1
|
Kryukov VY, Kosman E, Slepneva I, Vorontsova YL, Polenogova O, Kazymov G, Alikina T, Akhanaev Y, Sidorenko D, Noskov YA, Krivopalov A, Kabilov MR, Yaroslavtseva O. Involvement of bacteria in the development of fungal infections in the Colorado potato beetle. INSECT SCIENCE 2024. [PMID: 38956988 DOI: 10.1111/1744-7917.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Entomopathogenic fungi may interact with insects' symbiotic bacteria during infection. We hypothesized that topical infection with Beauveria bassiana may alter the microbiota of the Colorado potato beetle (CPB) and that these modifications may alter the course of mycoses. We used a model with two concentrations of conidia: (1) high concentration that causes rapid (acute) pathogenesis with fast mortality followed by bacterial decomposition of insects; (2) lower concentration that leads to prolonged pathogenesis ending in conidiation on cadavers. The fungal infections increased loads of enterobacteria and bacilli on the cuticle surface and in hemolymph and midgut, and the greatest increase was detected during the acute mycosis. By contrast, stronger activation of IMD and JAK-STAT signaling pathways in integuments and fat body was observed during the prolonged mycosis. Relatively stable (nonpathogenic) conditions remained in the midgut during both scenarios of mycosis with slight changes in bacterial communities, the absence of mesh and stat expression, a decrease in reactive oxygen species production, and slight induction of Toll and IMD pathways. Oral administration of antibiotic and predominant CPB bacteria (Enterobacteriaceae, Lactococcus, Pseudomonas) led to minor and mainly antagonistic effects in survival of larvae infected with B. bassiana. We believe that prolonged mycosis is necessary for successful development of the fungus because such pathogenesis allows the host to activate antibacterial reactions. Conversely, after infection with high concentrations of the fungus, the host's resources are insufficient to fully activate antibacterial defenses, and this situation makes successful development of the fungus impossible.
Collapse
Affiliation(s)
- Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena Kosman
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina Slepneva
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yana L Vorontsova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Gleb Kazymov
- Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yuriy Akhanaev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Darya Sidorenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yury A Noskov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Anton Krivopalov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Parmentier T, Molero-Baltanás R, Valdivia C, Gaju-Ricart M, Boeckx P, Łukasik P, Wybouw N. Co-habiting ants and silverfish display a converging feeding ecology. BMC Biol 2024; 22:123. [PMID: 38807209 PMCID: PMC11134936 DOI: 10.1186/s12915-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Various animal taxa have specialized to living with social hosts. Depending on their level of specialization, these symbiotic animals are characterized by distinct behavioural, chemical, and morphological traits that enable close heterospecific interactions. Despite its functional importance, our understanding of the feeding ecology of animals living with social hosts remains limited. We examined how host specialization of silverfish co-habiting with ants affects several components of their feeding ecology. We combined stable isotope profiling, feeding assays, phylogenetic reconstruction, and microbial community characterization of the Neoasterolepisma silverfish genus and a wider nicoletiid and lepismatid silverfish panel where divergent myrmecophilous lifestyles are observed. RESULTS Stable isotope profiling (δ13C and δ15N) showed that the isotopic niches of granivorous Messor ants and Messor-specialized Neoasterolepisma exhibit a remarkable overlap within an ant nest. Trophic experiments and gut dissections further supported that these specialized Neoasterolepisma silverfish transitioned to a diet that includes plant seeds. In contrast, the isotopic niches of generalist Neoasterolepisma silverfish and generalist nicoletiid silverfish were clearly different from their ant hosts within the shared nest environment. The impact of the myrmecophilous lifestyle on feeding ecology was also evident in the internal silverfish microbiome. Compared to generalists, Messor-specialists exhibited a higher bacterial density and a higher proportion of heterofermentative lactic acid bacteria. Moreover, the nest environment explained the infection profile (or the 16S rRNA genotypes) of Weissella bacteria in Messor-specialized silverfish and the ant hosts. CONCLUSIONS Together, we show that social hosts are important determinants for the feeding ecology of symbiotic animals and can induce diet convergence.
Collapse
Affiliation(s)
- Thomas Parmentier
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | | | - Catalina Valdivia
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Miquel Gaju-Ricart
- Depto. de Biología Animal (Zoología), University of Córdoba, Córdoba, Spain
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Nicky Wybouw
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Leclerc L, Nguyen TH, Duval P, Mariotti V, Petitot AS, Orjuela J, Ogier JC, Gaudriault S, Champion A, Nègre N. Early transcriptomic responses of rice leaves to herbivory by Spodoptera frugiperda. Sci Rep 2024; 14:2836. [PMID: 38310172 PMCID: PMC10838271 DOI: 10.1038/s41598-024-53348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/31/2024] [Indexed: 02/05/2024] Open
Abstract
During herbivory, chewing insects deposit complex oral secretions (OS) onto the plant wound. Understanding how plants respond to the different cues of herbivory remains an active area of research. In this study, we used an herbivory-mimick experiment to investigate the early transcriptional response of rice plants leaves to wounding, OS, and OS microbiota from Spodoptera frugiperda larvae. Wounding induced a massive early response associated to hormones such as jasmonates. This response switched drastically upon OS treatment indicating the activation of OS specific pathways. When comparing native and dysbiotic OS treatments, we observed few gene regulation. This suggests that in addition to wounding the early response in rice is mainly driven by the insect compounds of the OS rather than microbial. However, microbiota affected genes encoding key phytohormone synthesis enzymes, suggesting an additional modulation of plant response by OS microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
4
|
Stara J, Hubert J. Does Leptinotarsa decemlineata larval survival after pesticide treatment depend on microbiome composition? PEST MANAGEMENT SCIENCE 2023; 79:4921-4930. [PMID: 37532920 DOI: 10.1002/ps.7694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND The microbiomes of some arthropods are believed to eliminate pesticides by chemical degradation or stimulation of the host immune system. The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important agricultural pest with known resistance to used pesticides. We sought to analyze microbiome composition in CPB larvae from different sites and to identify the effect of pesticides on the microbiome of surviving and dead larvae after chlorpyrifos treatment in laboratory. Changes in the Lactococcus lactis community in larvae treated with chlorpyrifos and fed by potato leaves with L. lactis cover were studied by manipulative experiment. The microbiome was characterized by sequencing the 16S RNA gene. RESULTS The microbiome of L. decemlineata larvae is composed of a few operational taxonomic units (OTUs) (Enterobacteriaceae, Pseudocitrobacter, Acinetobacter, Pseudomonas, L. lactis, Enterococcus, Burkholderia and Spiroplasma leptinotarsae). The microbiome varied among the samples from eight sites and showed differences in profiles between surviving and dead larvae. The survival of larvae after chlorpyrifos treatment was correlated with a higher proportion of L. lactis sequences in the microbiome. The S. leptinotarsa profile also increased in the surviving larvae, but this OTU was not present in all sampling sites. In manipulative experiments, larvae treated with L. lactis had five-fold lower mortality rates than untreated larvae. CONCLUSION These results indicate that the microbiome of larvae is formed from a few bacterial taxa depending on the sampling site. A member of the gut microbiome, L. lactis, is believed to help overcome the toxic effects of chlorpyrifos in the larval gut. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Jan Hubert
- Crop Research Institute, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
5
|
Caamal-Chan MG, Barraza A, Loera-Muro A, Montes-Sánchez JJ, Castellanos T, Rodríguez-Pagaza Y. Bacterial communities of the psyllid pest Bactericera cockerelli (Hemiptera: Triozidae) Central haplotype of tomato crops cultivated at different locations of Mexico. PeerJ 2023; 11:e16347. [PMID: 37941933 PMCID: PMC10629388 DOI: 10.7717/peerj.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Background The psyllid, Bactericera cockerelli, is an insect vector of 'Candidatus Liberibacter' causing "Zebra chip" disease that affects potato and other Solanaceae crops worldwide. In the present study, we analyzed the bacterial communities associated with the insect vector Bactericera cockerelli central haplotype of tomato crop fields in four regions from Mexico. Methods PCR was used to amplify the mitochondrial cytochrome oxidase I gene (mtCOI) and then analyze the single nucleotide polymorphisms (SNP) and phylogenetic analysis for haplotype identification of the isolated B. cockerelli. Moreover, we carried out the microbial diversity analysis of several B. cockerelli collected from four regions of Mexico through the NGS sequencing of 16S rRNA V3 region. Finally, Wolbachia was detected by the wsp gene PCR amplification, which is the B. cockerelli facultative symbiont. Also we were able to confirm the relationship with several Wolbachia strains by phylogenetic analysis. Results Our results pointed that B. cockerelli collected in the four locations from Mexico (Central Mexico: Queretaro, and Northern Mexico: Sinaloa, Coahuila, and Nuevo Leon) were identified, such as the central haplotype. Analyses of the parameters of the composition, relative abundance, and diversity (Shannon index: 1.328 ± 0.472; Simpson index 0.582 ± 0.167), showing a notably relatively few microbial species in B. cockerelli. Analyses identified various facultative symbionts, particularly the Wolbachia (Rickettsiales: Anaplasmataceae) with a relative abundance higher. In contrast, the genera of Sodalis and 'Candidatus Carsonella' (Gammaproteobacteria: Oceanospirillales: Halomonadaceae) were identified with a relatively low abundance. On the other hand, the relative abundance for the genus 'Candidatus Liberibacter' was higher only for some of the locations analyzed. PCR amplification of a fragment of the gene encoding a surface protein (wsp) of Wolbachia and phylogenetic analysis corroborated the presence of this bacterium in the central haplotype. Beta-diversity analysis revealed that the presence of the genus 'Candidatus Liberibacter' influences the microbiota structure of this psyllid species. Conclusions Our data support that the members with the highest representation in microbial community of B. cockerelli central haplotype, comprise their obligate symbiont, Carsonella, and facultative symbionts. We also found evidence that among the factors analyzed, the presence of the plant pathogen affects the structure and composition of the bacterial community associated with B. cockerelli.
