1
|
Pereira KE, de Aguiar GB, Villanova B, Rabello NJ, Schelbauer R, Carniel ES, Moresco RM, de Souza MA, Centenaro LA. Evaluation of developmental milestones and of brain measurements in rats exposed to the pesticide pyriproxyfen in prenatal period. Int J Dev Neurosci 2024; 84:758-768. [PMID: 39245789 DOI: 10.1002/jdn.10370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Pyriproxyfen is a pesticide used in Brazil to control the Aedes aegypti mosquito, vector of arboviruses like Zika and dengue. However, this pesticide is structurally similar to retinoic acid, a metabolite of vitamin A that regulates neuronal differentiation and hindbrain development during the embryonic period. Due to the similarity between pyriproxyfen and retinoic acid, studies indicate that this pesticide may have cross-reactivity with retinoid receptors. Thus, pregnant exposure to pyriproxyfen could interfere in the nervous system development of the fetal. In this context, the present study evaluated whether prenatal exposure to pyriproxyfen affects neonatal development and brain structure in rats. Wistar rat pups were divided in three experimental groups: (1) negative control (CT-)-offspring of rats that drink potable water during pregnancy; (2) pyriproxyfen (PIR)-offspring of rats exposed to Sumilarv® prenatally, a pesticide that has pyriproxyfen as active ingredient; and (3) positive control (CT+)-offspring of rats exposed to an excess of vitamin A prenatally. Only vitamin A treated-pregnant showed lower weight gain, but gestation length was similar among pregnant that received potable water, water containing vitamin A and water containing Sumilarv. In relation to the offspring, PIR group exhibits a delayed front-limb suspension response but performed early the negative geotaxis reflex. On the other hand, CT+ group exhibited lower body weight in the 1st postnatal day, delayed audio startle response, but performed early the eyelids opening and hindlimb placing response. A reduction in the maximum brain width was observed both in PIR and CT+ groups, but a reduction in the number of neurons in the M1 cortex was showed only in CT+ group. The number of glial cells in this brain area was similar between the three experimental groups studied. Although prenatal exposure to pyriproxyfen did not alter neonatal milestones in the same way as vitamin A in excess, both substances caused a reduction in the maximum width of the brain, suggesting that this pesticide can produce neurotoxic effects during the embryonic period.
Collapse
Affiliation(s)
- Katriane Endiel Pereira
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Gabrielle Batista de Aguiar
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Bianca Villanova
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Nicole Jansen Rabello
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rafaela Schelbauer
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Estela Soares Carniel
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rafaela Maria Moresco
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | - Lígia Aline Centenaro
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
2
|
Luckmann MR, Nazari EM. Cellular responses to developmental exposure to pyriproxyfen in chicken model: Contrasting embryos with and without exencephaly. Neurotoxicol Teratol 2024; 106:107395. [PMID: 39307295 DOI: 10.1016/j.ntt.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The insecticide pyriproxyfen (PPF), commonly used in drinking water, has already been described as a potential neurotoxic agent in non-target organisms, particularly during embryonic development. Consequently, exposure to PPF can lead to congenital anomalies in the central nervous system. Therefore, understanding the impact of this insecticide on developing neural cells is a relevant concern that requires attention. Thus, this study aimed to investigate the effects of PPF on the proliferation, differentiation, migration, and cell death of neural cells by comparing embryos that develop exencephaly with normal embryos, after exposure to this insecticide. Chicken embryos, used as a study model, were exposed to concentrations of 0.01 and 10 mg/L PPF on embryonic day E1 and analyzed on embryonic day E10. Exposed embryos received 50 μL of PPF diluted in vehicle solution, and control embryos received exclusively 50 μL of vehicle solution. After exposure, embryos were categorized into control embryos, embryos with exencephaly exposed to PPF, and embryos without exencephaly exposed to PPF. The results showed that although the impact was differentiated in the forebrain and midbrain, both brain vesicles were affected by PPF exposure, and this was observed in embryos with and without exencephaly. The most evident changes observed in embryos with exencephaly were DNA damage accompanied by alterations in cell proliferation, increased apoptosis, and reduced neural differentiation and migration. Embryos without exencephaly showed DNA damage and reduced cell proliferation and migration. These cellular events directly interfered with the density and thickness of neural cell layers. Together, these results suggest that PPF exposure causes cellular damage during neurogenesis, regardless of whether embryos display or do not display external normal morphology. This nuanced understanding provides important insights into the neurotoxicity of PPF and its potential effects on inherent events in neurogenesis.
