria. It also summarizes the current drug development progress targeting this enzyme family, which could reverse antibiotic resistance to polymyxins to restore their utility in empiric therapy.
Collapse
Affiliation(s)
- Van C. Thai
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| |
Collapse
|
15
|
Sánchez-León I, García-Martínez T, Diene SM, Pérez-Nadales E, Martínez-Martínez L, Rolain JM. Heteroresistance to Colistin in Clinical Isolates of Klebsiella pneumoniae Producing OXA-48. Antibiotics (Basel) 2023; 12:1111. [PMID: 37508209 PMCID: PMC10375995 DOI: 10.3390/antibiotics12071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Heteroresistance to colistin can be defined as the presence of resistant subpopulations in an isolate that is susceptible to this antibiotic. Colistin resistance in Gram-negative bacteria is more frequently related to chromosomal mutations and insertions. This work aimed to study heteroresistance in nine clinical isolates of Klebsiella pneumoniae producing OXA-48 and to describe genomic changes in mutants with acquired resistance in vitro. Antimicrobial susceptibility was determined by broth microdilution (BMD) and heteroresistance by population analysis profiling (PAP). The proteins related to colistin resistance were analyzed for the presence of mutations. Additionally, PCR of the mgrB gene was performed to identify the presence of insertions. In the nine parental isolates, the PAP method showed colistin heteroresistance of colonies growing on plates with concentrations of up to 64 mg/L, corresponding to stable mutant subpopulations. The MICs of some mutants from the PAP plate containing 4×MIC of colistin had absolute values of ≤2 mg/L that were higher than the parental MICs and were defined as persistent variants. PCR of the mgrB gene identified an insertion sequence that inactivated the gene in 21 mutants. Other substitutions in the investigated mutants were found in PhoP, PhoQ, PmrB, PmrC, CrrA and CrrB proteins. Colistin heteroresistance in K. pneumoniae isolates was attributed mainly to insertions in the mgrB gene and point mutations in colistin resistance proteins. The results of this study will improve understanding regarding the mechanisms of colistin resistance in mutants of K. pneumoniae producing OXA-48.
Collapse
Affiliation(s)
- Irene Sánchez-León
- Maimonides Biomedical Research Institute of Cordoba, 14004 Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
| | - Seydina M Diene
- Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-University, 13005 Marseille, France
| | - Elena Pérez-Nadales
- Maimonides Biomedical Research Institute of Cordoba, 14004 Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Martínez-Martínez
- Maimonides Biomedical Research Institute of Cordoba, 14004 Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Clinical Unit of Microbiology, Reina Sofía University Hospital, 14004 Cordoba, Spain
| | - Jean-Marc Rolain
- Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-University, 13005 Marseille, France
| |
Collapse
|
16
|
Frantz R, Gwozdzinski K, Gisch N, Doijad SP, Hudel M, Wille M, Abu Mraheil M, Schwudke D, Imirzalioglu C, Falgenhauer L, Ehrmann M, Chakraborty T. A Single Residue within the MCR-1 Protein Confers Anticipatory Resilience. Microbiol Spectr 2023; 11:e0359222. [PMID: 37071007 PMCID: PMC10269488 DOI: 10.1128/spectrum.03592-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
The envelope stress response (ESR) of Gram-negative enteric bacteria senses fluctuations in nutrient availability and environmental changes to avert damage and promote survival. It has a protective role toward antimicrobials, but direct interactions between ESR components and antibiotic resistance genes have not been demonstrated. Here, we report interactions between a central regulator of ESR viz., the two-component signal transduction system CpxRA (conjugative pilus expression), and the recently described mobile colistin resistance protein (MCR-1). Purified MCR-1 is specifically cleaved within its highly conserved periplasmic bridge element, which links its N-terminal transmembrane domain with the C-terminal active-site periplasmic domain, by the CpxRA-regulated serine endoprotease DegP. Recombinant strains harboring cleavage site mutations in MCR-1 are either protease resistant or degradation susceptible, with widely differing consequences for colistin resistance. Transfer of the gene encoding a degradation-susceptible mutant to strains that lack either DegP or its regulator CpxRA restores expression and colistin resistance. MCR-1 production in Escherichia coli imposes growth restriction in strains lacking either DegP or CpxRA, effects that are reversed by transactive expression of DegP. Excipient allosteric activation of the DegP protease specifically inhibits growth of isolates carrying mcr-1 plasmids. As CpxRA directly senses acidification, growth of strains at moderately low pH dramatically increases both MCR-1-dependent phosphoethanolamine (PEA) modification of lipid A and colistin resistance levels. Strains expressing MCR-1 are also more resistant to antimicrobial peptides and bile acids. Thus, a single residue external to its active site induces ESR activity to confer resilience in MCR-1-expressing strains to commonly encountered environmental stimuli, such as changes in acidity and antimicrobial peptides. Targeted activation of the nonessential protease DegP can lead to the elimination of transferable colistin resistance in Gram-negative bacteria. IMPORTANCE The global presence of transferable mcr genes in a wide range of Gram-negative bacteria from clinical, veterinary, food, and aquaculture environments is disconcerting. Its success as a transmissible resistance factor remains enigmatic, because its expression imposes fitness costs and imparts only moderate levels of colistin resistance. Here, we show that MCR-1 triggers regulatory components of the envelope stress response, a system that senses fluctuations in nutrient availability and environmental changes, to promote bacterial survival in low pH environments. We identify a single residue within a highly conserved structural element of mcr-1 distal to its catalytic site that modulates resistance activity and triggers the ESR. Using mutational analysis, quantitative lipid A profiling and biochemical assays, we determined that growth in low pH environments dramatically increases colistin resistance levels and promotes resistance to bile acids and antimicrobial peptides. We exploited these findings to develop a targeted approach that eliminates mcr-1 and its plasmid carriers.
Collapse
Affiliation(s)
- Renate Frantz
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Konrad Gwozdzinski
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Swapnil Prakash Doijad
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Martina Hudel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wille
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site: Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Airway Research Center North, Partner Site: Research Center Borstel, Borstel, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
17
|
Che Y, Wu R, Li H, Wang L, Wu X, Chen Q, Chen R, Zhou L. Characterization of two novel colistin resistance gene mcr-1 variants originated from Moraxella spp. Front Microbiol 2023; 14:1153740. [PMID: 37260682 PMCID: PMC10228737 DOI: 10.3389/fmicb.2023.1153740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/18/2023] [Indexed: 06/02/2023] Open
Abstract
This study aimed to characterize two novel mcr-1 variants, mcr-1.35 and mcr-1.36, which originated from Moraxella spp. that were isolated from diseased pigs in China. The Moraxella spp. carrying novel mcr-1 variants were subjected to whole-genome sequencing (WGS) and phylogenetic analysis based on the 16S rRNA gene. The mcr-1 variants mcr-1.35 and mcr-1.36 were characterized using phylogenetic analysis, a comparison of genetic environments, and protein structure prediction. The WGS indicated that two novel mcr-1 variants were located in the chromosomes of three Moraxella spp. with a genetic environment of mcr-1-pap2. In addition to the novel colistin resistance genes mcr-1.35 and mcr-1.36, the three Moraxella spp. contained other antimicrobial resistance genes, including aac(3)-IId, tet(O), sul2, floR, and blaROB-3. A functional cloning assay indicated that either the mcr-1.35 or mcr-1.36 gene could confer resistance to colistin in Escherichia coli DH5α and JM109. The nucleotide sequences of mcr-1.35 and mcr-1.36 presented 95.33 and 95.33% identities, respectively, to mcr-1.1. The phylogenetic analysis showed that mcr-1.35 and mcr-1.36 were derived from Moraxella spp. that belonged to subclades that were different from those of the mcr-1 variants (mcr-1.1 to mcr-1.34 except mcr-1.10) originating from Enterobacteriaceae. The deduced amino acid sequences of MCR-1.35 (MCR-1.36) showed 96.67% (96.49%), 82.59% (82.04%), 84.07% (83.52%), 55.52% (55.17%), 59.75% (59.57%), and 61.88% (61.69%) identity to MCR-1.10, MCR-2.2, MCR-6.1, MCR-LIN, MCR-OSL, and MCR-POR, respectively, that originated from Moraxella sp. Notably, protein structure alignment showed only a few changes in amino acid residues between MCR-1.1 and MCR-1.35, as well as between MCR-1.1 and MCR-1.36. In conclusion, this study identified Moraxella spp. carrying two novel mcr-1 variants, mcr-1.35 and mcr-1.36, conferring resistance to colistin, which were isolated from pig farms in China. In addition, mcr-like variants were observed to be located in the chromosomes of some species of Moraxella isolated from pig samples.