Collapse
Affiliation(s)
- Maria Goretty Caamal-Chan
- Agricultura en Zonas Áridas, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | - Aarón Barraza
- Agricultura en Zonas Áridas, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | - Abraham Loera-Muro
- Agricultura en Zonas Áridas, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | - Juan J. Montes-Sánchez
- Agricultura, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, Guerrero Negro, B.C.S., México
| | - Thelma Castellanos
- Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | | |
Collapse
|
6
|
Bosorogan A, Cardenas-Poire E, Gonzales-Vigil E. Tomato defences modulate not only insect performance but also their gut microbial composition. Sci Rep 2023; 13:18139. [PMID: 37875520 PMCID: PMC10598054 DOI: 10.1038/s41598-023-44938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Plants protect their tissues from insect herbivory with specialized structures and chemicals, such as cuticles, trichomes, and metabolites contained therein. Bacteria inside the insect gut are also exposed to plant defences and can potentially modify the outcome of plant-insect interactions. To disentangle this complex multi-organism system, we used tomato mutants impaired in the production of plant defences (odorless-2 and jasmonic acid-insensitive1) and two cultivars (Ailsa Craig and Castlemart), exposed them to herbivory by the cabbage looper (Trichoplusia ni H.) and collected the insect frass for bacterial community analysis. While the epicuticular wax and terpene profiles were variable, the leaf fatty acid composition remained consistent among genotypes. Moreover, larval weight confirmed the negative association between plant defences and insect performance. The distinctive frass fatty acid profiles indicated that plant genotype also influences the lipid digestive metabolism of insects. Additionally, comparisons of leaf and insect-gut bacterial communities revealed a limited overlap in bacterial species between the two sample types. Insect bacterial community abundance and diversity were notably reduced in insects fed on the mutants, with Enterobacteriaceae being the predominant group, whereas putatively pathogenic taxa were found in wildtype genotypes. Altogether, these results indicate that plant defences can modulate insect-associated bacterial community composition.
Collapse
Affiliation(s)
- Andreea Bosorogan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, Canada
| | | | - Eliana Gonzales-Vigil
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, Canada.
| |
Collapse
|
7
|
Pan Q, Shikano I, Liu TX, Felton GW. Helicoverpa zea-Associated Gut Bacteria as Drivers in Shaping Plant Anti-herbivore Defense in Tomato. MICROBIAL ECOLOGY 2023; 86:2173-2182. [PMID: 37154919 DOI: 10.1007/s00248-023-02232-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Insect-associated bacteria can mediate the intersection of insect and plant immunity. In this study, we aimed to evaluate the effects of single isolates or communities of gut-associated bacteria of Helicoverpa zea larvae on herbivore-induced defenses in tomato. We first identified bacterial isolates from the regurgitant of field-collected H. zea larvae by using a culture-dependent method and 16S rRNA gene sequencing. We identified 11 isolates belonging to the families Enterobacteriaceae, Streptococcaceae, Yersiniaceae, Erwiniaceae, and unclassified Enterobacterales. Seven different bacterial isolates, namely Enterobacteriaceae-1, Lactococcus sp., Klebsiella sp. 1, Klebsiella sp. 3, Enterobacterales, Enterobacteriaceae-2, and Pantoea sp., were selected based on their phylogenetic relationships to test their impacts on insect-induced plant defenses. We found that the laboratory population of H. zea larvae inoculated with individual isolates did not induce plant anti-herbivore defenses, whereas larvae inoculated with a bacterial community (combination of the 7 bacterial isolates) triggered increased polyphenol oxidase (PPO) activity in tomato, leading to retarded larval development. Additionally, field-collected H. zea larvae with an unaltered bacterial community in their gut stimulated higher plant defenses than the larvae with a reduced gut microbial community. In summary, our findings highlight the importance of the gut microbial community in mediating interactions between herbivores and their host plants.
Collapse
Affiliation(s)
- Qinjian Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA.
| | - Ikkei Shikano
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, Guizhou, China.
| | - Gary W Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| |
Collapse
|
8
|
Yang K, Qin PH, Yuan MY, Chen L, Zhang YJ, Chu D. Infection density pattern of Cardinium affects the responses of bacterial communities in an invasive whitefly under heat conditions. INSECT SCIENCE 2023; 30:1149-1164. [PMID: 36331043 DOI: 10.1111/1744-7917.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Communities of bacteria, especially symbionts, are vital for the growth and development of insects and other arthropods, including Bemisia tabaci Mediterranean (MED), a destructive and invasive insect pest. However, the infection density patterns and influence factors of bacteria in whiteflies, which mainly include symbionts, remain largely unclear. To reveal the different density patterns of Cardinium in B. tabaci MED populations and the impacts of high temperatures on whiteflies with different Cardinium density infection patterns, 2 isofemale lines isolated from B. tabaci MED from the same geographical population of China and from B. tabaci MED collected from other countries and locations were examined using several techniques and methods, including fluorescence in situ hybridization (FISH), quantitative real-time polymerase chain reaction (qPCR), 16S rRNA gene sequencing, and 2b-RAD sequencing. The results showed that there were 2 different infection density patterns of Cardinium in B. tabaci MED (including 1 high-density pattern and 1 low-density pattern). For whiteflies with low-density Cardinium, conventional PCR could not detect Cardinium, but the other techniques confirmed that there was a low level of Cardinium within hosts. High temperature significantly decreased the diversity of bacterial communities: the relative titer of Cardinium increased but the density of Rickettsia decreased in the isofemale line with high-density Cardinium. However, high temperature did not influence the diversity and symbiont density in the line with low-density Cardinium. Moreover, high temperature influenced the functions of bacterial communities in whiteflies with high-density Cardinium but did not affect the bacterial functions in whiteflies with low-density Cardinium. Our results provide novel insights into the complex associations between symbionts and host insects.
Collapse
Affiliation(s)
- Kun Yang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Peng-Hao Qin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Meng-Ying Yuan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
9
|
Yuan S, Sun Y, Chang W, Zhang J, Sang J, Zhao J, Song M, Qiao Y, Zhang C, Zhu M, Tang Y, Lou H. The silkworm (Bombyx mori) gut microbiota is involved in metabolic detoxification by glucosylation of plant toxins. Commun Biol 2023; 6:790. [PMID: 37516758 PMCID: PMC10387059 DOI: 10.1038/s42003-023-05150-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
Herbivores have evolved the ability to detoxify feed components through different mechanisms. The oligophagous silkworm feeds on Cudrania tricuspidata leaves (CTLs) instead of mulberry leaves for the purpose of producing special, high-quality silk. However, CTL-fed silkworms are found to have smaller bodies, slower growth and lower silk production than those fed mulberry leaves. Here, we show that the high content of prenylated isoflavones (PIFs) that occurred in CTLs is converted into glycosylated derivatives (GPIFs) in silkworm faeces through the silkworm gut microbiota, and this biotransformation is the key process in PIFs detoxification because GPIFs are found to be much less toxic, as revealed both in vitro and in vivo. Additionally, adding Bacillus subtilis as a probiotic to remodel the gut microbiota could beneficially promote silkworm growth and development. Consequently, this study provides meaningful guidance for silk production by improving the adaptability of CTL-fed silkworms.
Collapse
Affiliation(s)
- Shuangzhi Yuan
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Yong Sun
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Wenqiang Chang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Jiaozhen Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Jifa Sang
- Linyi University, Yishui, Linyi, 276400, P. R. China
| | - Jiachun Zhao
- Linyi University, Yishui, Linyi, 276400, P. R. China
| | - Minghui Song
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Yanan Qiao
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Chunyang Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Mingzhu Zhu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Yajie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China.
| |
Collapse
|
10
|
Wang X, Wang H, Zeng J, Cui Z, Geng S, Song X, Zhang F, Su X, Li H. Distinct gut bacterial composition in Anoplophora glabripennis reared on two host plants. Front Microbiol 2023; 14:1199994. [PMID: 37405158 PMCID: PMC10315502 DOI: 10.3389/fmicb.2023.1199994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Anoplophora glabripennis (Coleoptera: Cerambycidae: Lamiinae) is an invasive wood borer pest that has caused considerable damage to forests. Gut bacteria are of great importance in the biology and ecology of herbivores, especially in growth and adaptation; however, change in the gut bacterial community of this pest feeding on different hosts is largely unknown. In this study, we investigated the gut bacterial communities of A. glabripennis larvae fed on different preferred hosts, Salix matsudana and Ulmus pumila, using 16S rDNA high-throughput sequencing technology. A total of 15 phyla, 25 classes, 65 orders, 114 families, 188 genera, and 170 species were annotated in the gut of A. glabripennis larvae fed on S. matsudana or U. pumila using a 97% similarity cutoff level. The dominant phyla were Firmicutes and Proteobacteria and the core dominant genera were Enterococcus, Gibbsiella, Citrobacter, Enterobacter, and Klebsiella. There was significantly higher alpha diversity in the U. pumila group than in the S. matsudana group, and principal co-ordinate analysis showed significant differences in gut bacterial communities between the two groups. The genera with significant abundance differences between the two groups were Gibbsiella, Enterobacter, Leuconostoc, Rhodobacter, TM7a, norank, Rhodobacter, and Aurantisolimonas, indicating that the abundance of larval gut bacteria was affected by feeding on different hosts. Further network diagrams showed that the complexity of the network structure and the modularity were higher in the U. pumila group than in the S. matsudana group, suggesting more diverse gut bacteria in the U. pumila group. The dominant role of most gut microbiota was related to fermentation and chemoheterotrophy, and specific OTUs positively correlated with different functions were reported. Our study provides an essential resource for the gut bacteria functional study of A. glabripennis associated with host diet.
Collapse
Affiliation(s)
- Xuefei Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Hualing Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| | - Jianyong Zeng
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Baoding, Hebei, China
| | - Zezhao Cui
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Shilong Geng
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaofei Song
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Fengjuan Zhang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaoyu Su
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| |
Collapse
|
11
|
Abstract
Prokaryotic and eukaryotic microbial symbiotic communities span through kingdoms. The vast microbial gene pool extends the host genome and supports adaptations to changing environmental conditions. Plants are versatile hosts for the symbionts, carrying microbes on the surface, inside tissues, and even within the cells. Insects are equally abundantly colonized by microbial symbionts on the exoskeleton, in the gut, in the hemocoel, and inside the cells. The insect gut is a prolific environment, but it is selective on the microbial species that enter with food. Plants and insects are often highly dependent on each other and frequently interact. Regardless of the accumulating evidence on the microbiomes of both organisms, it remains unclear how much they exchange and modify each other's microbiomes. In this review, we approach this question from the point of view of herbivores that feed on plants, with a special focus on the forest ecosystems. After a brief introduction to the subject, we concentrate on the plant microbiome, the overlap between plant and insect microbial communities, and how the exchange and modification of microbiomes affects the fitness of each host.
Collapse
|
12
|
Jiang RX, Shang F, Jiang HB, Dou W, Cernava T, Wang JJ. Candidatus Liberibacter asiaticus: An important factor affecting bacterial community composition and Wolbachia titers in Asian citrus psyllid. Front Microbiol 2023; 14:1109803. [PMID: 36825089 PMCID: PMC9941154 DOI: 10.3389/fmicb.2023.1109803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Endosymbionts play crucial roles in various physiological activities within insect hosts. The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is an important vector for Candidatus Liberibacter asiaticus (CLas), a fatal pathogenic bacterial agent causing the disease Huanglongbing in the citrus industry. This study combines high-throughput sequencing of 16S ribosomal RNA amplicons to explore how CLas affects the bacterial community in different color morphs (blue, gray), genders, and tissues (cuticle, gut, mycetome, Malpighian tubule, ovary, and testis) of ACP. We found that there was no significant differences in the bacterial community diversity and CLas acquired ratio between the different color morphs and genders of ACP adults. However, acquiring CLas could promote the adult bacterial community's diversity and richness more than in the uninfected condition. The presence of CLas could increase the Wolbachia and unclassified_Enterobacteriaceae proportions more than in the uninfected condition. The bacterial community diversity in the CLas infected tissues of ovary and cuticle, was lower than the uninfected condition, but the richness of all tissues was not different between the infected and uninfected conditions. CLas could also change the bacterial structure in different tissues and make the bacterial relationship network simpler than it is in an uninfected condition. Furthermore, we used quantitative real-time PCR to assess the dynamic changes of Wolbachia in CLas uninfected and infected color morphs and tissues of ACP. The results showed that Wolbachia titers were significantly higher in CLas infected adults than in uninfected adults. In different tissues, the Wolbachia titers in the testis, ovary, and Malpighian tubule were higher than their uninfected counterparts. Our results provide essential knowledge for understanding the symbionts of the ACP and how CLas affects the bacterial community of the ACP.