Collapse
Affiliation(s)
- Maico Roberto Luckmann
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Evelise Maria Nazari
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
3
|
Padilha RMO, da Silva Gomes S, da Silva JF, Silva RPF, de Andrade ALC, Dos Santos Magnabosco AR, Santos TP, de Lima Silva AR, da Silva MLSC, Cadena MRS, Cadena PG. Assessment of toxicity of pyriproxyfen, Bacillus thuringiensis, and malathion and their mixtures used for mosquito control on embryo-larval development and behavior of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42672-42685. [PMID: 38874756 DOI: 10.1007/s11356-024-33955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Pyriproxyfen (PPF), Bacillus thuringiensis israelensis (BTI), and malathion (MLT) are widely used worldwide to control the population of mosquitos that transmit arboviruses. The current work aimed to evaluate the toxicity of these single pesticides and their binary mixtures of PPF + BTI, PPF + MLT, and MLT + BTI on the embryo-larval stage of zebrafish (Danio rerio) as an animal model. Epiboly, mortality, apical endpoints, affected animals, heart rate, morphometric, thigmotaxis, touch sensitivity, and optomotor response tests were evaluated. PPF and MLT and all mixtures reduced the epiboly percentage. Mortality increased significantly in all exposed groups, except BTI, with MLT being the most toxic. The observed apical endpoints were pericardial and yolk sac edemas, and tail and spine deformation. Exposure to MLT showed a higher percentage of affected animals. A reduction in heart rate was also observed in MLT- and PPF + MLT-exposed groups. The PPF + MLT mixture decreased head measurements. Behavioral alterations were observed, with a decrease in thigmotaxis and touch sensitivity responses in PPF + MLT and MLT + BTI groups. Finally, optomotor responses were affected in all groups. The above data obtained suggest that the MLT + PFF mixture has the greatest toxicity effects. This mixture affected embryo-larval development and behavior and is close to the reality in several cities that use both pesticides for mosquito control rather than single pesticides, leading to a reevaluation of the strategy for mosquito control.
Collapse
Affiliation(s)
- Renata Meireles Oliveira Padilha
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Samara da Silva Gomes
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Jadson Freitas da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Renatta Priscilla Ferreira Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - André Lucas Corrêa de Andrade
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Amanda Rodrigues Dos Santos Magnabosco
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Thamiris Pinheiro Santos
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Andressa Raphaely de Lima Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Maria Leticia Santos Carnaúba da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av, Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil.
- Laboratório de Ecofisiologia E Comportamento Animal (LECA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil.
| |
Collapse
|
4
|
White AV, Knecht H, Richards SL. Assessment of barrier treatments impacting Aedes albopictus (diptera: culicidae) using lambda-cyhalothrin and pyriproxyfen in a suburban neighborhood in Eastern North Carolina, 2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:991-1001. [PMID: 36960881 DOI: 10.1080/09603123.2023.2194613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Pyrethroids are commonly used in barrier treatments but less is known about how mosquitoes are affected by the simultaneous application of an insect growth regulator (i.e., pyriproxyfen) used in barrier treatments. This field study, conducted from May 14 - October 16, 2018, evaluated the effect of lambda-cyhalothrin (pyrethroid adulticide) and pyriproxyfen on the reproduction (measured by fecundity and adult emergence) and abundance of Aedes albopictus. Nine properties were treated with Demand®CS 0.06% + Archer® 0.010% (every 60 days) and three control properties received no treatment (N=12 total properties). No significant (P>0.05) differences were observed between abundance of Ae. albopictus in treatment compared to control groups. However, significant differences were observed in abundance of Ae. albopictus adults between weeks at both control (P = 0.003) and treatment (P < 0.0001) properties. Results from our research show that continued studies are needed to determine the efficacy of barrier treatments for this species. .