Collapse
Affiliation(s)
- Yongliang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Renjie Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Hongjie Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Longbai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xuemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Qiuyong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Rujing Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Lunjiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| |
Collapse
|
18
|
Hanpaibool C, Ngamwongsatit N, Ounjai P, Yotphan S, Wolschann P, Mulholland AJ, Spencer J, Rungrotmongkol T. Pyrazolones Potentiate Colistin Activity against MCR-1-Producing Resistant Bacteria: Computational and Microbiological Study. ACS OMEGA 2023; 8:8366-8376. [PMID: 36910942 PMCID: PMC9996792 DOI: 10.1021/acsomega.2c07165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The polymyxin colistin is a last line antibiotic for extensively resistant Gram-negative bacteria. Colistin binding to lipid A disrupts the Gram-negative outer membrane, but mobile colistin resistance (mcr) gene family members confer resistance by catalyzing phosphoethanolamine (PEA) transfer onto lipid A, neutralizing its negative charge to reduce colistin interactions. Multiple mcr isoforms have been identified in clinical and environmental isolates, with mcr-1 being the most widespread and mcr-3 being common in South and East Asia. Preliminary screening revealed that treatment with pyrazolones significantly reduced mcr-1, but not mcr-3, mediated colistin resistance. Molecular dynamics (MD) simulations of the catalytic domains of MCR-1 and a homology model of MCR-3, in different protonation states of active site residues H395/H380 and H478/H463, indicate that the MCR-1 active site has greater water accessibility than MCR-3, but that this is less influenced by changes in protonation. MD-optimized structures of MCR-1 and MCR-3 were used in virtual screening of 20 pyrazolone derivatives. Docking of these into the MCR-1/MCR-3 active sites identifies common residues likely to be involved in protein-ligand interactions, specifically the catalytic threonine (MCR-1 T285, MCR-3 T277) site of PEA addition, as well as differential interactions with adjacent amino acids. Minimal inhibitory concentration assays showed that the pyrazolone with the lowest predicted binding energy (ST3f) restores colistin susceptibility of mcr-1, but not mcr-3, expressing Escherichia coli. Thus, simulations indicate differences in the active site structure between MCR-1 and MCR-3 that may give rise to differences in pyrazolone binding and so relate to differential effects upon producer E. coli. This work identifies pyrazolones as able to restore colistin susceptibility of mcr-1-producing bacteria, laying the foundation for further investigations of their activity as phosphoethanolamine transferase inhibitors as well as of their differential activity toward mcr isoforms.
Collapse
Affiliation(s)
- Chonnikan Hanpaibool
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Natharin Ngamwongsatit
- Department
of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- Laboratory
of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Puey Ounjai
- Department
of Biology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
- Center
of Excellence on Environmental Health and Toxicology, Office of Higher
Education Commission, Ministry of Education, Bangkok 10400, Thailand
| | - Sirilata Yotphan
- Center of
Excellence for Innovation in Chemistry (PERCH-CIC), Department of
Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Peter Wolschann
- Institute
of Theoretical Chemistry, University of
Vienna, Vienna 1090, Austria
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10400, Thailand
| |
Collapse
|
19
|
Wiesmann CL, Zhang Y, Alford M, Hamilton CD, Dosanjh M, Thoms D, Dostert M, Wilson A, Pletzer D, Hancock REW, Haney CH. The ColR/S two-component system is a conserved determinant of host association across Pseudomonas species. THE ISME JOURNAL 2023; 17:286-296. [PMID: 36424517 PMCID: PMC9859794 DOI: 10.1038/s41396-022-01343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Members of the bacterial genus Pseudomonas form mutualistic, commensal, and pathogenic associations with diverse hosts. The prevalence of host association across the genus suggests that symbiosis may be a conserved ancestral trait and that distinct symbiotic lifestyles may be more recently evolved. Here we show that the ColR/S two-component system, part of the Pseudomonas core genome, is functionally conserved between Pseudomonas aeruginosa and Pseudomonas fluorescens. Using plant rhizosphere colonization and virulence in a murine abscess model, we show that colR is required for commensalism with plants and virulence in animals. Comparative transcriptomics revealed that the ColR regulon has diverged between P. aeruginosa and P. fluorescens and deleting components of the ColR regulon revealed strain-specific, but not host-specific, requirements for ColR-dependent genes. Collectively, our results suggest that ColR/S allows Pseudomonas to sense and respond to a host, but that the ColR-regulon has diverged between Pseudomonas strains with distinct lifestyles. This suggests that conservation of two-component systems, coupled with life-style dependent diversification of the regulon, may play a role in host association and lifestyle transitions.
Collapse
Affiliation(s)
- Christina L Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Yue Zhang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Morgan Alford
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Corri D Hamilton
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David Thoms
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Melanie Dostert
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew Wilson
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Daniel Pletzer
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St., 9054, Dunedin, New Zealand
| | - Robert E W Hancock
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
20
|
Abdel-Rahman MAA, Hamed EA, Abdelaty MF, Sorour HK, Badr H, Hassan WM, Shalaby AG, Mohamed AAE, Soliman MA, Roshdy H. Distribution pattern of antibiotic resistance genes in Escherichia coli isolated from colibacillosis cases in broiler farms of Egypt. Vet World 2023; 16:1-11. [PMID: 36855348 PMCID: PMC9967716 DOI: 10.14202/vetworld.2023.1-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 01/04/2023] Open
Abstract
Background and Aim Multidrug resistance (MDR) of Escherichia coli has become an increasing concern in poultry farming worldwide. However, E. coli can accumulate resistance genes through gene transfer. The most problematic resistance mechanism in E. coli is the acquisition of genes encoding broad-spectrum β-lactamases, known as extended-spectrum β-lactamases, that confer resistance to broad-spectrum cephalosporins. Plasmid-mediated quinolone resistance genes (conferring resistance to quinolones) and mcr-1 genes (conferring resistance to colistin) also contribute to antimicrobial resistance. This study aimed to investigate the prevalence of antimicrobial susceptibility and to detect β-lactamase and colistin resistance genes of E. coli isolated from broiler farms in Egypt. Materials and Methods Samples from 938 broiler farms were bacteriologically examined for E. coli isolation. The antimicrobial resistance profile was evaluated using disk diffusion, and several resistance genes were investigated through polymerase chain reaction amplification. Results Escherichia coli was isolated and identified from 675/938 farms (72%) from the pooled internal organs (liver, heart, lung, spleen, and yolk) of broilers. Escherichia coli isolates from the most recent 3 years (2018-2020) were serotyped into 13 serotypes; the most prevalent serotype was O125 (n = 8). The highest phenotypic antibiotic resistance profiles during this period were against ampicillin, penicillin, tetracycline, and nalidixic acid. Escherichia coli was sensitive to clinically relevant antibiotics. Twenty-eight selected isolates from the most recent 3 years (2018-2020) were found to have MDR, where the prevalence of the antibiotic resistance genes ctx, tem, and shv was 46% and that of mcr-1 was 64%. Integrons were found in 93% of the isolates. Conclusion The study showed a high prevalence of E. coli infection in broiler farms associated with MDR, which has a high public health significance because of its zoonotic relevance. These results strengthen the application of continuous surveillance programs.
Collapse
Affiliation(s)
- Mona A. A. Abdel-Rahman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Engy A. Hamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - May F. Abdelaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Hend K. Sorour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Heba Badr
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Wafaa M. Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Azhar G. Shalaby
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Ahmed Abd-Elhalem Mohamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Mohamed A. Soliman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Heba Roshdy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| |
Collapse
|
21
|
Mmatli M, Mbelle NM, Osei Sekyere J. Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: A current and emerging update. Front Cell Infect Microbiol 2022; 12:941358. [PMID: 36093193 PMCID: PMC9462459 DOI: 10.3389/fcimb.2022.941358] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mobile colistin resistance (mcr) genes modify Lipid A molecules of the lipopolysaccharide, changing the overall charge of the outer membrane. Results and discussion Ten mcr genes have been described to date within eleven Enterobacteriaceae species, with Escherichia coli, Klebsiella pneumoniae, and Salmonella species being the most predominant. They are present worldwide in 72 countries, with animal specimens currently having the highest incidence, due to the use of colistin in poultry for promoting growth and treating intestinal infections. The wide dissemination of mcr from food animals to meat, manure, the environment, and wastewater samples has increased the risk of transmission to humans via foodborne and vector-borne routes. The stability and spread of mcr genes were mediated by mobile genetic elements such as the IncHI2 conjugative plasmid, which is associated with multiple mcr genes and other antibiotic resistance genes. The cost of acquiring mcr is reduced by compensatory adaptation mechanisms. MCR proteins are well conserved structurally and via enzymatic action. Thus, therapeutics found effective against MCR-1 should be tested against the remaining MCR proteins. Conclusion The dissemination of mcr genes into the clinical setting, is threatening public health by limiting therapeutics options available. Combination therapies are a promising option for managing and treating colistin-resistant Enterobacteriaceae infections whilst reducing the toxic effects of colistin.