Collapse
Affiliation(s)
- Rui-Xu Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China,*Correspondence: Jin-Jun Wang, ✉
| |
Collapse
|
13
|
Studying Plant-Insect Interactions through the Analyses of the Diversity, Composition, and Functional Inference of Their Bacteriomes. Microorganisms 2022; 11:microorganisms11010040. [PMID: 36677331 PMCID: PMC9863603 DOI: 10.3390/microorganisms11010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
As with many other trophic interactions, the interchange of microorganisms between plants and their herbivorous insects is unavoidable. To test the hypothesis that the composition and diversity of the insect bacteriome are driven by the bacteriome of the plant, the bacteriomes of both the plant Datura inoxia and its specialist insect Lema daturaphila were characterised using 16S sRNA gene amplicon sequencing. Specifically, the bacteriomes associated with seeds, leaves, eggs, guts, and frass were described and compared. Then, the functions of the most abundant bacterial lineages found in the samples were inferred. Finally, the patterns of co-abundance among both bacteriomes were determined following a multilayer network approach. In accordance with our hypothesis, most genera were shared between plants and insects, but their abundances differed significantly within the samples collected. In the insect tissues, the most abundant genera were Pseudomonas (24.64%) in the eggs, Serratia (88.46%) in the gut, and Pseudomonas (36.27%) in the frass. In contrast, the most abundant ones in the plant were Serratia (40%) in seeds, Serratia (67%) in foliar endophytes, and Hymenobacter (12.85%) in foliar epiphytes. Indeed, PERMANOVA analysis showed that the composition of the bacteriomes was clustered by sample type (F = 9.36, p < 0.001). Functional inferences relevant to the interaction showed that in the plant samples, the category of Biosynthesis of secondary metabolites was significantly abundant (1.4%). In turn, the category of Xenobiotics degradation and metabolism was significantly present (2.5%) in the insect samples. Finally, the phyla Proteobacteria and Actinobacteriota showed a pattern of co-abundance in the insect but not in the plant, suggesting that the co-abundance and not the presence−absence patterns might be more important when studying ecological interactions.
Collapse
|
14
|
Aphid species specializing on milkweed harbor taxonomically similar bacterial communities that differ in richness and relative abundance of core symbionts. Sci Rep 2022; 12:21127. [PMID: 36477425 PMCID: PMC9729595 DOI: 10.1038/s41598-022-25554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Host plant range is arguably one of the most important factors shaping microbial communities associated with insect herbivores. However, it is unclear whether host plant specialization limits microbial community diversity or to what extent herbivores sharing a common host plant evolve similar microbiomes. To investigate whether variation in host plant range influences the assembly of core herbivore symbiont populations we compared bacterial diversity across three milkweed aphid species (Aphis nerii, Aphis asclepiadis, Myzocallis asclepiadis) feeding on a common host plant (Asclepias syriaca) using 16S rRNA metabarcoding. Overall, although there was significant overlap in taxa detected across all three aphid species (i.e. similar composition), some structural differences were identified within communities. Each aphid species harbored bacterial communities that varied in terms of richness and relative abundance of key symbionts. However, bacterial community diversity did not vary with degree of aphid host plant specialization. Interestingly, the narrow specialist A. asclepiadis harbored significantly higher relative abundances of the facultative symbiont Arsenophonus compared to the other two aphid species. Although many low abundance microbes were shared across all milkweed aphids, key differences in symbiotic partnerships were observed that could influence host physiology or additional ecological variation in traits that are microbially-mediated. Overall, this study suggests overlap in host plant range can select for taxonomically similar microbiomes across herbivore species, but variation in core aphid symbionts within these communities may still occur.
Collapse
|
15
|
Gao Z, Ju X, Yang M, Xue R, Li Q, Fu K, Guo W, Tong L, Song Y, Zeng R, Wang J. Colorado potato beetle exploits frass-associated bacteria to suppress defense responses in potato plants. PEST MANAGEMENT SCIENCE 2022; 78:3778-3787. [PMID: 35102699 DOI: 10.1002/ps.6823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorado potato beetle (CPB; Leptinotarsa decemlineata) is a destructive quarantine pest that develops broad physiological adaptations to potato plants. During feeding, CPB deposits a copious amount of wet frass onto the surface of leaves and stems that remains in place for long periods. Insect behaviors such as feeding, crawling and oviposition are able to mediate plant defenses. However, the specific role of CPB defecation-associated cues in manipulating plant defenses remains unclear. RESULTS CPB larval frass significantly suppressed potato polyphenol oxidase activity and enhanced larval growth on treated potato plants. The incorporation of antibiotics into larval frass triggered higher jasmonic acid (JA)-regulated defense responses in potato plants compared with antibiotic-free frass. Four bacterial symbionts belonging to the genera Acinetobacter, Citrobacter, Enterobacter and Pantoea were isolated from larval frass and suppressed plant defenses. After reinoculation of these bacteria into axenic larvae, Acinetobacter and Citrobacter were found to be highly abundant in the frass, whereas Enterobacter and Pantoea were less abundant probably due to the negative effect of potato steroidal glycoalkaloids (SGA) such as α-solanine. Furthermore, direct application of Acinetobacter and Citrobacter to wounded potato plants significantly inhibited the expression of genes associated with the JA-mediated defense signaling pathway and SGA biosynthesis. CONCLUSION Our findings demonstrate that CPB exploits frass-associated bacteria as a deceptive strategy of plant defense suppression, adding an interesting dimension to our understanding of how CPB successfully specializes on potato plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhou Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyang Ju
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Department of Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaiyun Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wenchao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Lu Tong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Polenogova OV, Noskov YA, Artemchenko AS, Zhangissina S, Klementeva TN, Yaroslavtseva ON, Khodyrev VP, Kruykova NA, Glupov VV. Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis. PEST MANAGEMENT SCIENCE 2022; 78:3823-3835. [PMID: 35238478 DOI: 10.1002/ps.6856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND We assume that certain representatives of gut microflora mediate immune changes during dysbiosis, accelerating septicemia caused by Bacillus thuringiensis. RESULTS Co-introduction of Citrobacter freundii with Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt) led to an increase in Colorado potato beetle (CPB) larval mortality to 69.0% (1.3-5×) and a synergistic effect was observed from day 1 to day 6. Ultrathin sections of the CPB midgut showed autophagosome formation and partial destruction of gut microvilli under the influence of Bt, which was accompanied by pronounced hypersecretion of the endoplasmic reticulum with apocrine vesicle formation and oncotic changes in cells under the action of C. freundii. The destruction of gut tissues was accompanied by suppression of detoxification processes under the action of the bacteria and a decrease (2.8-3.5×) in the concentration of lipid oxidation products during Bt infection. In the first hours post combined treatment, we registered a slight increase in the total hemocyte count (THC) especially a predomination (1.4×) of immune-competent plasmatocytes. Oral administration of symbiotic and entomopathogenic bacteria to the CPB larvae significantly decreased the THC (1.4×) after 24 h and increased (1.1-1.5×) the detoxifying enzymes level in the lymph. These changes are likely to be associated with the destruction of hemocytes and the need to remove the toxic products of reactive oxygen species. CONCLUSION The obtained results indicate that feeding of C. freundii and B. thuringiensis to the CPB larvae is accompanied by tissue changes that significantly affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bt. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Olga V Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yury A Noskov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - Anna S Artemchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Saule Zhangissina
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana N Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor P Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A Kruykova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Wei J, Yang XK, Zhang SK, Segraves KA, Xue HJ. Parallel meta-transcriptome analysis reveals degradation of plant secondary metabolites by beetles and their gut symbionts. Mol Ecol 2022; 31:3999-4016. [PMID: 35665559 DOI: 10.1111/mec.16557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022]
Abstract
Switching to a new host plant is a driving force for divergence and speciation in herbivorous insects. This process of incorporating a novel host plant into the diet may require a number of adaptations in the insect herbivores that allow them to consume host plant tissue that may contain toxic secondary chemicals. As a result, herbivorous insects are predicted to have evolved efficient ways to detoxify major plant defenses and increase fitness by either relying on their own genomes or by recruiting other organisms such as microbial gut symbionts. In the present study we used parallel meta-transcriptomic analyses of Altica flea beetles and their gut symbionts to explore the contributions of beetle detoxification mechanisms versus detoxification by their gut consortium. We compared the gut meta-transcriptomes of two sympatric Altica species that feed exclusively on different host plant species as well as their F1 hybrids that were fed one of the two host plant species. These comparisons revealed that gene expression patterns of Altica are dependent on both beetle species identity and diet. The community structure of gut symbionts was also dependent on the identity of the beetle species, and the gene expression patterns of the gut symbionts were significantly correlated with beetle species and plant diet. Some of the enriched genes identified in the beetles and gut symbionts are involved in the degradation of secondary metabolites produced by plants, suggesting that Altica flea beetles may use their gut microbiota to help them feed on and adapt to their host plants.
Collapse
Affiliation(s)
- Jing Wei
- School of Life Sciences, Chongqing University, Chongqing 400044, China.,Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Ke Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Ke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.,School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Kari A Segraves
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.,Archbold Biological Station, 123 Main Drive, Venus, FL 33960, USA
| | - Huai-Jun Xue
- College of Life Sciences, Nankai University, Tianjin 300071, China.,Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Yu Y, Wang Q, Zhou P, Lv N, Li W, Zhao F, Zhu S, Liu D. First Glimpse of Gut Microbiota of Quarantine Insects in China. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:394-404. [PMID: 35623445 PMCID: PMC9684152 DOI: 10.1016/j.gpb.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023]
Abstract
Quarantine insects are economically important pests that frequently invade new habitats. A rapid and accurate monitoring method to trace the geographical sources of invaders is required for their prevention, detection, and eradication. Current methods based on genetics are typically time-consuming. Here, we developed a novel tracing method based on insect gut microbiota. The source location of the insect gut microbiota can be used to rapidly determine the geographical origin of the insect. We analyzed 179 gut microbiota samples from 591 individuals of 22 quarantine insect species collected from 36 regions in China. The gut microbiota of these insects primarily included Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Proteobacteria, and Tenericutes. The diversity of the insect gut microbiota was closely associated with geographical and environmental factors. Different insect species could be distinguished based on the composition of gut microbiota at the phylum level. Populations of individual insect species from different regions could be distinguished based on the composition of gut microbiota at the phylum, class, and order levels. A method for determining the geographical origins of invasive insect species has been established; however, its practical application requires further investigations before implementation.