Collapse
Affiliation(s)
- Avian V White
- Environmental Health Sciences Program, Department of Health Education and Promotion College of Health and Human Performance, East Carolina University, Greenville, North Carolina, US
| | - Heidi Knecht
- Environmental Health Sciences Program, Department of Health Education and Promotion College of Health and Human Performance, East Carolina University, Greenville, North Carolina, US
| | - Stephanie L Richards
- Environmental Health Sciences Program, Department of Health Education and Promotion College of Health and Human Performance, East Carolina University, Greenville, North Carolina, US
| |
Collapse
|
5
|
Bugda H, Guven Ezer B, Rencuzogullari E. In vitro screening of genotoxicity and mutagenicity of pyriproxyfen in human lymphocytes and Salmonella typhimurium TA98 and TA100 strains. Drug Chem Toxicol 2023; 46:955-961. [PMID: 35982527 DOI: 10.1080/01480545.2022.2113096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
Pyriproxyfen (PPX) is a pesticide/larvicide used to increase productivity in agriculture against insects by inhibiting development of insects' larvae. In this study, cytotoxic, genotoxic, and mutagenic effects of PPX were investigated in human peripheral lymphocytes and Salmonella typhimurium strains by performing chromosomal aberration, micronucleus (MN) tests, and Ames test, respectively. For the chromosome aberration (CA) and MN methods, blood from four healthy donors (two men and two women, nonsmokers) were used. Two hundred microliters of blood was inoculated into PbMax medium and prepared according to International Guidelines. For the Ames test, S. typhimurium TA98 and TA100 strains were used to detect frameshift and base pair substitution mutagens, respectively. PPX induced both the CA percentage and MN frequency in human peripheral lymphocytes and exhibited cytotoxic effects. In addition, it showed a mutagenic effect at all doses in TA98 and TA100 strains in the presence of S9mix; however, no such effect was observed in the absence of S9mix. According to the obtained results, it can be said that PPX has genotoxic and mutagenic potentials.
Collapse
Affiliation(s)
- Havva Bugda
- Department of Biology, Adiyaman University, Institute of Graduate Education, Adiyaman, Turkey
| | - Banu Guven Ezer
- Department of Biology, Adiyaman University, Institute of Graduate Education, Adiyaman, Turkey
| | - Eyyup Rencuzogullari
- Department of Biology, Faculty of Science and Letters, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
6
|
Salesa B, Torres-Gavilá J, Sancho E, Ferrando MD. Multigenerational effects of the insecticide Pyriproxyfen and recovery in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:164013. [PMID: 37164084 DOI: 10.1016/j.scitotenv.2023.164013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
In the present study, an ecotoxicological approach to the evaluation of the insecticide Pyriproxifen in the crustacean Daphnia magna was done. Acute toxicity tests (48 h), feeding behavior test (5 h) and chronic toxicity test (21 days) were carried out on a parental daphnid generation (F0). Pyriproxifen D. magna EC50 value in our experimental conditions was 336.47 μg/L. Based on this result, sublethal test concentrations were selected for the feeding study and the F0 chronic experiment. Filtration and ingestion rates of D. magna exposed animals did not show any significant difference respect to control daphnids. However, daphnids from the parental F0 generation when exposed to the insecticide during 21 days showed a decreased in all the reproductive parameters tested (mean total neonates per female, mean brood size, time to first brood, and mean number of broods per female) as well as in the population statistic growth rate (r), although survival was not affected. On the other hand, offspring from F0 females exposed to the highest Pyriproxifen concentration (14.02 μg/L) were separated in two F1 generation experiments. One group was transferred during 21 days to a medium free of toxicant (F1 generation-TC group) while the other group was exposed during 21 days to the same insecticide concentration as their mothers (14.02 μg/L) (F1 generation-TT group). Results from both experiments determined a decreased in most of the reproductive parameters which was higher in the F1-TT group, although some of them were recovered in the F1-TC group. On the other hand, the morphological analysis of the daphnids showed that the coloration pattern was altered in the daphnids exposed to the insecticide, together with a significant size decreased, and neonates from F0 progeny with the same morphological abnormality. Finally, we determined that the insecticide caused the appearance of males among the offspring generated by the F0.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Javier Torres-Gavilá
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR-UCV), c/Guillem de Castro 94, 46001, Valencia, Spain
| | - Encarnación Sancho
- Laboratory of Ecotoxicology, Dept. Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - María Dolores Ferrando
- Laboratory of Ecotoxicology, Dept. Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
7
|
Cifuentes MP, Suarez CM, Cifuentes R, Malod-Dognin N, Windels S, Valderrama JF, Juarez PD, Valdez RB, Colen C, Phillips C, Ramesh A, Im W, Lichtveld M, Mouton C, Pržulj N, Hood DB. Big Data to Knowledge Analytics Reveals the Zika Virus Epidemic as Only One of Multiple Factors Contributing to a Year-Over-Year 28-Fold Increase in Microcephaly Incidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159051. [PMID: 35897436 PMCID: PMC9331749 DOI: 10.3390/ijerph19159051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023]