Collapse
Affiliation(s)
- Masego Mmatli
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, United States
- Department of Dermatology, School of Medicine, University of Pretoria, Pretoria, South Africa
- *Correspondence: John Osei Sekyere, ;
| |
Collapse
|
22
|
Rapid Detection of MCR-Mediated Colistin Resistance in Escherichia coli. Microbiol Spectr 2022; 10:e0092022. [PMID: 35616398 PMCID: PMC9241874 DOI: 10.1128/spectrum.00920-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Colistin is one of the last-resort antibiotics for infections caused by multidrug-resistant Gram-negative bacteria. However, the wide spread of novel plasmid-carrying colistin resistance genes mcr-1 and its variants substantially compromise colistin's therapeutic effectiveness and pose a severe danger to public health. To detect colistin-resistant microorganisms induced by mcr genes, rapid and reliable antibiotic susceptibility testing (AST) is imminently needed. In this study, we identified an RNA-based AST (RBAST) to discriminate between colistin-susceptible and mcr-1-mediated colistin-resistant bacteria. After short-time colistin treatment, RBAST can detect differentially expressed RNA biomarkers in bacteria. Those candidate mRNA biomarkers were successfully verified within colistin exposure temporal shifts, concentration shifts, and other mcr-1 variants. Furthermore, a group of clinical strains were effectively distinguished by using the RBAST approach during the 3-h test duration with over 93% accuracy. Taken together, our findings imply that certain mRNA transcripts produced in response to colistin treatment might be useful indicators for the development of fast AST for mcr-positive bacteria. IMPORTANCE The emergence and prevalence of mcr-1 and its variants in humans, animals, and the environment pose a global public health threat. There is a pressing urgency to develop rapid and accurate methods to identify MCR-positive colistin-resistant bacteria in the clinical samples, providing a basis for subsequent effective antibiotic treatment. Using the specific mRNA signatures, we develop an RNA-based antibiotic susceptibility testing (RBAST) for effectively distinguishing colistin-susceptible and mcr-1-mediated colistin-resistant strains. Meanwhile, the detection efficiency of these RNA biomarkers was evidenced in other mcr variants-carrying strains. By comparing with the traditional AST method, the RBAST method was verified to successfully characterize a set of clinical isolates during 3 h assay time with over 93% accuracy. Our study provides a feasible method for the rapid detection of colistin-resistant strains in clinical practice.
Collapse
|
23
|
Li Q, Qian C, Zhang X, Zhu T, Shi W, Gao M, Feng C, Xu M, Lin H, Lin L, Lu J, Lin X, Li K, Xu T, Bao Q, Li C, Zhang H. Colistin Resistance and Molecular Characterization of the Genomes of mcr-1-Positive Escherichia coli Clinical Isolates. Front Cell Infect Microbiol 2022; 12:854534. [PMID: 35601104 PMCID: PMC9120429 DOI: 10.3389/fcimb.2022.854534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Research on resistance against polymyxins induced by the mcr-1 gene is gaining interest. In this study, using agar dilution method, polymerase chain reaction, and comparative genomic analysis, we investigated the colistin resistance mechanism of clinical E. coli isolates. The minimum inhibitory concentration (MIC) analysis results revealed that of the 515 isolates tested, bacteria with significantly increased MIC levels against colistin were isolated in 2019. Approximately one-fifth (17.14% to 19.65%) of the isolates showed MIC values ≥1 mg/L against colistin in 2015, 2016, and 2017. However, in 2019, up to three-quarters (74.11%, 146/197) of the isolates showed MIC values ≥1 mg/L against colistin indicating an increase in colistin resistance. Six isolates (EC7518, EC4968, EC3769, EC16, EC117, EC195, 1.13%, 6/515) were found to carry the mcr-1 gene and a novel mcr-1 variant with Met2Ile mutation was identified in EC3769. All six strains showed higher MIC levels (MIC=4 mg/L) than any mcr-1-negative strains (MIC ≤ 2 mg/L). Whole-genome sequencing of the six mcr-1-positive isolates revealed that EC195 carried the highest number of resistance genes (n = 28), nearly a half more than those of the following EC117 (n = 19). Thus, EC195 showed a wider resistance spectrum and higher MIC levels against the antimicrobials tested than the other five isolates. Multi-locus sequence typing demonstrated that these mcr-1-positive strains belonged to six different sequence types. The six mcr-1 genes were located in three different incompatibility group plasmids (IncI2, IncHI2 and IncX4). The genetic context of mcr-1 was related to a sequence derived from Tn6330 (ISApl1-mcr-1-pap2-ISApl1). Investigations into the colistin resistance mechanism and characterization of the molecular background of the mcr genes may help trace the development and spread of colistin resistance in clinical settings.
Collapse
Affiliation(s)
- Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changrui Qian
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ming Xu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hailong Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| | - Changchong Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| |
Collapse
|
24
|
Bray AS, Smith RD, Hudson AW, Hernandez GE, Young TM, George HE, Ernst RK, Zafar MA. MgrB-Dependent Colistin Resistance in Klebsiella pneumoniae Is Associated with an Increase in Host-to-Host Transmission. mBio 2022; 13:e0359521. [PMID: 35311534 PMCID: PMC9040857 DOI: 10.1128/mbio.03595-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Due to its high transmissibility, Klebsiella pneumoniae is one of the leading causes of nosocomial infections. Here, we studied the biological cost of colistin resistance, an antibiotic of last resort, in this opportunistic pathogen using a murine model of gut colonization and transmission. Colistin resistance in K. pneumoniae is commonly the result of the inactivation of the small regulatory protein MgrB. Without a functional MgrB, the two-component system PhoPQ is constitutively active, leading to an increase in lipid A modifications and subsequent colistin resistance. Using an isogenic mgrB deletion mutant (MgrB-), we demonstrate that the mutant's colistin resistance is not associated with a fitness defect under in vitro growth conditions. However, in our murine model of K. pneumoniae gastrointestinal (GI) colonization, the MgrB- colonizes the gut poorly, allowing us to identify a fitness cost. Moreover, the MgrB- mutant has higher survival outside the host compared with the parental strain. We attribute this enhanced survivability to dysregulation of the PhoPQ two-component system and accumulation of the master stress regulator RpoS. The enhanced survival of MgrB- may be critical for its rapid host-to-host transmission observed in our model. Together, our data using multiple clinical isolates demonstrate that MgrB-dependent colistin resistance in K. pneumoniae comes with a biological cost in gut colonization. However, this cost is mitigated by enhanced survival outside the host and consequently increases its host-to-host transmission. Additionally, it underscores the importance of considering the entire life cycle of a pathogen to determine the actual biological cost associated with antibiotic resistance. IMPORTANCE The biological cost associated with colistin resistance in Klebsiella pneumoniae was examined using a murine model of K. pneumoniae gut colonization and fecal-oral transmission. A common mutation resulting in colistin resistance in K. pneumoniae is a loss-of-function mutation of the small regulatory protein MgrB that regulates the two-component system PhoPQ. Even though colistin resistance in K. pneumoniae comes with a fitness defect in gut colonization, it increases bacterial survival outside the host enabling it to transmit more effectively to a new host. The enhanced survival is dependent upon the accumulation of RpoS and dysregulation of the PhoPQ. Hence, our study expands our understanding of the underlying molecular mechanism contributing to the transmission of colistin-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Richard D. Smith
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Andrew W. Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Giovanna E. Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Taylor M. Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | | | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
25
|
Ilangumaran Ponmalar I, Swain J, Basu JK. Escherichia coli response to subinhibitory concentrations of colistin: insights from a study of membrane dynamics and morphology. Biomater Sci 2022; 10:2609-2617. [PMID: 35411890 DOI: 10.1039/d2bm00037g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prevalence of widespread bacterial infections brings forth a critical need to understand the molecular mechanisms of the antibiotics as well as the bacterial response to those antibiotics. Improper use of antibiotics, which can be in sub-lethal concentrations is one among the multiple reasons for acquiring antibiotic resistance which makes it vital to understand the bacterial response towards sub-lethal concentrations of antibiotics. In this work, we have used colistin, a well-known membrane active antibiotic used to treat severe bacterial infections and explored the impact of its sub-minimum inhibitory concentration (MIC) on the lipid membrane dynamics and morphological changes of E. coli. Upon investigation of live cell membrane properties such as lipid dynamics using fluorescence correlation spectroscopy, we observed that colistin disrupts the lipid membrane at sub-MIC by altering the lipid diffusivity. Interestingly, filamentation-like cell elongation was observed upon colistin treatment which led to further exploration of surface morphology with the help of atomic force spectroscopy. The changes in the surface roughness upon colistin treatment provides additional insight on the colistin-membrane interaction corroborating with the altered lipid diffusion. Although altered lipid dynamics could be attributed to an outcome of lipid rearrangement due to direct disruption by antibiotic molecules on the membrane or an indirect consequence of disruptions in lipid biosynthetic pathways, we were able to ascertain that altered bacterial membrane dynamics is due to direct disruptions. Our results provide a broad overview on the consequence of the cyclic polypeptide colistin on membrane-specific lipid dynamics and morphology of a live Gram-negative bacterial cell.