Collapse
Affiliation(s)
- Yanxue Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qi Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China,Computational Virology Group, Center for Bacteria and Virus Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zhou
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Na Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- Computational Virology Group, Center for Bacteria and Virus Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 102206, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China,Corresponding authors.
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Virus Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors.
| |
Collapse
|
19
|
Abstract
Beetles are hosts to a remarkable diversity of bacterial symbionts. In this article, we review the role of these partnerships in promoting beetle fitness following a surge of recent studies characterizing symbiont localization and function across the Coleoptera. Symbiont contributions range from the supplementation of essential nutrients and digestive or detoxifying enzymes to the production of bioactive compounds providing defense against natural enemies. Insights on this functional diversity highlight how symbiosis can expand the host's ecological niche, but also constrain its evolutionary potential by promoting specialization. As bacterial localization can differ within and between beetle clades, we discuss how it corresponds to the microbe's beneficial role and outline the molecular and behavioral mechanisms underlying symbiont translocation and transmission by its holometabolous host. In reviewing this literature, we emphasize how the study of symbiosis can inform our understanding of the phenotypic innovations behind the evolutionary success of beetles.
Collapse
Affiliation(s)
- Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany;
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz 55128, Germany
| |
Collapse
|
20
|
Saranya M, Kennedy JS, Anandham R. Functional characterization of cultivable gut bacterial communities associated with rugose spiralling whitefly, Aleurodicus rugioperculatus Martin. 3 Biotech 2022; 12:14. [PMID: 34966637 PMCID: PMC8665909 DOI: 10.1007/s13205-021-03081-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 01/03/2023] Open
Abstract
Gut symbiotic bacteria provide protection and nutrition to the host insect. A high reproductive rate and dispersal ability of the rugose spiralling whitefly help this polyphagous species to develop and thrive on many horticultural crops. In this study, we isolated the cultivable gut bacteria associated with rugose spiralling whitefly and demonstrated their role in the host insect. We also studied the influence of antibiotics on the rugose spiralling whitefly oviposition. A total of 70 gut bacteria were isolated from the second nymphal stage of rugose spiralling whitefly reared on coconut, banana, and sapota using seven growth media. From the 70 isolates, chitinase, siderophore (51), protease (44), and Glutathione-S-Transferase producers (16) were recorded. The activities of chitinase, siderophore, protease, and Glutathione-S-Transferase in the gut bacterial isolates of rugose spiralling whitefly ranged from 0.07 to 3.96 µmol-1 min-1 mL-1, 10.01 to 76.93%, 2.10 to 83.40%, and 5.21 to 24.48 nmol-1 min-1 mL-1 μg-1 protein, respectively. The16S rRNA gene sequence analysis revealed that bacterial genera associated with the gut of rugose spiralling whitefly included Bacillus, Exiguobacterium, Acinetobacter, Lysinibacillus, Arthrobacter, and Pseudomonas. Based on the susceptibility of the gut bacteria to antibiotics, 11antibiotic treatments were administered to the host plant leaves infested with the nymphal stages. The antibiotics were evaluated for their effect on rugose spiralling whitefly oviposition. Among the antibiotic treatments, carbenicillin (100 µg mL-1) + ciprofloxacin (5 µg mL-1) significantly reduced the oviposition (13 eggs spiral-1) and egg hatchability (61.54%) of rugose spiralling whitefly. Disruption of chitinase, siderophore, protease, and detoxification enzyme producers and elimination of these symbionts through antibiotics altered the host insect physiology and indirectly affected whitefly oviposition. In conclusion, gut bacteria-based management strategies might be used as insecticides for the effective control of whiteflies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03081-3.
Collapse
Affiliation(s)
- M. Saranya
- grid.412906.80000 0001 2155 9899Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - J. S. Kennedy
- grid.412906.80000 0001 2155 9899Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - R. Anandham
- grid.412906.80000 0001 2155 9899Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| |
Collapse
|
21
|
Singh S, Singh A, Baweja V, Roy A, Chakraborty A, Singh IK. Molecular Rationale of Insect-Microbes Symbiosis-From Insect Behaviour to Mechanism. Microorganisms 2021; 9:microorganisms9122422. [PMID: 34946024 PMCID: PMC8707026 DOI: 10.3390/microorganisms9122422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/27/2022] Open
Abstract
Insects nurture a panoply of microbial populations that are often obligatory and exist mutually with their hosts. Symbionts not only impact their host fitness but also shape the trajectory of their phenotype. This co-constructed niche successfully evolved long in the past to mark advanced ecological specialization. The resident microbes regulate insect nutrition by controlling their host plant specialization and immunity. It enhances the host fitness and performance by detoxifying toxins secreted by the predators and abstains them. The profound effect of a microbial population on insect physiology and behaviour is exploited to understand the host–microbial system in diverse taxa. Emergent research of insect-associated microbes has revealed their potential to modulate insect brain functions and, ultimately, control their behaviours, including social interactions. The revelation of the gut microbiota–brain axis has now unravelled insects as a cost-effective potential model to study neurodegenerative disorders and behavioural dysfunctions in humans. This article reviewed our knowledge about the insect–microbial system, an exquisite network of interactions operating between insects and microbes, its mechanistic insight that holds intricate multi-organismal systems in harmony, and its future perspectives. The demystification of molecular networks governing insect–microbial symbiosis will reveal the perplexing behaviours of insects that could be utilized in managing insect pests.
Collapse
Affiliation(s)
- Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India;
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India;
| | - Varsha Baweja
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Amit Roy
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic;
- Excelentní Tým pro Mitigaci (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic
| | - Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic;
- Correspondence: (A.C.); (I.K.S.)
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
- Correspondence: (A.C.); (I.K.S.)
| |
Collapse
|
22
|
Duan DY, Liu YK, Liu L, Liu GH, Cheng TY. Microbiome analysis of the midguts of different developmental stages of Argas persicus in China. Ticks Tick Borne Dis 2021; 13:101868. [PMID: 34800866 DOI: 10.1016/j.ttbdis.2021.101868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Argas persicus is an ectoparasite of poultry. The bacterial community structure and the pathogenic bacteria associated with different developmental stages of A. persicus have implications for control. Argas persicus were collected from chickens in the city of Jiuquan in Gansu, China. Bacterial DNA was extracted from the midgut contents of blood engorged larvae, nymphs and adult females. The V3-V4 hypervariable regions of 16S rRNA genes were sequenced using the IonS5™XL platform. Identification of Rickettsia spp. and detection of Coxiella burnetii were performed using PCR on target genes. The bacterial diversity within larvae was the highest and the bacterial diversity within nymphs was greater than that of adults. At different classification levels, seven bacterial phyla were common phyla, 27 genera were common genera, and 18 species were common species in the three samples. At the phylum level, Proteobacteria showed a marked predominance in all samples. Rickettsia, Stenotrophomonas, Spiroplasma, and Coxiella were the dominant bacteria at the genus level. The Rickettsia species in A. persicus was identified as Rickettsia hoogstraalii and the Coxiella species was identified as a Coxiella-like endosymbiont. Additionally, some bacterial species such as Pseudomonas geniculata, Sphingomonas koreensis, and Acinetobacter haemolyticus were reported here for the first time in A. persicus.
Collapse
Affiliation(s)
- De-Yong Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Yu-Ke Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Guo-Hua Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China.
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China.
| |
Collapse
|
23
|
Yamasaki Y, Sumioka H, Takiguchi M, Uemura T, Kihara Y, Shinya T, Galis I, Arimura GI. Phytohormone-dependent plant defense signaling orchestrated by oral bacteria of the herbivore Spodoptera litura. THE NEW PHYTOLOGIST 2021; 231:2029-2038. [PMID: 33932298 DOI: 10.1111/nph.17444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
A vast array of herbivorous arthropods live with symbiotic microorganisms. However, little is known about the nature and functional mechanism of bacterial effects on plant defense responses towards herbivores. We explored the role of microbes present in extracts of oral secretion (OS) isolated from larvae of Spodoptera litura, a generalist herbivore, in phytohormone signaling-dependent defense responses in Arabidopsis thaliana (Arabidopsis). In response to mechanical damage (MD) with application of bacteria-free OS (OS- ) prepared by sterilization or filtration of OS, Arabidopsis leaves exhibited enhanced de novo synthesis of oxylipins, and induction of transcript abundance of the responsible genes, in comparison to those in leaves with MD + nonsterilized OS (OS+ ), indicating that OS bacteria serve as suppressors of these genes. By contrast, de novo synthesis/signaling of salicylic acid and signaling of abscisic acid were enhanced by OS bacteria. These signaling networks were cross-regulated by each other. Meta-analysis of OS bacteria identified 70 bacterial strains. Among them was Staphylococcus epidermidis, an anaerobic staphylococcus that was shown to contribute to the suppression/manipulation of phytohormone-dependent plant defense signaling. The presence of OS bacteria was consequently beneficial for S. litura larvae hosted by Brassicaceae.
Collapse
Affiliation(s)
- Yukiyo Yamasaki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Hiroka Sumioka
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Mayu Takiguchi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Yuka Kihara
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| |
Collapse
|
24
|
Li H, Zhao C, Yang Y, Zhou Z, Qi J, Li C. The Influence of Gut Microbiota on the Fecundity of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:15. [PMID: 34415303 PMCID: PMC8378403 DOI: 10.1093/jisesa/ieab061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 06/13/2023]
Abstract
The gut microbiota of insects usually plays an important role in the development and reproduction of their hosts. The fecundity of Henosepilachna vigintioctopunctata (Fabricius) varies greatly when they develop on different host plants. Whether and how the gut microbiota regulates the fecundity of H. vigintioctopunctata was unknown. To address this question, we used 16S rRNA sequencing to analyze the gut microbiomes of H. vigintioctopunctata adults fed on two host plant species (Solanum nigrum and Solanum melongena) and one artificial diet. The development of the ovaries and testes was also examined. Our results revealed that the diversity and abundance of gut microorganisms varied significantly in insects reared on different diets. The gut microbiota of H. vigintioctopunctata raised on the two host plants was similar, with Proteobacteria being the dominant phylum in both groups, whereas Firmicutes was the dominant phylum in the group reared on the artificial diet. The predominant microbiota in the S. nigrum group were Acinetobacter soli and Acinetobacter ursingii (Acinetobacter, Moraxellaceae); Moraxella osloensis (Enhydrobacter, Moraxellaceae); and Empedobacter brevis (Empedobacter, Weeksellaceae). The microbiota in this group are associated with high lipid metabolism. In addition, the beetles' ovaries and testes were more highly developed in the S. nigrum group than in the other two groups. These findings provide valuable information for elucidating the complex roles the gut microbiota play in the fecundity of H. vigintioctopunctata, and may also contribute to developing future novel control strategies involving this economically important pest.
Collapse
Affiliation(s)
- Hanwen Li
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Changwei Zhao
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yang Yang
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhixiong Zhou
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jingwei Qi
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Chuanren Li
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
25
|
Ge SX, Shi FM, Pei JH, Hou ZH, Zong SX, Ren LL. Gut Bacteria Associated With Monochamus saltuarius (Coleoptera: Cerambycidae) and Their Possible Roles in Host Plant Adaptations. Front Microbiol 2021; 12:687211. [PMID: 34234761 PMCID: PMC8256174 DOI: 10.3389/fmicb.2021.687211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022] Open
Abstract
Monochamus saltuarius (Coleoptera: Cerambycidae) is an important native pest in the pine forests of northeast China and a dispersing vector of an invasive species Bursaphelenchus xylophilus. To investigate the bacterial gut diversity of M. saltuarius larvae in different host species, and infer the role of symbiotic bacteria in host adaptation, we used 16S rRNA gene Illumina sequencing and liquid chromatography-mass spectrometry metabolomics processing to obtain and compare the composition of the bacterial community and metabolites in the midguts of larvae feeding on three host tree species: Pinus koraiensis, Pinus sylvestris var. mongolica, and Pinus tabuliformis. Metabolomics in xylem samples from the three aforementioned hosts were also performed. Proteobacteria and Firmicutes were the predominant bacterial phyla in the larval gut. At the genus level, Klebsiella, unclassified_f__Enterobacteriaceae, Lactococcus, and Burkholderia–Caballeronia–Paraburkholderia were most dominant in P. koraiensis and P. sylvestris var. mongolica feeders, while Burkholderia–Caballeronia–Paraburkholderia, Dyella, Pseudoxanthomonas, and Mycobacterium were most dominant in P. tabuliformis feeders. Bacterial communities were similar in diversity in P. koraiensis and P. sylvestris var. mongolica feeders, while communities were highly diverse in P. tabuliformis feeders. Compared with the other two tree species, P. tabuliformis xylems had more diverse and abundant secondary metabolites, while larvae feeding on these trees had a stronger metabolic capacity for secondary metabolites than the other two host feeders. Correlation analysis of the association of microorganisms with metabolic features showed that dominant bacterial genera in P. tabuliformis feeders were more negatively correlated with plant secondary metabolites than those of other host tree feeders.
Collapse
Affiliation(s)
- Si-Xun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Feng-Ming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Jia-He Pei
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Ze-Hai Hou
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Shi-Xiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing Forestry University, Beijing, China
| | - Li-Li Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing Forestry University, Beijing, China
| |
Collapse
|
26
|
Kang WN, Jin L, Fu KY, Guo WC, Li GQ. A switch of microbial flora coupled with ontogenetic niche shift in Leptinotarsa decemlineata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21782. [PMID: 33724519 DOI: 10.1002/arch.21782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In Leptinotarsa decemlineata, a final-instar wandering larva typically undergoes an ontogenetic niche shift (ONS), from potato plant during the foraging stage to its pupation site below ground. Using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we determined the hypothesis that the L. decemlineata pupae harbor stage-specific bacteria to meet the physiological requirements for underground habitat. We identified 34 bacterial phyla, comprising 73 classes, 208 orders, 375 families, and 766 genera in the collected specimens. Microbes across phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were enriched in the pupae, while those in the phylum Proteobacteria, Tenericutes, Firmicutes, and Bacteroidetes dominated in the larvae and adults. A total of 18 genera, including Blastococcus, Corynebacterium_1, Gordonia, Microbacterium, Nocardia, Nocardioides, Rhodococcus, Solirubrobacter, Tsukamurella, Enterococcus, Acinetobacter, Escherichia_Shigella, Lysobacter, Pseudomonas, and Stenotrophomonas, were specifically distributed in pupae. Moreover, soil sterilizing removed a major portion of bacteria in pupae. Specifically, both Enterococcus and Pseudomonas were eliminated in the soil sterilizing and antibiotic-fed beetle groups. Furthermore, the pupation rate and fresh pupal weight were similar, whereas the emergence rate and adult weight were decreased in the antibiotic-fed beetles, compared with controls. The results demonstrate that a switch of bacterial communities occurs in the pupae; the pupal-specific bacteria genera are mainly originated from soil; this bacterial biodiversity improves pupa performance in soil. Our results provide new insight into the evolutionary fitness of L. decemlineata to different environmental niches.
Collapse
Affiliation(s)
- Wei-Nan Kang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen-Chao Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Mogren CL, Shikano I. Microbiota, pathogens, and parasites as mediators of tritrophic interactions between insect herbivores, plants, and pollinators. J Invertebr Pathol 2021; 186:107589. [PMID: 33865846 DOI: 10.1016/j.jip.2021.107589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Insect-associated microbes, including pathogens, parasites, and symbionts, influence the interactions of herbivorous insects and pollinators with their host plants. Moreover, herbivory-induced changes in plant resource allocation and defensive chemistry can influence pollinator behavior. This suggests that the outcomes of interactions between herbivores, their microbes and host plants could have implications for pollinators. As epizootic diseases occur at high population densities, pathogen and parasite-mediated effects on plants could have landscape-level impacts on foraging pollinators. The goal of this minireview is to highlight the potential for an herbivore's multitrophic interactions to trigger plant-mediated effects on the immunity and health of pollinators. We highlight the importance of plant quality and gut microbiomes in bee health, and how caterpillars as model herbivores interact with pathogens, parasites, and symbionts to affect plant quality, which forms the centerpiece of multitrophic interactions between herbivores and pollinators. We also discuss the impacts of other herbivore-associated factors, such as agricultural inputs aimed at decreasing herbivorous pests, on pollinator microbiomes.
Collapse
Affiliation(s)
- Christina L Mogren
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA
| | - Ikkei Shikano
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA.
| |
Collapse
|
28
|
Yu Y, Wang Y, Li H, Yu X, Shi W, Zhai J. Comparison of Microbial Communities in Colorado Potato Beetles ( Leptinotarsa decemlineata Say) Collected From Different Sources in China. Front Microbiol 2021; 12:639913. [PMID: 33815327 PMCID: PMC8017321 DOI: 10.3389/fmicb.2021.639913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities in insects are related to their geographical sources and contribute to adaptation to the local habitat. The Colorado potato beetle (Leptinotarsa decemlineata) (CPB) is a potato pest that causes serious economic losses in Xinjiang Uygur Autonomous Region (XJ) and Heilongjiang Province (HL), China. The influence of microorganisms in the invasion and dispersal of CPB is unclear. We studied microbial communities of CPB collected from nine geographic sources in China using high throughput sequencing technology. Bacteroidetes, Firmicutes, and Proteobacteria were the most dominant phyla, Clostridia, Bacteroidetes, and γ-Proteobacteria were the most dominant classes, Enterobacterales, Lactobacillales, Clostridiales, and Bacteroidales were the most dominant orders, and Enterobacteriaceae, Streptococcidae, Verrucomicrobiaceae, and Rikenellaceae were the most dominant families. There were significant differences, among sources, in the relative abundance of taxa at the genus level. A total of 383 genera were identified, and the dominant bacteria at the genus level were compared between XJ and HL. Pseudomonas was the unique dominant microorganism in the HL area, and the other four microorganisms (Lelliottia, Enterococcus, Enterobacter, and Lactococcus) were common within the 2 regions. Bacterial community diversity in CPB from Urumqi, Jimunai, and Wenquan was higher than diversity in other regions. T-Distributed Stochastic Neighbor Embedding (tSNE) analysis indicated that order and genus were appropriate taxonomic levels to distinguish geographical sources of CPB. These findings provide insight into the diversity of microorganisms of CPB in the differences among geographically isolated populations.
Collapse
Affiliation(s)
- Yanxue Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | | | - Hongwei Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xin Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China.,Department of Insects, School of Plant Protection, China Agricultural University, Beijing, China
| | - Wangpeng Shi
- Department of Insects, School of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Zhai
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
29
|
Zhao D, Zhang Z, Niu H, Guo H. Win by Quantity: a Striking Rickettsia-Bias Symbiont Community Revealed by Seasonal Tracking in the Whitefly Bemisia tabaci. MICROBIAL ECOLOGY 2021; 81:523-534. [PMID: 32968841 DOI: 10.1007/s00248-020-01607-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Maintaining an adaptive seasonality is a basic ecological requisite for cold-blooded organism insects which usually harbor various symbionts. However, how coexisting symbionts coordinate in insects during seasonal progress is still unknown. The whitefly Bemisia tabaci in China harbors the obligate symbiont Portiera that infects each individual, as well as various facultative symbionts. In this study, we investigated whitefly populations in cucumber and cotton fields from May to December 2019, aiming to reveal the fluctuations of symbiont infection frequencies, symbiont coordination in multiple infected individuals, and host plants effects on symbiont infections. The results indicated that the facultative symbionts Hamiltonella (H), Rickettsia (R), and Cardinium (C) exist in field whiteflies, with single (H) and double (HC and HR) infections occurring frequently. Infection frequencies of Hamiltonella (always 100%) and Cardinium (29.50-34.38%) remained steady during seasonal progression. Rickettsia infection frequency in the cucumber whitefly population decreased from 64.47% in summer to 35.29% in winter. Significantly lower Rickettsia infection frequency (15.55%) was identified in cotton whitefly populations and was not subject to seasonal fluctuation. Nevertheless, Rickettsia had a significantly quantitative advantage in the symbiont community of whitefly individuals and populations from both cucumber and cotton field all through the seasons. Moreover, higher Portiera and Hamiltonella densities were found in HC and HR whitefly than in H whitefly, suggesting these symbionts may contribute to producing nutrients for their symbiont partners. These results provide ample cues to further explore the interactions between coexisting symbionts, the coevolutionary relationship between symbionts and host symbiont-induced effects on host plant use.
Collapse
Affiliation(s)
- Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
30
|
Kryukov VY, Rotskaya U, Yaroslavtseva O, Polenogova O, Kryukova N, Akhanaev Y, Krivopalov A, Alikina T, Vorontsova YL, Slepneva I, Kabilov M, Glupov VV. Fungus Metarhizium robertsii and neurotoxic insecticide affect gut immunity and microbiota in Colorado potato beetles. Sci Rep 2021; 11:1299. [PMID: 33446848 PMCID: PMC7809261 DOI: 10.1038/s41598-020-80565-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Fungal infections and toxicoses caused by insecticides may alter microbial communities and immune responses in the insect gut. We investigated the effects of Metarhizium robertsii fungus and avermectins on the midgut physiology of Colorado potato beetle larvae. We analyzed changes in the bacterial community, immunity- and stress-related gene expression, reactive oxygen species (ROS) production, and detoxification enzyme activity in response to topical infection with the M. robertsii fungus, oral administration of avermectins, and a combination of the two treatments. Avermectin treatment led to a reduction in microbiota diversity and an enhancement in the abundance of enterobacteria, and these changes were followed by the downregulation of Stat and Hsp90, upregulation of transcription factors for the Toll and IMD pathways and activation of detoxification enzymes. Fungal infection also led to a decrease in microbiota diversity, although the changes in community structure were not significant, except for the enhancement of Serratia. Fungal infection decreased the production of ROS but did not affect the gene expression of the immune pathways. In the combined treatment, fungal infection inhibited the activation of detoxification enzymes and prevented the downregulation of the JAK-STAT pathway caused by avermectins. The results of this study suggest that fungal infection modulates physiological responses to avermectins and that fungal infection may increase avermectin toxicosis by blocking detoxification enzymes in the gut.