Collapse
Affiliation(s)
| | - Jitendriya Swain
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
26
|
Re-sensitization of mcr carrying multidrug resistant bacteria to colistin by silver. Proc Natl Acad Sci U S A 2022; 119:e2119417119. [PMID: 35263219 PMCID: PMC8931383 DOI: 10.1073/pnas.2119417119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Superbugs carrying a mobile colistin resistance gene (mcr) are jeopardizing the clinical efficacy of the last-line antibiotic colistin. The development of MCR inhibitors is urgently required to cope with antibiotic-resistance emergencies. Here, we show that silver (Ag+) fully restores the susceptibility of mcr-1–carrying superbugs against colistin both in vitro and in vivo. We found an unprecedented tetra-silver center in the active-site pocket of MCR-1 through the substitution of the essential Zn2+ ions in the intact enzyme, leading to the prevention of substrate binding (i.e. the dysfunction of MCR-1 in transferring phosphorylethanolamine to lipid A). Importantly, the ability of Ag+ to suppress resistance evolution extends the lifespan of currently used antibiotics, providing a strategy to treat infections by mcr-positive bacteria. Colistin is considered the last-line antimicrobial for the treatment of multidrug-resistant gram-negative bacterial infections. The emergence and spread of superbugs carrying the mobile colistin resistance gene (mcr) have become the most serious and urgent threat to healthcare. Here, we discover that silver (Ag+), including silver nanoparticles, could restore colistin efficacy against mcr-positive bacteria. We show that Ag+ inhibits the activity of the MCR-1 enzyme via substitution of Zn2+ in the active site. Unexpectedly, a tetra-silver center was found in the active-site pocket of MCR-1 as revealed by the X-ray structure of the Ag-bound MCR-1, resulting in the prevention of substrate binding. Moreover, Ag+ effectively slows down the development of higher-level resistance and reduces mutation frequency. Importantly, the combined use of Ag+ at a low concentration with colistin could relieve dermonecrotic lesions and reduce the bacterial load of mice infected with mcr-1–carrying pathogens. This study depicts a mechanism of Ag+ inhibition of MCR enzymes and demonstrates the potentials of Ag+ as broad-spectrum inhibitors for the treatment of mcr-positive bacterial infection in combination with colistin.
Collapse
|
27
|
Wang Y, Batra A, Schulenburg H, Dagan T. Gene sharing among plasmids and chromosomes reveals barriers for antibiotic resistance gene transfer. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200467. [PMID: 34839702 PMCID: PMC8628082 DOI: 10.1098/rstb.2020.0467] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
The emergence of antibiotic resistant bacteria is a major threat to modern medicine. Rapid adaptation to antibiotics is often mediated by the acquisition of plasmids carrying antibiotic resistance (ABR) genes. Nonetheless, the determinants of plasmid-mediated ABR gene transfer remain debated. Here, we show that the propensity of ABR gene transfer via plasmids is higher for accessory chromosomal ABR genes in comparison with core chromosomal ABR genes, regardless of the resistance mechanism. Analysing the pattern of ABR gene occurrence in the genomes of 2635 Enterobacteriaceae isolates, we find that 33% of the 416 ABR genes are shared between chromosomes and plasmids. Phylogenetic reconstruction of ABR genes occurring on both plasmids and chromosomes supports their evolution by lateral gene transfer. Furthermore, accessory ABR genes (encoded in less than 10% of the chromosomes) occur more abundantly in plasmids in comparison with core ABR genes (encoded in greater than or equal to 90% of the chromosomes). The pattern of ABR gene occurrence in plasmids and chromosomes is similar to that in the total Escherichia genome. Our results thus indicate that the previously recognized barriers for gene acquisition by lateral gene transfer apply also to ABR genes. We propose that the functional complexity of the underlying ABR mechanism is an important determinant of ABR gene transferability. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Yiqing Wang
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Aditi Batra
- Zoological institute, Kiel University, Kiel, Germany
| | | | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
28
|
Azyzov IS, Martinovich А. Detection of mcr-1-mediated resistance to polymyxins in Enterobacterales using colistin disk chelator application. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.254-260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective.
To evaluate the possibility of using the colistin disk chelator application (CDCA) method as simple and available screening tool for detection of mcr-1-mediated resistance to polymyxins in Enterobacterales.
Materials and Methods.
A total of 47 colistin-resistant Enterobacterales isolates obtained in 2014–2020 within multicenter MARATHON study were included in the experiment. Colistin susceptibility testing was performed using Mueller–Hinton broth microdilution method according to ISO 20776-1:2006. Interpretation of the results was performed according to EUCAST v.12.0 clinical breakpoints. MCR-genes were detected by multiplex real-time PCR. Phenotypic screening for mcr-expression was performed on Mueller–Hinton agar by application of dipicolinic acid in concentration of 1,000 mcg/disk in 10 µL volume per disk and 0.5 M solution of EDTA in 5 µL volume per disk. Chelating effect was registered by differences in zone of growth inhibition around colistin disks with and without chelator. Measurements were performed with the help of caliper in millimeters. Statistical data processing was carried out in accordance with guidelines for statistical analysis in medical researches using MS-Excel tool.
Results.
In 25 of 47 included in the experiment enterobacteria isolates mcr-genes were detected by molecular method. MCR-detection by CDCA method identified the average difference value of the zones of growth inhibition for colistin and its combination with EDTA and DPA as 4.1 mm and 3.7 mm respectively for mcr-positive isolates and 1.7 mm and 1.2 mm respectively for mcr-negative isolates. Statistical analysis estimated that a difference of ≥ 3 mm in zone of growth inhibition for combination of colistin with one of the chelating agents when compared to colistin only allows us to conclude that a studied isolated carries mcr-1-mediated resistance to polymyxins. In addition, sensitivity of the test was 96% and specificity was 91% if DPA is used, while EDTA showed only 88% sensitivity and 77% specificity.
Conclusions.
Proposed method appears as available technique for phenotypic screening of the Enterobacterales order for mcr-1-mediated resistance to polymyxins for practical laboratories in present conditions. The use of DPA is preferred because of better specificity and sensitivity rates.
Collapse
|
29
|
Ma W, Jiang X, Dou Y, Zhang Z, Li J, Yuan B, Yang K. Biophysical Impact of Lipid A Modification Caused by Mobile Colistin Resistance Gene on Bacterial Outer Membranes. J Phys Chem Lett 2021; 12:11629-11635. [PMID: 34817187 DOI: 10.1021/acs.jpclett.1c03295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Expression of mobile colistin resistance gene mcr-1 results in the addition of phosphoethanolamine (pEtN) to the lipid A headgroup in the bacterial outer membrane (OM) of Gram-negative bacteria, increasing the resistance to the last-line polymyxins. However, the potential biological consequences of such modification remain unclear. Using coarse-grained molecular simulations with quantitative lipidomics models, we discovered pEtN modification of the lipid A headgroup caused substantial changes to the morphology and physicochemical properties of the OM. Single-lipid level structural and energetic analyses revealed that this modification resulted in lipid A-pEtN adopting an abnormally twisted and slanted conformation with a closer packing state because of strengthened inter-lipid attraction. The consequent accumulation of lipid A-pEtN produced a negative curvature of the OM and altered the membrane's tension, fluidity, and rigidity. Our results provide a key mechanistic connection between mcr-1 expression and biophysical changes in the bacterial OM.
Collapse
Affiliation(s)
- Wendong Ma
- School of Electronic Information, Dongguan Polytechnic, Dongguan, Guangdong 523808, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Yujiang Dou
- School of Electronic Information, Dongguan Polytechnic, Dongguan, Guangdong 523808, China
| | - Zhihong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program, Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
30
|
Vegetables and Fruit as a Reservoir of β-Lactam and Colistin-Resistant Gram-Negative Bacteria: A Review. Microorganisms 2021; 9:microorganisms9122534. [PMID: 34946136 PMCID: PMC8708060 DOI: 10.3390/microorganisms9122534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Antibacterial resistance is one of the 2019 World Health Organization’s top ten threats to public health worldwide. Hence, the emergence of β-lactam and colistin resistance among Gram-negative bacteria has become a serious concern. The reservoirs for such bacteria are increasing not only in hospital settings but in several other sources, including vegetables and fruit. In recent years, fresh produce gained important attention due to its consumption in healthy diets combined with a low energy density. However, since fresh produce is often consumed raw, it may also be a source of foodborne disease and a reservoir for antibiotic resistant Gram-negative bacteria including those producing extended-spectrum β-lactamase, cephalosporinase and carbapenemase enzymes, as well as those harboring the plasmid-mediated colistin resistance (mcr) gene. This review aims to provide an overview of the currently available scientific literature on the presence of extended-spectrum β-lactamases, cephalosporinase, carbapenemase and mcr genes in Gram-negative bacteria in vegetables and fruit with a focus on the possible contamination pathways in fresh produce.
Collapse
|
31
|
Anderson AC, Burnett AJN, Constable S, Hiscock L, Maly KE, Weadge JT. A Mechanistic Basis for Phosphoethanolamine Modification of the Cellulose Biofilm Matrix in Escherichia coli. Biochemistry 2021; 60:3659-3669. [PMID: 34762795 DOI: 10.1021/acs.biochem.1c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofilms are communities of self-enmeshed bacteria in a matrix of exopolysaccharides. The widely distributed human pathogen and commensal Escherichia coli produces a biofilm matrix composed of phosphoethanolamine (pEtN)-modified cellulose and amyloid protein fibers, termed curli. The addition of pEtN to the cellulose exopolysaccharide is accomplished by the action of the pEtN transferase, BcsG, and is essential for the overall integrity of the biofilm. Here, using the synthetic co-substrates p-nitrophenyl phosphoethanolamine and β-d-cellopentaose, we demonstrate using an in vitro pEtN transferase assay that full activity of the pEtN transferase domain of BcsG from E. coli (EcBcsGΔN) requires Zn2+ binding, a catalytic nucleophile/acid-base arrangement (Ser278/Cys243/His396), disulfide bond formation, and other newly uncovered essential residues. We further confirm that EcBcsGΔN catalysis proceeds by a ping-pong bisubstrate-biproduct reaction mechanism and displays inefficient kinetic behavior (kcat/KM = 1.81 × 10-4 ± 2.81 × 10-5 M-1 s-1), which is typical of exopolysaccharide-modifying enzymes in bacteria. Thus, the results presented, especially with respect to donor binding (as reflected by KM), have importantly broadened our understanding of the substrate profile and catalytic mechanism of this class of enzymes, which may aid in the development of inhibitors targeting BcsG or other characterized members of the pEtN transferase family, including the intrinsic and mobile colistin resistance factors.
Collapse
|
32
|
Yang Z, Twidale RM, Gervasoni S, Suardíaz R, Colenso CK, Lang EJM, Spencer J, Mulholland AJ. Multiscale Workflow for Modeling Ligand Complexes of Zinc Metalloproteins. J Chem Inf Model 2021; 61:5658-5672. [PMID: 34748329 DOI: 10.1021/acs.jcim.1c01109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zinc metalloproteins are ubiquitous, with protein zinc centers of structural and functional importance, involved in interactions with ligands and substrates and often of pharmacological interest. Biomolecular simulations are increasingly prominent in investigations of protein structure, dynamics, ligand interactions, and catalysis, but zinc poses a particular challenge, in part because of its versatile, flexible coordination. A computational workflow generating reliable models of ligand complexes of biological zinc centers would find broad application. Here, we evaluate the ability of alternative treatments, using (nonbonded) molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) at semiempirical (DFTB3) and density functional theory (DFT) levels of theory, to describe the zinc centers of ligand complexes of six metalloenzyme systems differing in coordination geometries, zinc stoichiometries (mono- and dinuclear), and the nature of interacting groups (specifically the presence of zinc-sulfur interactions). MM molecular dynamics (MD) simulations can overfavor octahedral geometries, introducing additional water molecules to the zinc coordination shell, but this can be rectified by subsequent semiempirical (DFTB3) QM/MM MD simulations. B3LYP/MM geometry optimization further improved the accuracy of the description of coordination distances, with the overall effectiveness of the approach depending upon factors, including the presence of zinc-sulfur interactions that are less well described by semiempirical methods. We describe a workflow comprising QM/MM MD using DFTB3 followed by QM/MM geometry optimization using DFT (e.g., B3LYP) that well describes our set of zinc metalloenzyme complexes and is likely to be suitable for creating accurate models of zinc protein complexes when structural information is more limited.
Collapse
Affiliation(s)
- Zongfan Yang
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K
| | - Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| | - Silvia Gervasoni
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.,Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli, 25, I-20133 Milano, Italy
| | - Reynier Suardíaz
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| | - Charlotte K Colenso
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K
| | - Eric J M Lang
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| |
Collapse
|
33
|
Deep Mutational Scanning Reveals the Active-Site Sequence Requirements for the Colistin Antibiotic Resistance Enzyme MCR-1. mBio 2021; 12:e0277621. [PMID: 34781730 PMCID: PMC8593676 DOI: 10.1128/mbio.02776-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Colistin (polymyxin E) and polymyxin B have been used as last-resort agents for treating infections caused by multidrug-resistant Gram-negative bacteria. However, their efficacy has been challenged by the emergence of the mobile colistin resistance gene mcr-1, which encodes a transmembrane phosphoethanolamine (PEA) transferase enzyme, MCR-1. The enzyme catalyzes the transfer of the cationic PEA moiety of phosphatidylethanolamine (PE) to lipid A, thereby neutralizing the negative charge of lipid A and blocking the binding of positively charged polymyxins. This study aims to facilitate understanding of the mechanism of the MCR-1 enzyme by investigating its active-site sequence requirements. For this purpose, 23 active-site residues of MCR-1 protein were randomized by constructing single-codon randomization libraries. The libraries were individually selected for supporting Escherichia coli cell growth in the presence of colistin or polymyxin B. Deep sequencing of the polymyxin-resistant clones revealed that wild-type residues predominates at 17 active-site residue positions, indicating these residues play critical roles in MCR-1 function. These residues include Zn2+-chelating residues as well as residues that may form a hydrogen bond network with the PEA moiety or make hydrophobic interactions with the acyl chains of PE. Any mutations at these residues significantly decrease polymyxin resistance levels and the PEA transferase activity of the MCR-1 enzyme. Therefore, deep sequencing of the randomization libraries of MCR-1 enzyme identifies active-site residues that are essential for its polymyxin resistance function. Thus, these residues may be utilized as targets to develop inhibitors to circumvent MCR-1-mediated polymyxin resistance.
Collapse
|
34
|
Valiakos G, Kapna I. Colistin Resistant mcr Genes Prevalence in Livestock Animals (Swine, Bovine, Poultry) from a Multinational Perspective. A Systematic Review. Vet Sci 2021; 8:265. [PMID: 34822638 PMCID: PMC8619609 DOI: 10.3390/vetsci8110265] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/23/2022] Open
Abstract
The objective of this review is to collect and present the results of relevant studies on an international level, on the subject of colistin resistance due to mcr genes prevalence in livestock animals. After a literature search, and using PRISMA guidelines principles, a total of 40 swine, 16 bovine and 31 poultry studies were collected concerning mcr-1 gene; five swine, three bovine and three poultry studies referred to mcr-2 gene; eight swine, one bovine, two poultry studies were about mcr-3 gene; six swine, one bovine and one poultry manuscript studied mcr-4 gene; five swine manuscripts studied mcr-5 gene; one swine manuscript was about mcr-6, mcr-7, mcr-8, mcr-9 genes and one poultry study about mcr-10 gene was found. Information about colistin resistance in bacteria derived from animals and animal product foods is still considered limited and that should be continually enhanced; most of the information about clinical isolates are relative to enteropathogens Escherichia coli and Salmonella spp. This review demonstrates the widespread dispersion of mcr genes to livestock animals, indicating the need to further increase measures to control this important threat for public health issue.
Collapse
Affiliation(s)
- George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | | |
Collapse
|
35
|
Tram NDT, Selvarajan V, Boags A, Mukherjee D, Marzinek JK, Cheng B, Jiang ZC, Goh P, Koh JJ, Teo JWP, Bond PJ, Ee PLR. Manipulating turn residues on de novo designed β-hairpin peptides for selectivity against drug-resistant bacteria. Acta Biomater 2021; 135:214-224. [PMID: 34506975 DOI: 10.1016/j.actbio.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Synthetic β-hairpin antimicrobial peptides (AMPs) offer a useful source for the development of novel antimicrobial agents. β-hairpin peptides generally consist of two side strands bridged by a reverse turn. In literature, most studies focused on the modifications of the side strands to manipulate the stability and activity of β-hairpin peptides, and much less is known about the impact of the turn region. By designing a series of de novo β-hairpin peptides with identical side strands but varied turns, we demonstrated that mutations of only 2 to 4 amino acids at the turn region could impart a wide range of antimicrobial profiles among synthetic β-hairpin AMPs. BTT2-4 and BTT6 displayed selective potency against Gram-negative bacteria, with minimum inhibitory concentrations (MICs) of 4-8 µM. In contrast, BTT1 exhibited broad-spectrum activity, with MICs of 4-8 µM against both Gram-positive and Gram-negative strains. Additionally, BTT1 was potent against methicillin-resistant Staphylococcus aureus (MRSA) and colistin-resistant Enterobacterales. The antimicrobial potency of BTT1 persisted after 14 days of serial passage. Mechanistic studies revealed that interactions between lipopolysaccharide (LPS) and the peptides were critical to their membranolytic activity against the bacterial inner membrane. Aside from folding stability, we observed that a degree of conformational flexibility was required for disruptive membrane interactions. STATEMENT OF SIGNIFICANCE: By examining the significance of the turn region of β-hairpin peptides, we present valuable knowledge to the design toolkit of novel antimicrobial peptides as alternative therapeutics to overcome antibiotic resistance. Our de novo designed synthetic peptides displayed selective activity against Gram-negative bacteria and potent activity against clinically relevant antibiotic-resistant strains (e.g. colistin-resistant Enterobacterales and methicillin-resistant Staphylococcus aureus). The bactericidal activity of our peptides was shown to be robust in the presence of proteolytic trypsin and saline, conditions that could suppress peptide activity. Our peptides were also determined to be non-cytotoxic against a human cell line.