Collapse
Affiliation(s)
- Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630091, Russia. .,Tomsk State University, Tomsk, 634050, Russia.
| | - Ulyana Rotskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Olga Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Olga Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Natalia Kryukova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Yuriy Akhanaev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Anton Krivopalov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Yana L Vorontsova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Irina Slepneva
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630091, Russia
| |
Collapse
|
31
|
Ardestani MM, Frouz J. The arbuscular mycorrhizal fungus Rhizophagus intraradices and other microbial groups affect plant species in a copper-contaminated post-mining soil. J Trace Elem Med Biol 2020; 62:126594. [PMID: 32622175 DOI: 10.1016/j.jtemb.2020.126594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM Arbuscular mycorrhizal fungi (AMF) have an important role in plant-microbe interactions. But, there are few studies in which the combined effect of AMF with a stress factor, such as the presence of a metal, on plant species were assessed. This study investigated the effect of arbuscular mycorrhizal (AM) fungus Rhizophagus intraradices and other soil microbial groups in the presence of copper on three plant species in a microcosm experiment. METHODS Two grass species Poa compressa and Festuca rubra and one herb species Centaurea jacea were selected as model plants in a pot-design test in which soils were artificially contaminated with copper. Treatments were bacteria (control), saprophytic fungi, protists, and a combined treatment of saprophytic fungi and protists, all in the presence or absence of the AM fungal species. After sixty days, plants were harvested and the biomass of grass and herb species and microbial respiration were measured. RESULTS The results showed almost equal above- and belowground plant biomass and microbial respiration in the treatments in the presence or absence of R. intraradices. The herb species C. jecea responded significantly to the soil inoculation with AM fungus, while grass species showed inconsistent patterns. Significant effect of AMF and copper and their interactions was observed on plant biomass when comparing contaminated vs. non-contaminated soils. CONCLUSION Strong effect of AMF on the biomass of herb species and slight changes in plant growth with the presence of this fungal species in copper-spiked test soils indicates the importance of mycorrhizal fungi compared to other soil microorganisms in our experimental microcosms.
Collapse
Affiliation(s)
- Masoud M Ardestani
- Institute for Environmental Studies, Charles University in Prague, Benátská 2, Prague, CZ-12801, Czech Republic; Institute of Soil Biology and SoWa Research Infrastructure, Biology Centre, Czech Academy of Sciences, Na Sádkách 7, České Budějovice, CZ-37005, Czech Republic.
| | - Jan Frouz
- Institute for Environmental Studies, Charles University in Prague, Benátská 2, Prague, CZ-12801, Czech Republic; Institute of Soil Biology and SoWa Research Infrastructure, Biology Centre, Czech Academy of Sciences, Na Sádkách 7, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
32
|
Wei J, Segraves KA, Li WZ, Yang XK, Xue HJ. Gut bacterial communities and their contribution to performance of specialist Altica flea beetles. MICROBIAL ECOLOGY 2020; 80:946-959. [PMID: 32880699 DOI: 10.1007/s00248-020-01590-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Host plant shifts are a common mode of speciation in herbivorous insects. Although insects can evolve adaptations to successfully incorporate a new host plant, it is becoming increasingly recognized that the gut bacterial community may play a significant role in allowing insects to detoxify novel plant chemical defenses. Here, we examined differences in gut bacterial communities between Altica flea beetle species that feed on phylogenetically unrelated host plants in sympatry. We surveyed the gut bacterial communities of three closely related flea beetles from multiple locations using 16S rRNA amplicon sequencing. The results showed that the beetle species shared a high proportion (80.7%) of operational taxonomic units. Alpha-diversity indicators suggested that gut bacterial diversity did not differ among host species, whereas geography had a significant effect on bacterial diversity. In contrast, analyses of beta-diversity showed significant differences in gut bacterial composition among beetle species when we used species composition and relative abundance metrics, but there was no difference in composition when species presence/absence and phylogenetic distance indices were used. Within host beetle species, gut bacterial composition varied significantly among sites. A metagenomic functionality analysis predicted that the gut microbes had functions involved in xenobiotic biodegradation and metabolism as well as metabolism of terpenoids and polyketides. These predictions, however, did not differ among beetle host species. Antibiotic curing experiments showed that development time was significantly prolonged, and there was a significant decline in body weight of newly emerged adults in beetles lacking gut bacteria, suggesting the beetles may receive a potential benefit from the gut microbe-insect interaction. On the whole, our results suggest that although the gut bacterial community did not show clear host-specific patterns among Altica species, spatiotemporal variability is an important determinant of gut bacterial communities. Furthermore, the similarity of communities among these beetle species suggests that microbial facilitation may not be a determinant of host plant shifts in Altica.
Collapse
Affiliation(s)
- Jing Wei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kari A Segraves
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
- Archbold Biological Station, 123 Main Drive, Venus, FL, 33960, USA
| | - Wen-Zhu Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xing-Ke Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Huai-Jun Xue
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
33
|
Zhu YX, Song ZR, Song YL, Zhao DS, Hong XY. The microbiota in spider mite feces potentially reflects intestinal bacterial communities in the host. INSECT SCIENCE 2020; 27:859-868. [PMID: 31411007 DOI: 10.1111/1744-7917.12716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 05/25/2023]
Abstract
Microorganisms provide many physiological functions to herbivorous hosts. Spider mites (genus Tetranychus) are important agricultural pests throughout the world; however, the composition of the spider mite microbial community, especially gut microbiome, remains unclear. Here, we investigated the bacterial community in five spider mite species and their associated feces by deep sequencing of the 16S rRNA gene. The composition of the bacterial community was significantly different among the five prevalent spider mite species, and some bacterial symbionts showed host-species specificity. Moreover, the abundance of the bacterial community in spider mite feces was significantly higher than that in the corresponding spider mite samples. However, Flavobacterium was detected in all samples, and represent a "core microbiome". Remarkably, the maternally inherited endosymbiont Wolbachia was detected in both spider mite and feces. Overall, these results offer insight into the complex community of symbionts in spider mites, and give a new direction for future studies.
Collapse
Affiliation(s)
- Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Zhang-Rong Song
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yue-Ling Song
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
Complete Genome Sequence of Stenotrophomonas maltophilia Strain CPBW01, Isolated from the Wings of the Colorado Potato Beetle in Xinjiang, China. Microbiol Resour Announc 2020; 9:9/25/e00460-20. [PMID: 32554788 PMCID: PMC7303408 DOI: 10.1128/mra.00460-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria of the genus Stenotrophomonas are opportunistic and have been documented in the guts of several insect species. Here, we present the complete genome sequence of S. maltophilia strain CPBW01, isolated from the wings of the Colorado potato beetle, Leptinotarsa decemlineata, collected from potato fields in Urumqi (43.71N, 87.39E), Xinjiang, China. Bacteria of the genus Stenotrophomonas are opportunistic and have been documented in the guts of several insect species. Here, we present the complete genome sequence of S. maltophilia strain CPBW01, isolated from the wings of the Colorado potato beetle, Leptinotarsa decemlineata, collected from potato fields in Urumqi (43.71N, 87.39E), Xinjiang, China.
Collapse
|
35
|
Mason CJ. Complex Relationships at the Intersection of Insect Gut Microbiomes and Plant Defenses. J Chem Ecol 2020; 46:793-807. [PMID: 32537721 DOI: 10.1007/s10886-020-01187-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Insect herbivores have ubiquitous associations with microorganisms that have major effects on how host insects may interact in their environment. Recently, increased attention has been given to how insect gut microbiomes mediate interactions with plants. In this paper, I discuss the ecology and physiology of gut bacteria associated with insect herbivores and how they may shape interactions between insects and their various host plants. I first establish how microbial associations vary between insects with different feeding styles, and how the insect host physiology and ecology can shape stable or transient relationships with gut bacteria. Then, I describe how these relationships factor in with plant nutrition and plant defenses. Within this framework, I suggest that many of the interactions between plants, insects, and the gut microbiome are context-dependent and shaped by the type of defense and the isolates present in the environment. Relationships between insects and plants are not pairwise, but instead highly multipartite, and the interweaving of complex microbial interactions is needed to fully explore the context-dependent aspects of the gut microbiome in many of these systems. I conclude the review by suggesting studies that would help reduce the unsureness of microbial interactions with less-defined herbivore systems and identify how each could provide a path to more robust roles and traits.
Collapse
Affiliation(s)
- Charles J Mason
- The Pennsylvania State University Department of Entomology, 501 ASI Building, University Park, PA, 16823, USA.
| |
Collapse
|
36
|
Abstract
Acute and precise signal perception and transduction are essential for plant defense against insects. Insect elicitors-that is, the biologically active molecules from insects' oral secretion (which contains regurgitant and saliva), frass, ovipositional fluids, and the endosymbionts-are recognized by plants and subsequently induce a local or systematic defense response. On the other hand, insects secrete various types of effectors to interfere with plant defense at multiple levels for better adaptation. Jasmonate is a main regulator involved in plant defense against insects and integrates with multiple pathways to make up the intricate defense network. Jasmonate signaling is strictly regulated in plants to avoid the hypersensitive defense response and seems to be vulnerable to assault by insect effectors at the same time. Here, we summarize recently identified elicitors, effectors, and their target proteins in plants and discuss their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Bo Mao
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Zheng Y, Xiao G, Zhou W, Gao Y, Li Z, Du G, Chen B. Midgut microbiota diversity of potato tuber moth associated with potato tissue consumed. BMC Microbiol 2020; 20:58. [PMID: 32160875 PMCID: PMC7066784 DOI: 10.1186/s12866-020-01740-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background The potato tuber moth (PTM), Phthorimaea operculella (Zeller), is a worldwide pest that feeds on both the leaves and tubers of potato plants. PTM larvae can digest leaves, or tubers, resulting in serious damage to potato plants in the field and potato tubers in storage. To understand how midgut bacterial diversity is influenced by the consumption of these two tissue types, the symbiotic bacteria in the potato-feeding PTM midgut and the endophytic bacteria of potato tissues were analyzed. Results At the genus level, the bacterial community composition in the PTM midgut was influenced by the tissues consumed, owing to their different nutrient contents. Escherichia_Shigella and Enterobacter were the most dominant genera in the midgut of leaf-feeding and tuber-feeding PTMs, respectively. Interestingly, even though only present in low abundance in leaves and tubers, Escherichia_Shigella were dominantly distributed only in the midgut of leaf-feeding PTMs, indicating that specific accumulation of these genera have occurred by feeding on leaves. Moreover, Enterobacter, the most dominant genus in the midgut of tuber-feeding PTMs, was undetectable in all potato tissues, indicating it is gut-specific origin and tuber feeding-specific accumulation. Both Escherichia_Shigella and Enterobacter abundances were positively correlated with the dominant contents of potato leaves and tubers, respectively. Conclusions Enrichment of specific PTM midgut bacterial communities was related to different nutrient levels in different tissues consumed by the insect, which in turn influenced host utilization. We provide evidence that a portion of the intestinal microbes of PTMs may be derived from potato endophytic bacteria and improve the understanding of the relationship between potato endophytic bacteria and the gut microbiota of PTMs, which may offer support for integrated management of this worldwide pest.