Collapse
Affiliation(s)
- Nhan D T Tram
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore
| | - Vanitha Selvarajan
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore
| | - Alister Boags
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), 138671, Singapore, Singapore; School of Chemistry, University of Southampton, SO17 1BJ, Southampton, United Kingdom
| | - Devika Mukherjee
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), 138671, Singapore, Singapore
| | - Bernadette Cheng
- Department of Laboratory Medicine, Microbiology Unit, National University Hospital, 119074, Singapore , Singapore
| | - Zi-Chen Jiang
- Department of Pharmacology and Toxicology, University of Toronto, M5S 1A1, Ontario, Canada
| | - Pascal Goh
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore
| | - Jun-Jie Koh
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore
| | - Jeanette W P Teo
- Department of Laboratory Medicine, Microbiology Unit, National University Hospital, 119074, Singapore , Singapore
| | - Peter J Bond
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), 138671, Singapore, Singapore; National University of Singapore, Department of Biological Sciences, 117558, Singapore, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, 117543, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, 119077, Singapore, Singapore.
| |
Collapse
|
36
|
Suardíaz R, Lythell E, Hinchliffe P, van der Kamp M, Spencer J, Fey N, Mulholland AJ. Catalytic mechanism of the colistin resistance protein MCR-1. Org Biomol Chem 2021; 19:3813-3819. [PMID: 33606866 PMCID: PMC8097703 DOI: 10.1039/d0ob02566f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022]
Abstract
The mcr-1 gene encodes a membrane-bound Zn2+-metalloenzyme, MCR-1, which catalyses phosphoethanolamine transfer onto bacterial lipid A, making bacteria resistant to colistin, a last-resort antibiotic. Mechanistic understanding of this process remains incomplete. Here, we investigate possible catalytic pathways using DFT and ab initio calculations on cluster models and identify a complete two-step reaction mechanism. The first step, formation of a covalent phosphointermediate via transfer of phosphoethanolamine from a membrane phospholipid donor to the acceptor Thr285, is rate-limiting and proceeds with a single Zn2+ ion. The second step, transfer of the phosphoethanolamine group to lipid A, requires an additional Zn2+. The calculations suggest the involvement of the Zn2+ orbitals directly in the reaction is limited, with the second Zn2+ acting to bind incoming lipid A and direct phosphoethanolamine addition. The new level of mechanistic detail obtained here, which distinguishes these enzymes from other phosphotransferases, will aid in the development of inhibitors specific to MCR-1 and related bacterial phosphoethanolamine transferases.
Collapse
Affiliation(s)
- Reynier Suardíaz
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK. and School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK and Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Emily Lythell
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK. and School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Marc van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK. and School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Natalie Fey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
37
|
The MCR-3 inside linker appears as a facilitator of colistin resistance. Cell Rep 2021; 35:109135. [PMID: 34010644 DOI: 10.1016/j.celrep.2021.109135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/23/2020] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
An evolving family of mobile colistin resistance (MCR) enzymes is threatening public health. However, the molecular mechanism by which the MCR enzyme as a rare member of lipid A-phosphoethanolamine (PEA) transferases gains the ability to confer phenotypic colistin resistance remains enigmatic. Here, we report an unusual example that genetic duplication and amplification produce a functional variant (Ah762) of MCR-3 in certain Aeromonas species. The lipid A-binding cavity of Ah762 is functionally defined. Intriguingly, we locate a hinge linker of Ah762 (termed Linker 59) that determines the MCR. Genetic and biochemical characterization reveals that Linker 59 behaves as a facilitator to render inactive MCR variants to regain the ability of colistin resistance. Along with molecular dynamics (MD) simulation, isothermal titration calorimetry (ITC) suggests that this facilitator guarantees the formation of substrate phosphatidylethanolamine (PE)-accessible pocket within MCR-3-like enzymes. Therefore, our finding defines an MCR-3 inside facilitator for colistin resistance.
Collapse
|
38
|
Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183597. [PMID: 33652005 DOI: 10.1016/j.bbamem.2021.183597] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/17/2023]
Abstract
This review summarizes the theory of zeta potential (ZP) and the most relevant data about how it has been used for studying bacteria. We have especially focused on the discovery and characterization of novel antimicrobial compounds. The ZP technique may be considered an indirect tool to estimate the surface potential of bacteria, a physical characteristic that is key to maintaining optimal cell function. For this reason, targeting the bacterial surface is of paramount interest in the development of new antimicrobials. Surface-acting agents have been found to display a remarkable bactericidal effect and have simultaneously revealed a low tendency to trigger resistance. Changes in the bacterial surface as a result of various processes can also be followed by ZP measurements. However, due to the complexity of the bacterial surface, some considerations regarding the assessment of ZP must first be taken into account. Evidence on the application of ZP measurements to the characterization of bacteria and biofilm formation is presented next. We finally discuss the feasibility of using the ZP technique to assess antimicrobial-induced changes in the bacterial surface. Among these changes are those related to the interaction of the agent with different components of the cell envelope, membrane permeabilization, and loss of viability.
Collapse
|
39
|
Pybus CA, Felder-Scott C, Obuekwe V, Greenberg DE. Cefiderocol Retains Antibiofilm Activity in Multidrug-Resistant Gram-Negative Pathogens. Antimicrob Agents Chemother 2021; 65:e01194-20. [PMID: 33199383 PMCID: PMC7849010 DOI: 10.1128/aac.01194-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/31/2020] [Indexed: 11/27/2022] Open
Abstract
Cefiderocol is a siderophore cephalosporin with potent antibacterial activity against a broad range of Gram-negative pathogens, including multidrug-resistant strains. Siderophore antibiotics bind ferric iron and utilize iron transporters to cross the cell membrane. In the biofilm setting, where antibiotic resistance is high but iron scavenging is important, cefiderocol may have advantageous antimicrobial properties. In this study, we compared the antimicrobial activity of cefiderocol to that of seven commonly used antibiotics in well-characterized multidrug-resistant pathogens and then determined their efficacy in the biofilm setting. MIC90 values for cefiderocol were consistently lower than those of other antibiotics (ceftolozane-tazobactam, ceftazidime-avibactam, ceftazidime, piperacillin-tazobactam, imipenem, and tobramycin) in all strains tested. Cefiderocol treatment displayed a reduction in the levels of Pseudomonas aeruginosa biofilm (93%, P < 0.0001) superior to that seen with the other antibiotics (49% to 82%). Cefiderocol was generally as effective as or superior to the other antibiotics, depending on the pathogen-antibiotic combination, in reducing biofilm in other pathogens. There was a trend toward greater biofilm reduction seen with increased antibiotic dose or with increased frequency of antibiotic treatment. We conclude that cefiderocol effectively reduces biofilm and is a potent inhibitor of planktonic growth across a range of Gram-negative medically important pathogens.
Collapse
Affiliation(s)
- Christine A Pybus
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Christina Felder-Scott
- School of Health Professions, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Victor Obuekwe
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - David E Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| |
Collapse
|
40
|
Kim S, Kim H, Kang HS, Kim Y, Kim M, Kwak, H, Ryu S. Prevalence and Genetic Characterization of mcr-1-Positive Escherichia coli Isolated from Retail Meats in South Korea. J Microbiol Biotechnol 2020; 30:1862-1869. [PMID: 32958736 PMCID: PMC9728184 DOI: 10.4014/jmb.2007.07008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
The spread of plasmid-mediated colistin resistance has posed a serious threat to public health owing to its effects on the emergence of pandrug-resistant bacteria. In this study, we investigated the prevalence and characteristics of mcr-1-positive Escherichia coli isolated from retail meat samples in Korea. In total, 1,205 E. coli strains were isolated from 3,234 retail meat samples in Korea. All E. coli strains were subjected to antimicrobial susceptibility testing and were examined for the presence of mcr-1 gene. All mcr-1-positive E. coli (n = 10, 0.8%) from retail meat were subjected to pulse-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). The transferability of mcr-1 gene was determined by conjugation assays. The mcr-1-positive strains exhibited diverse clonal types. Our mcr-1 genes were located in plasmids belonged to the IncI2 (n = 1) and IncX4 (n = 8) types, which were reported to be prevalent in Asia and worldwide, respectively. Most mcr-1 genes from mcr-1-positive strains (9/10) were transferable to the recipient strain and the transfer frequencies ranged from 2.4 × 10-3 to 9.8 × 10-6. Our data suggest that the specific types of plasmid may play an important role in spreading plasmid-mediated colistin resistance in Korea. Furthermore, our findings suggest that the retail meat may be an important tool for disseminating plasmid-mediated colistin resistance.
Collapse
Affiliation(s)
- Seokhwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea,Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul 0886, Republic of Korea
| | - Hansol Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Hai-Seong Kang
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Yonghoon Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Migyeong Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Hyosun Kwak,
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea,Corresponding authors H.Kwak Phone: +82-43-719-4301 Fax: +82-43-719-4300 E-mail:
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul 0886, Republic of Korea,S.Ryu Phone: +82-2-880-4856 Fax: +82-2-873-5095 E-mail:
| |
Collapse
|
41
|
Resensitizing carbapenem- and colistin-resistant bacteria to antibiotics using auranofin. Nat Commun 2020; 11:5263. [PMID: 33067430 PMCID: PMC7568570 DOI: 10.1038/s41467-020-18939-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Global emergence of Gram-negative bacteria carrying the plasmid-borne resistance genes, blaMBL and mcr, raises a significant challenge to the treatment of life-threatening infections by the antibiotics, carbapenem and colistin (COL). Here, we identify an antirheumatic drug, auranofin (AUR) as a dual inhibitor of metallo-β-lactamases (MBLs) and mobilized colistin resistance (MCRs), two resistance enzymes that have distinct structures and substrates. We demonstrate that AUR irreversibly abrogates both enzyme activity via the displacement of Zn(II) cofactors from their active sites. We further show that AUR synergizes with antibiotics on killing a broad spectrum of carbapenem and/or COL resistant bacterial strains, and slows down the development of β-lactam and COL resistance. Combination of AUR and COL rescues all mice infected by Escherichia coli co-expressing MCR-1 and New Delhi metallo-β-lactamase 5 (NDM-5). Our findings provide potential therapeutic strategy to combine AUR with antibiotics for combating superbugs co-producing MBLs and MCRs. Multi-drug resistant pathogens remain a serious public health threat. Here, Sun and colleagues identify a role for auranofin, which is normally used as a drug for rheumatoid arthritis, for reversing antibiotic resistance to carbapenem and colistin.
Collapse
|
42
|
Koutsianos D, Athanasiou LV, Dimitriou T, Nikolaidis M, Tsadila C, Amoutzias G, Mossialos D, Koutoulis KC. Antibiotic Resistance Patterns and mcr-1 Detection in Avian Pathogenic Escherichia coli Isolates from Commercial Layer and Layer Breeder Flocks Demonstrating Colibacillosis in Greece. Microb Drug Resist 2020; 27:710-720. [PMID: 32955987 DOI: 10.1089/mdr.2020.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objectives: The aim of this study was to investigate the antimicrobial resistance (AMR) patterns of Escherichia coli strains isolated from poultry flocks suffering from colibacillosis in Greece and to detect the presence of the mcr-1 gene in isolates being phenotypically resistant to colistin. Results: A total of 150 E. coli strains were isolated from commercial layers and layer breeder flocks in Greece and tested for antimicrobial susceptibility. A high level of susceptibility was revealed for cephalosporins, neomycin, and colistin. Susceptibility varied for other antimicrobials (tetracycline, doxycycline, lincospectin, trimethoprim/sulfamethoxazole, enrofloxacin, amoxicillin), whereas no susceptibility was reported for macrolides, tiamulin, lincomycin, oxacillin. Concerning colistin resistance, 20 E. coli strains were found to be phenotypically resistant (13 strains showed intermediate resistance pattern and 7 strains fully resistance trait). Further investigation was performed by PCR, which has revealed the presence of the mcr-1 gene in one phenotypically colistin-resistant isolate. Conclusion: AMR is prevalent in layer poultry production, including resistance against colistin confirmed by the presence of the mcr-1 gene.
Collapse
Affiliation(s)
- Dimitrios Koutsianos
- Department of Poultry Diseases and Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Labrini V Athanasiou
- Department of Medicine, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Tilemachos Dimitriou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Grigorios Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos C Koutoulis
- Department of Poultry Diseases and Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| |
Collapse
|
43
|
Choi Y, Lee JY, Lee H, Park M, Kang K, Lim SK, Shin D, Ko KS. Comparison of Fitness Cost and Virulence in Chromosome- and Plasmid-Mediated Colistin-Resistant Escherichia coli. Front Microbiol 2020; 11:798. [PMID: 32477288 PMCID: PMC7238749 DOI: 10.3389/fmicb.2020.00798] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Five types of Escherichia coli strains were obtained and sequenced: colistin-susceptible (CL-S) strains, in vitro induced colistin-resistant (CL-IR) strains, mcr-1-negative colistin-resistant strains from livestock (CL-chrR), mcr-1-positive colistin-resistant strains (CL-mcrR), and mcr-1-transferred transconjugants (TC-mcr). Amino acid alterations of PmrAB, PhoPQ, and EptA were identified, and their mRNA expression was measured. Their growth rate was evaluated, and an in vitro competition assay was performed. Virulence was compared through serum resistance and survival in macrophages and Drosophila melanogaster. CL-IR and CL-chrR strains were colistin-resistant due to amino acid alterations in PmrAB, PhoPQ, or EptA, and their overexpression. All colistin-resistant strains did not show reduced growth rates compared with CL-S strains. CL-IR and CL-chrR strains were less competitive than the susceptible strain, but CL-mcrR strains were not. In addition, TC-mcr strains were also significantly more competitive than their respective parental susceptible strain. CL-IR strains had similar or decreased survival rates in human serum, macrophages, and fruit flies, compared with their parental, susceptible strains. CL-chrR strains were also less virulent than CL-S strains. Although CL-mcrR strains showed similar survival rates in human serum and fruit fly to CL-S strains, the survival rates of TC-mcr strains decreased significantly in human serum, macrophages, and fruit flies, compared with their susceptible recipient strain (J53). Chromosome-mediated, colistin-resistant E. coli strains have a fitness cost, but plasmids bearing mcr-1 do not increase the fitness burden of E. coli. Along with high usage of polymyxins, the no fitness cost of mcr-1-positive strains may facilitate rapid spread of colistin resistance.
Collapse
Affiliation(s)
- Yujin Choi
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Ji-Young Lee
- Division of Antimicrobial Resistance, Korea Centers for Disease Control and Prevention, Cheongju, South Korea
| | - Haejeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Dongwoo Shin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
44
|
Maturana P, Martinez M, Faccone D, Semorile L, Maffia PC, Hollmann A. New insights into novel Escherichia coli colistin-resistant strains isolated from Argentina. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:307-313. [PMID: 32394101 DOI: 10.1007/s00249-020-01436-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022]
Abstract
Colistin is a polymyxin antibiotic (polymyxin E) that has in recent years re-emerged as an option for treatment of multidrug-resistant bacteria. Recently, the re-introduction of colistin resulted in the appearance of colistin-resistant bacteria, which is usually caused by LPS modifications. The fact that this modification is mediated by a plasmid carrying the mcr-1 gene, implies a horizontal transfer of colistin resistance. In Argentina, the National Reference Laboratory in Antimicrobial Resistance (NRLAR), has recently screened several bacteria for the MCR-1 plasmid, detecting nine Escherichia coli isolates carrying the plasmid with the mcr-1 gene, among others. In this context, we proposed to assess the effect of surface charge modifications induced by the plasmid MCR-1 and its impact on the resulting colistin resistance in two clinical isolates of colistin-resistant E. coli. Using zeta potential assays, we confirmed the reduction of negative charge exposure on clinical isolates compared to the reference strain of E. coli. In addition, through permeabilization assays, we were able to correlate this reduction in charge exposure with the extent of damage to the bacterial membrane. The fact that this surface charge modification through substitution of lipid A is plasmid encoded, represents an important concern for future antimicrobial peptide drug development.
Collapse
Affiliation(s)
- Patricia Maturana
- Laboratorio de Compuestos Bioactivos, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9, Km 1125, 4206, Santiago del Estero, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Melina Martinez
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Velez Sarsfield 563, C1282AFF, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Liliana Semorile
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina
| | - Paulo C Maffia
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Axel Hollmann
- Laboratorio de Compuestos Bioactivos, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9, Km 1125, 4206, Santiago del Estero, Argentina.
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
45
|
Samantha A, Vrielink A. Lipid A Phosphoethanolamine Transferase: Regulation, Structure and Immune Response. J Mol Biol 2020; 432:5184-5196. [PMID: 32353363 DOI: 10.1016/j.jmb.2020.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/23/2023]
Abstract
A wide variety of antibiotics are targeted to the bacterial membrane due to its unique arrangement and composition relative to the host mammalian membranes. By modification of their membranes, some gram-negative pathogens resist the action of antibiotics. Lipid A phosphoethanolamine transferase (EptA) is an intramembrane enzyme that modifies the lipid A portion of lipopolysaccharide/lipooligosaccharide by the addition of phosphoethanolamine. This modification reduces the overall net-negative charge of the outer membrane of some gram-negative bacteria, conferring resistance to polymyxin. This resistance mechanism has resulted in a global public health issue due to the increased use of polymyxin as last-resort antibiotic treatments against multi-drug-resistant pathogens. Studies show that, without EptA, pathogenic bacteria become more sensitive to polymyxin and to clearance by the host immune system, suggesting the importance of this target enzyme for the development of novel therapeutic agents. In this review, EptA will be discussed comprehensively. Specifically, this review will cover the regulation of eptA expression by the two component systems PmrA/PmrB and PhoP/PhoQ, the site of modification on lipid A, the structure and catalytic mechanism of EptA in comparison to MCR-1 and Escherichia coli alkaline phosphatase, and the host immune system's response to lipid A modification by EptA. The overarching aim of this review is to provide a comprehensive overview of polymyxin resistance mediated by EptA.