Collapse
Affiliation(s)
- Yaqiang Zheng
- Key Laboratory of Agro-biodiversity and Pest Management of China's Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanli Xiao
- College of Agriculture & Biology Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wenwu Zhou
- College of Agriculture & Biology Technology, Zhejiang University, Hangzhou, 310058, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhengyue Li
- Key Laboratory of Agro-biodiversity and Pest Management of China's Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Guangzu Du
- Key Laboratory of Agro-biodiversity and Pest Management of China's Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Bin Chen
- Key Laboratory of Agro-biodiversity and Pest Management of China's Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
38
|
Gómez-Gallego C, Rainio MJ, Collado MC, Mantziari A, Salminen S, Saikkonen K, Helander M. Glyphosate-based herbicide affects the composition of microbes associated with Colorado potato beetle (Leptinotarsa decemlineata). FEMS Microbiol Lett 2020; 367:fnaa050. [PMID: 32188977 DOI: 10.1093/femsle/fnaa050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2023] Open
Abstract
Here, we examined whether glyphosate affects the microbiota of herbivores feeding on non-target plants. Colorado potato beetles (Leptinotarsa decemlineata) were reared on potato plants grown in pots containing untreated soil or soil treated with glyphosate-based herbicide (GBH). As per the manufacturer's safety recommendations, the GBH soil treatments were done 2 weeks prior to planting the potatoes. Later, 2-day-old larvae were introduced to the potato plants and then collected in two phases: fourth instar larvae and adults. The larvae's internal microbiota and the adults' intestinal microbiota were examined by 16S rRNA gene sequencing. The beetles' microbial composition was affected by the GBH treatment and the differences in microbial composition between the control and insects exposed to GBH were more pronounced in the adults. The GBH treatment increased the relative abundance of Agrobacterium in the larvae and the adults. This effect may be related to the tolerance of some Agrobacterium species to glyphosate or to glyphosate-mediated changes in potato plants. On the other hand, the relative abundances of Enterobacteriaceae, Rhodobacter, Rhizobium and Acidovorax in the adult beetles and Ochrobactrum in the larvae were reduced in GBH treatment. These results demonstrate that glyphosate can impact microbial communities associated with herbivores feeding on non-target crop plants.
Collapse
Affiliation(s)
- Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, 70211, Kuopio, Finland
- Functional Foods Forum, University of Turku, 20014, Turku, Finland
| | - Miia J Rainio
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - M Carmen Collado
- Functional Foods Forum, University of Turku, 20014, Turku, Finland
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980, Valencia, Spain
| | | | - Seppo Salminen
- Functional Foods Forum, University of Turku, 20014, Turku, Finland
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
39
|
Deboever E, Deleu M, Mongrand S, Lins L, Fauconnier ML. Plant-Pathogen Interactions: Underestimated Roles of Phyto-oxylipins. TRENDS IN PLANT SCIENCE 2020; 25:22-34. [PMID: 31668451 DOI: 10.1016/j.tplants.2019.09.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 05/28/2023]
Abstract
Plant (or phyto-) oxylipins (POs) are produced under a wide range of stress conditions and although they are well known to activate stress-related signalling pathways, the nonsignalling roles of POs are poorly understood. We describe oxylipins as direct biocidal agents and propose that structure-function relationships play here a pivotal role. Based on their chemical configuration, POs, such as reactive oxygen and electrophile species, activate defence-related gene expression. We also propose that their ability to interact with pathogen membranes is important, but still misunderstood, and that they are involved in cross-kingdom communication. Taken as a whole, the current literature suggests that POs have a high potential as biocontrol agents. However, the mechanisms underlying these multifaceted compounds remain largely unknown.
Collapse
Affiliation(s)
- Estelle Deboever
- Molecular Biophysics at Interface Laboratory (LBMI), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium; Laboratory of Natural Molecules Chemistry (LCMN), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium.
| | - Magali Deleu
- Molecular Biophysics at Interface Laboratory (LBMI), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Laurence Lins
- Molecular Biophysics at Interface Laboratory (LBMI), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Natural Molecules Chemistry (LCMN), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| |
Collapse
|
40
|
Buchholz F, Antonielli L, Kostić T, Sessitsch A, Mitter B. The bacterial community in potato is recruited from soil and partly inherited across generations. PLoS One 2019; 14:e0223691. [PMID: 31703062 PMCID: PMC6839881 DOI: 10.1371/journal.pone.0223691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Strong efforts have been made to understand the bacterial communities in potato plants and the rhizosphere. Research has focused on the effect of the environment and plant genotype on bacterial community structures and dynamics, while little is known about the origin and assembly of the bacterial community, especially in potato tubers. The tuber microbiota, however, may be of special interest as it could play an important role in crop quality, such as storage stability. Here, we used 16S rRNA gene amplicon sequencing to study the bacterial communities that colonize tubers of different potato cultivars commonly used in Austrian potato production over three generations and grown in different soils. Statistical analysis of sequencing data showed that the bacterial community of potato tubers has changed over generations and has become more similar to the soil bacterial community, while the impact of the potato cultivar on the bacterial assemblage has lost significance over time. The communities in different tuber parts did not differ significantly, while the soil bacterial community showed significant differences to the tuber microbiota composition. Additionally, the presence of OTUs in subsequent tuber generation points to vertical transmission of a subset of the tuber microbiota. Four OTUs were common to all tuber generations and all potato varieties. In summary, we conclude that the microbiota of potato tubers is recruited from the soil largely independent from the plant variety. Furthermore, the bacterial assemblage in potato tubers consists of bacteria transmitted from one tuber generation to the next and bacteria recruited from the soil.
Collapse
Affiliation(s)
- Franziska Buchholz
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Tanja Kostić
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Angela Sessitsch
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Birgit Mitter
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
41
|
Affiliation(s)
- Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yipeng Liu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijing Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Min Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Kryukov VY, Kabilov MR, Smirnova N, Tomilova OG, Tyurin MV, Akhanaev YB, Polenogova OV, Danilov VP, Zhangissina SK, Alikina T, Yaroslavtseva ON, Glupov VV. Bacterial decomposition of insects post-Metarhizium infection: Possible influence on plant growth. Fungal Biol 2019; 123:927-935. [PMID: 31733735 DOI: 10.1016/j.funbio.2019.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
Abstract
Strains of entomopathogenic fungi may have substantial differences in their final stages of mycosis. Insect cadavers are usually overgrown with mycelium after colonization of the insect body, but in many cases, bacterial decomposition of the colonized hosts occurs. We used two Metarhizium robertsii strains in the work: Mak-1 (cadavers become overgrown with mycelium and conidia) and P-72 (cadavers decay after fungal colonization). We conducted a comparative analysis of gut and cadaver microbiota in Colorado potato beetle larvae using 16S rRNA gene sequencing after infection with these strains. In addition, we estimated the content of different forms of nitrogen in cadavers and the influence of cadavers on the growth of Solanum lycopersicum on sand substrates under laboratory conditions. It was shown that infections did not lead to a significant shift in the midgut bacterial communities of infected insects compared to those of untreated insects. Importantly, bacterial communities were similar in both types of cadaver, with predominantly enterobacteria. Decomposing cadavers (P-72) were characterized by increased nitrate and ammonium, and they had a stronger growth-promoting effect on plants compared to cadavers overgrown with mycelium and conidia (Mak-1). We also estimated the colonization and growth of plants after treatment with conidia of both strains cultivated on artificial medium. Both cultures successfully colonized plants, but strain P-72 showed stronger growth promotion than Mak-1. We propose that the use of deviant strains that are unable to sporulate on cadavers leads to a faster (though only passive) flow of nitrogen from killed insects to plants.
Collapse
Affiliation(s)
- Vadim Y Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia.
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev av. 8, Novosibirsk 630090, Russia
| | - Natalya Smirnova
- Institute of Soil Science and Agrochemistry SB RAS, Lavrentiev av. 8/2, Novosibirsk 630090, Russia
| | - Oksana G Tomilova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| | - Maksim V Tyurin
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| | - Yuriy B Akhanaev
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| | - Olga V Polenogova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| | - Viktor P Danilov
- Siberian Federal Scientific Centre of Agro-Bio Technologies (SFSCA) of the RAS, Novosibirsk Region, Krasnoobsk, PO Box 463, 630501, Russia
| | - Saule K Zhangissina
- Institute of Cytology and Genetics SB RAS, Lavrentyev av. 10, Novosibirsk 630090, Russia
| | - Tatiana Alikina
- Institute of Soil Science and Agrochemistry SB RAS, Lavrentiev av. 8/2, Novosibirsk 630090, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, 630091 Novosibirsk, Russia
| |
Collapse
|
43
|
Pan Q, Shikano I, Hoover K, Liu TX, Felton GW. Pathogen-Mediated Tritrophic Interactions: Baculovirus-Challenged Caterpillars Induce Higher Plant Defenses than Healthy Caterpillars. J Chem Ecol 2019; 45:515-524. [PMID: 31127421 DOI: 10.1007/s11829-018-9634-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 05/25/2023]
Abstract
Although the tritrophic interactions of plants, insect herbivores and their natural enemies have been intensely studied for several decades, the roles of entomopathogens in their indirect modulation of plant-insect relationships is still unclear. Here, we employed a sublethal dose of a baculovirus with a relatively broad host range (AcMNPV) to explore if feeding by baculovirus-challenged Helicoverpa zea caterpillars induces direct defenses in the tomato plant. We examined induction of plant defenses following feeding by H. zea, including tomato plants fed on by healthy caterpillars, AcMNPV-challenged caterpillars, or undamaged controls, and subsequently compared the transcript levels of defense related proteins (i.e., trypsin proteinase inhibitors, peroxidase and polyphenol oxidase) and other defense genes (i.e., proteinase inhibitor II and cysteine proteinase inhibitor) from these plants, in addition to comparing caterpillar relative growth rates. As a result, AcMNPV-challenged caterpillars induced the highest plant anti-herbivore defenses. We examined several elicitors and effectors in the secretions of these caterpillars (i.e., glucose oxidase, phospholipase C, and ATPase hydrolysis), which surprisingly did not differ between treatments. Hence, we suggest that the greater induction of plant defenses by the virus-challenged caterpillars may be due to differences in the amount of these secretions deposited during feeding or to some other unknown factor(s).