Collapse
Affiliation(s)
- Ariela Samantha
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| |
Collapse
|
46
|
Kamoshida G, Akaji T, Takemoto N, Suzuki Y, Sato Y, Kai D, Hibino T, Yamaguchi D, Kikuchi-Ueda T, Nishida S, Unno Y, Tansho-Nagakawa S, Ubagai T, Miyoshi-Akiyama T, Oda M, Ono Y. Lipopolysaccharide-Deficient Acinetobacter baumannii Due to Colistin Resistance Is Killed by Neutrophil-Produced Lysozyme. Front Microbiol 2020; 11:573. [PMID: 32373082 PMCID: PMC7183746 DOI: 10.3389/fmicb.2020.00573] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii causes nosocomial infections due to its multidrug resistance and high environmental adaptability. Colistin is a polypeptide antibacterial agent that targets lipopolysaccharide (LPS) and is currently used to control serious multidrug-resistant Gram-negative bacterial infections, including those caused by A. baumannii. However, A. baumannii may acquire colistin resistance by losing their LPS. In mouse models, LPS-deficient A. baumannii have attenuated virulence. Nevertheless, the mechanism through which the pathogen is cleared by host immune cells is unknown. Here, we established colistin-resistant A. baumannii strains and analyzed possible mechanisms through which they are cleared by neutrophils. Colistin-resistant, LPS-deficient strains harbor mutations or insertion sequence (IS) in lpx genes, and introduction of intact lpx genes restored LPS deficiency. Analysis of interactions between these strains and neutrophils revealed that compared with wild type, LPS-deficient A. baumannii only weakly stimulated neutrophils, with consequent reduced levels of reactive oxygen species (ROS) and inflammatory cytokine production. Nonetheless, neutrophils preferentially killed LPS-deficient A. baumannii compared to wild-type strains. Moreover, LPS-deficient A. baumannii strains presented with increased sensitivities to antibacterial lysozyme and lactoferrin. We revealed that neutrophil-secreted lysozyme was the antimicrobial factor during clearance of LPS-deficient A. baumannii strains. These findings may inform the development of targeted therapeutics aimed to treat multidrug-resistant infections in immunocompromised patients who are unable to mount an appropriate cell-mediated immune response.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Takuya Akaji
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Yoshinori Sato
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Daichi Kai
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Taishi Hibino
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daiki Yamaguchi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Satoshi Nishida
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Yuka Unno
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| |
Collapse
|
47
|
Anderson AC, Burnett AJN, Hiscock L, Maly KE, Weadge JT. The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn 2+-dependent phosphoethanolamine transferase. J Biol Chem 2020; 295:6225-6235. [PMID: 32152228 DOI: 10.1074/jbc.ra119.011668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane-localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Alysha J N Burnett
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Lana Hiscock
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada; Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Kenneth E Maly
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada.
| |
Collapse
|
48
|
Phenotypic Detection of Plasmid-Mediated Colistin Resistance in Enterobacteriaceae. J Clin Microbiol 2020; 58:JCM.01555-19. [PMID: 31801838 DOI: 10.1128/jcm.01555-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of this work was to evaluate an easy-to-perform assay based upon inhibition of mobile colistin resistance (MCR) activity by EDTA. We included 92 nonrelated isolates of Enterobacteriaceae (74 Escherichia coli, 17 Klebsiella pneumoniae, and 1 Serratia marcescens). Our proposed method is based on a modification of the colistin agar-spot screening test (CAST), a plate containing 3 μg/ml colistin, by adding an extra plate of colistin agar-spot supplemented with EDTA (eCAST). Bacterial growth was evaluated after 24 h of incubation at 35°C. All the colistin-resistant isolates showed development on the CAST plates. Colistin-resistant K. pneumoniae without mcr-1 and S. marcescens also grew on the eCAST plates. In contrast, colistin-resistant MCR-producing E. coli was not able to grow in eCAST plates. The combined CAST/eCAST test could provide a simple and easy-to-perform method to differentiate MCR-producing Enterobacteriaceae from those in which colistin resistance is mediated by chromosomal mechanisms.
Collapse
|
49
|
Guo Y, Lv X, Wang Y, Zhou Y, Lu N, Deng X, Wang J. Honokiol Restores Polymyxin Susceptibility to MCR-1-Positive Pathogens both In Vitro and In Vivo. Appl Environ Microbiol 2020; 86:e02346-19. [PMID: 31862719 PMCID: PMC7028959 DOI: 10.1128/aem.02346-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/17/2019] [Indexed: 01/15/2023] Open
Abstract
The emergence of the plasmid-mediated colistin resistance gene mcr-1 has led to serious multidrug-resistant (MDR) Enterobacteriaceae infections, which are a great threat to the clinic. This study aims to find an inhibitor of MCR-1 to reestablish the use of polymyxins against MDR Enterobacteriaceae infections. Here, we determined that the natural compound honokiol could enhance the efficacy of polymyxins against MDR Enterobacteriaceae infections by a checkerboard MIC assay, a time-kill assay, a combined disk test, Western blotting, molecular simulation dynamics, and mouse infection models. The MIC results indicated that honokiol can recover the sensitivity of polymyxins against MCR-1-positive Klebsiella pneumoniae and Escherichia coli (with a fractional inhibitory concentration index ranging from 0.09 ± 0.00 to 0.27 ± 0.06). Based on time-kill curve analysis, all of the tested bacteria were killed within 1 h following the combined therapy with honokiol and polymyxins. Molecular simulation dynamics results suggested that honokiol directly binds to the MCR-1 active region, reducing the biological activity of MCR-1. The combination of honokiol and polymyxins could increase the 40% protection rate and reduce the bacterial load on the thigh muscles of mice. Our study indicates that honokiol is a predominant natural compound whose combination therapy with polymyxins is very promising in future treatment options for MCR-1-positive Enterobacteriaceae infections.IMPORTANCE In the present study, honokiol could effectively inhibit the activity of MCR-1 and showed almost no cytotoxicity to MH-S cells. According to our results, the combination of honokiol and polymyxin had a clear synergistic effect against MCR-1-positive Enterobacteriaceae in vitro Combination therapy also showed a powerful therapeutic effect in vivo, which can significantly improve mouse livability, reduced the load of bacteria, and reduced pathological change. This combined therapy of small molecule compounds and antibiotics may not continue to induce new bacterial resistance, due to the fact that MCR-1 targeted by honokiol is not indispensable for the bacterial viability; on the other hand, it can reduce the dosage of combined antibiotics, and it is also a promising alternative therapy for the treatment of drug-resistant infections in the future.
Collapse
Affiliation(s)
- Yan Guo
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaohong Lv
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yanling Wang
- Qingdao Vland Biological Limited Co., Ltd., Qingdao, China
| | - Yonglin Zhou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Lu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
50
|
Zhu L, Zhou Z, Liu Y, Lin Z, Shuai X, Xu L, Chen H. Comprehensive Understanding of the Plasmid-Mediated Colistin Resistance Gene mcr-1 in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1603-1613. [PMID: 31886662 DOI: 10.1021/acs.est.9b05919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The emergence of plasmid-mediated colistin resistance gene mcr-1 has attracted global attention and raised serious concerns about its possible cross-environment dissemination. However, the systematic exploration of mcr-1 both by monitoring and genetic dissection in aquatic environments has not been conducted. This study addresses the gap related to the occurrence and distribution of mcr-1 in watersheds, eastern China. The results showed an abundance of mcr-1 gene in four watersheds, and the highest level of mcr-1 reached 1.8 × 109 gene copies per liter of water. Furthermore, the transfer frequencies of the plasmids in isolated Escherichia coli were 2.76 × 10-6-6.11 × 10-4 within genera and minimal inhibitory concentrations of polymyxin resistance were 8-16 mg/L for transconjugants. Mass spectrometry data allowed visualization of the function of mcr-1 expression, rendering bacterial resistance to colistin. The genetic details of six mcr-1-harboring plasmids in E. coli isolates of aquatic origin were obtained by single-molecule real-time sequencing. These plasmids were closely associated with E. coli strains of pig and human origin, supporting the concept of mcr-1 dissemination across natural environments, livestock farms, and humans. In conclusion, this study provides the first glimpse of the profile of mcr-1-harboring plasmids and their genetic environment in aquatic ecosystems.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Environmental Engineering, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yang Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Zejun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Xinyi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Lan Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|