Collapse
Affiliation(s)
- Qinjian Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ikkei Shikano
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Gary W Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
44
|
Pan Q, Shikano I, Hoover K, Liu TX, Felton GW. Pathogen-Mediated Tritrophic Interactions: Baculovirus-Challenged Caterpillars Induce Higher Plant Defenses than Healthy Caterpillars. J Chem Ecol 2019; 45:515-524. [PMID: 31127421 DOI: 10.1007/s10886-019-01077-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023]
Abstract
Although the tritrophic interactions of plants, insect herbivores and their natural enemies have been intensely studied for several decades, the roles of entomopathogens in their indirect modulation of plant-insect relationships is still unclear. Here, we employed a sublethal dose of a baculovirus with a relatively broad host range (AcMNPV) to explore if feeding by baculovirus-challenged Helicoverpa zea caterpillars induces direct defenses in the tomato plant. We examined induction of plant defenses following feeding by H. zea, including tomato plants fed on by healthy caterpillars, AcMNPV-challenged caterpillars, or undamaged controls, and subsequently compared the transcript levels of defense related proteins (i.e., trypsin proteinase inhibitors, peroxidase and polyphenol oxidase) and other defense genes (i.e., proteinase inhibitor II and cysteine proteinase inhibitor) from these plants, in addition to comparing caterpillar relative growth rates. As a result, AcMNPV-challenged caterpillars induced the highest plant anti-herbivore defenses. We examined several elicitors and effectors in the secretions of these caterpillars (i.e., glucose oxidase, phospholipase C, and ATPase hydrolysis), which surprisingly did not differ between treatments. Hence, we suggest that the greater induction of plant defenses by the virus-challenged caterpillars may be due to differences in the amount of these secretions deposited during feeding or to some other unknown factor(s).
Collapse
Affiliation(s)
- Qinjian Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China. .,Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ikkei Shikano
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Gary W Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
45
|
Analysis of the bacterial communities and endosymbionts of natural populations of Bemisia tabaci in several crop fields from Mexico semi-arid zone. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01483-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
46
|
Akami M, Njintang NY, Gbaye OA, Andongma AA, Rashid MA, Niu CY, Nukenine EN. Gut bacteria of the cowpea beetle mediate its resistance to dichlorvos and susceptibility to Lippia adoensis essential oil. Sci Rep 2019; 9:6435. [PMID: 31015559 PMCID: PMC6478711 DOI: 10.1038/s41598-019-42843-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/09/2019] [Indexed: 11/30/2022] Open
Abstract
Bacteria inhabiting the gut of insects provide many benefits to their hosts, such as aiding in food digestion, reproduction, and immunity, tissue homeostasis, adaptation to environment and resistance to pathogen and pesticides. The cowpea beetle, Callosobruchus maculatus, is a serious cosmopolitan pest of pulses. This beetle has lent itself as a guinea pig for several ecological studies. It harbors a consortium of bacterial communities in its gut, but the evidence for their role in its physiology is fragmentary. In this work, we hypothesized that gut microbiota mediates C. maculatus resistance to dichlorvos (DDVP or O,O-dimethyl O-2,2-dichlorovinylphosphate) and represent the target of Lippia adoensis (Gambian Tea Bush) essential oil (EO). Symbiotic and aposymbiotic beetles were exposed to artificial cowpea seeds earlier treated with DDVP or EO. Adult mortality and changes in gut bacterial community composition and abundance were examined at F1 and F5 generations. The susceptibility of experimental beetles to DDVP was significantly affected by their symbiotic status. The adult mortality decreased across generations in DDVP treatments, and remained significantly higher in aposymbiotic groups. In EO treatments, the mortality was consistent irrespective of symbiotic status and experimental generations. When compared to DDVP and the Control, EO treatments had significantly lower bacterial richness and diversity, as well as lower abundance of Proteobacteria, Firmicutes, and Bacteroidetes. These results support our hypothesis and describe the responses of gut microbial communities to pesticide treatments. This could be of interest for developing new management strategies of this pest.
Collapse
Affiliation(s)
- Mazarin Akami
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon.
| | - Nicolas Yanou Njintang
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon
| | - Olajire A Gbaye
- Department of Biology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Awawing A Andongma
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Adnan Rashid
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang-Ying Niu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Elias Nchiwan Nukenine
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon
| |
Collapse
|
47
|
Skaljac M, Vogel H, Wielsch N, Mihajlovic S, Vilcinskas A. Transmission of a Protease-Secreting Bacterial Symbiont Among Pea Aphids via Host Plants. Front Physiol 2019; 10:438. [PMID: 31057424 PMCID: PMC6479166 DOI: 10.3389/fphys.2019.00438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/01/2019] [Indexed: 12/02/2022] Open
Abstract
Aphids are economically important pest insects that damage plants by phloem feeding and the transmission of plant viruses. Their ability to feed exclusively on nutritionally poor phloem sap is dependent on the obligatory symbiotic bacterium Buchnera aphidicola, but additional facultative symbionts may also be present, a common example of which is Serratia symbiotica. Many Serratia species secrete extracellular enzymes, so we hypothesised that S. symbiotica may produce proteases that help aphids to feed on plants. Molecular analysis, including fluorescence in situ hybridization (FISH), revealed that S. symbiotica colonises the gut, salivary glands and mouthparts (including the stylet) of the pea aphid Acyrthosiphon pisum, providing a mechanism to transfer the symbiont into host plants. S. symbiotica was also detected in plant tissues wounded by the penetrating stylet and was transferred to naïve aphids feeding on plants containing this symbiont. The maintenance of S. symbiotica by repeated transmission via plants may explain the high frequency of this symbiont in aphid populations. Proteomic analysis of the supernatant from a related but cultivable S. symbiotica strain cultured in liquid medium revealed the presence of known and novel proteases including metalloproteases. The corresponding transcripts encoding these S. symbiotica enzymes were detected in A. pisum and in plants carrying the symbiont, although the mRNA was much more abundant in the aphids. Our data suggest that enzymes from S. symbiotica may facilitate the digestion of plant proteins, thereby helping to suppress plant defense, and that the symbionts are important mediators of aphid–plant interactions.
Collapse
Affiliation(s)
- Marisa Skaljac
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Heiko Vogel
- Entomology Department, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Natalie Wielsch
- Entomology Department, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sanja Mihajlovic
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
48
|
Mason CJ, Jones AG, Felton GW. Co-option of microbial associates by insects and their impact on plant-folivore interactions. PLANT, CELL & ENVIRONMENT 2019; 42:1078-1086. [PMID: 30151965 DOI: 10.1111/pce.13430] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 05/28/2023]
Abstract
Plants possess a suite of traits that make them challenging to consume by insect herbivores. Plant tissues are recalcitrant, have low levels of protein, and may be well defended by chemicals. Insects use diverse strategies for overcoming these barriers, including co-opting metabolic activities from microbial associates. In this review, we discuss the co-option of bacteria and fungi in the herbivore gut. We particularly focus upon chewing, folivorous insects (Coleoptera and Lepidoptera) and discuss the impacts of microbial co-option on herbivore performance and plant responses. We suggest that there are two components to microbial co-option: fixed and plastic relationships. Fixed relationships are involved in integral dietary functions and can be performed by microbial enzymes co-opted into the genome or by stably transferred associates. In contrast, the majority of gut symbionts appear to be looser and perform more facultative, context-dependent functions. This more plastic, variable co-option of bacteria likely produces a greater number of insect phenotypes, which interact differently with plant hosts. By altering plant detection of herbivory or mediating insect interactions with plant defensive compounds, microbes can effectively improve herbivore performance in real time within and between generations.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
| | - Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
49
|
Jones AG, Mason CJ, Felton GW, Hoover K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep 2019; 9:2792. [PMID: 30808905 PMCID: PMC6391413 DOI: 10.1038/s41598-019-39163-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Symbioses between insects and microbes are ubiquitous, but vary greatly in terms of function, transmission mechanism, and location in the insect. Lepidoptera (butterflies and moths) are one of the largest and most economically important insect orders; yet, in many cases, the ecology and functions of their gut microbiomes are unresolved. We used high-throughput sequencing to determine factors that influence gut microbiomes of field-collected fall armyworm (Spodoptera frugiperda) and corn earworm (Helicoverpa zea). Fall armyworm midgut bacterial communities differed from those of corn earworm collected from the same host plant species at the same site. However, corn earworm bacterial communities differed between collection sites. Subsequent experiments using fall armyworm evaluating the influence of egg source and diet indicated that that host plant had a greater impact on gut communities. We also observed differences between regurgitant (foregut) and midgut bacterial communities of the same insect host, suggesting differential colonization. Our findings indicate that host plant is a major driver shaping gut microbiota, but differences in insect physiology, gut region, and local factors can also contribute to variation in microbiomes. Additional studies are needed to assess the mechanisms that affect variation in insect microbiomes, as well as the ecological implications of this variability in caterpillars.
Collapse
Affiliation(s)
- Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
50
|
Mason CJ, Campbell AM, Scully ED, Hoover K. Bacterial and Fungal Midgut Community Dynamics and Transfer Between Mother and Brood in the Asian Longhorned Beetle (Anoplophora glabripennis), an Invasive Xylophage. MICROBIAL ECOLOGY 2019; 77:230-242. [PMID: 29948017 DOI: 10.1007/s00248-018-1205-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 05/14/2018] [Indexed: 05/09/2023]
Abstract
Microbial symbionts play pivotal roles in the ecology and physiology of insects feeding in woody plants. Both eukaryotic and bacterial members occur in these systems where they facilitate digestive and nutrient provisioning. The larval gut of the Asian longhorned beetle (Anoplophora glabripennis) is associated with a microbial consortium that fulfills these metabolic roles. While members of the community vary in presence and abundance among individuals from different hosts, A. glabripennis is consistently associated with a fungus in the Fusarium solani species complex (FSSC). We used amplicon sequencing, taxon-specific PCR, culturing, and imaging to determine how bacterial and fungal communities differ between life stages and possible modes of symbiont transfer. The bacterial and fungal communities of adult guts were more diverse than those from larvae and eggs. The communities of larvae and eggs were more similar to those from oviposition sites than from adult female guts. FSSC isolates were not detected in the reproductive tissues of adult females, but were consistently detected on egg surfaces after oviposition and in frass. These results demonstrate that frass can serve as a vehicle of transmission of a subset for the beetle gut microbiota. Vertically transmitted symbionts are often beneficial to their host, warranting subsequent functional studies.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, State College, PA, 16823, USA.
| | - Alexander M Campbell
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, State College, PA, 16823, USA
| | - Erin D Scully
- Stored Product Insect and Engineering Research Unit, USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, State College, PA, 16823, USA
| |
Collapse
|