Abstract
During the 2015-2016 Zika Virus (ZIKV) epidemic in Brazil, the geographical distributions of ZIKV infection and microcephaly outbreaks did not align. This raised doubts about the virus as the single cause of the microcephaly outbreak and led to research hypotheses of alternative explanatory factors, such as environmental variables and factors, agrochemical use, or immunizations. We investigated context and the intermediate and structural determinants of health inequalities, as well as social environment factors, to determine their interaction with ZIKV-positive- and ZIKV-negative-related microcephaly. The results revealed the identification of 382 associations among 382 nonredundant variables of Zika surveillance, including multiple determinants of environmental public health factors and variables obtained from 5565 municipalities in Brazil. This study compared those factors and variables directly associated with microcephaly incidence positive to ZIKV and those associated with microcephaly incidence negative to ZIKV, respectively, and mapped them in case and control subnetworks. The subnetworks of factors and variables associated with low birth weight and birthweight where birth incidence served as an additional control were also mapped. Non-significant differences in factors and variables were observed, as were weights of associations between microcephaly incidence, both positive and negative to ZIKV, which revealed diagnostic inaccuracies that translated to the underestimation of the scope of the ZIKV outbreak. A detailed analysis of the patterns of association does not support a finding that vaccinations contributed to microcephaly, but it does raise concerns about the use of agrochemicals as a potential factor in the observed neurotoxicity arising from the presence of heavy metals in the environment and microcephaly not associated with ZIKV. Summary: A comparative network inferential analysis of the patterns of variables and factors associated with Zika virus infections in Brazil during 2015-2016 coinciding with a microcephaly epidemic identified multiple contributing determinants. This study advances our understanding of the cumulative interactive effects of exposures to chemical and non-chemical stressors in the built, natural, physical, and social environments on adverse pregnancy and health outcomes in vulnerable populations.
Collapse
Affiliation(s)
- Myriam Patricia Cifuentes
- Department of Mathematics, College of Sciences, Antonio Nariño University, Bogotá 111321, Colombia;
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | | | - Ricardo Cifuentes
- School of Medicine and Health Sciences, Universidad Militar Nueva Granada, Bogotá 110111, Colombia;
| | - Noel Malod-Dognin
- Department of Computer Science, University College London, London WC1E 6BT, UK; (N.M.-D.); (S.W.); (N.P.)
| | - Sam Windels
- Department of Computer Science, University College London, London WC1E 6BT, UK; (N.M.-D.); (S.W.); (N.P.)
| | - Jose Fernando Valderrama
- Subdirectorate of Transmissible Diseases, Ministry of Health and Social Protection, Bogotá 110311, Colombia;
| | - Paul D. Juarez
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN 37208, USA; (P.D.J.); (W.I.)
| | - R. Burciaga Valdez
- Department of Family & Community Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Cynthia Colen
- Department of Sociology, College of Arts and Sciences, Ohio State University, Columbus, OH 43210, USA;
| | - Charles Phillips
- Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA;
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Wansoo Im
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN 37208, USA; (P.D.J.); (W.I.)
| | - Maureen Lichtveld
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Charles Mouton
- Department of Family Medicine, College of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Nataša Pržulj
- Department of Computer Science, University College London, London WC1E 6BT, UK; (N.M.-D.); (S.W.); (N.P.)
| | - Darryl B. Hood
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
8
|
Luckmann MR, de Melo MS, Spricigo MC, da Silva NM, Nazari EM. Pyriproxyfen exposure induces DNA damage, cell proliferation impairments and apoptosis in the brain vesicles layers of chicken embryos. Toxicology 2021; 464:152998. [PMID: 34695508 DOI: 10.1016/j.tox.2021.152998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Larvicide pyriproxyfen (PPF), used in drinking water reservoirs to control Aedes mosquitoes, has already been shown as a possible cause of congenital anomalies in the central nervous system. However, the neurotoxic effects of PPF on the development of vertebrate embryos are still underexplored. Thus, the aim of this study was to investigate the effects of PPF on the morphometric parameters of the head and brain, as well as on the cell layers of the forebrain and midbrain, using embryos of Gallus domesticus as a model. Two sublethal PPF concentrations (0.01 mg/L and 10 mg/L), as defined by a survival curve, were tested. Analysis of the biometry of embryos showed significant reduction in body and brain mass and also in measurements of the head and brain. A reduction in cell layer thickness of the forebrain and midbrain was observed, accompanied by a reduction in the numerical density of cells per area. Changes in brain and head sizes and in the thickness of the cell layers of the forebrain and midbrain were significant at 10 mg/L PPF. Notably, PPF caused DNA doublestrand breaks and induced apoptosis in embryos exposed to 10 mg/L, which were accompanied by a reduction in cell proliferation. Regarding neuronal and glial differentiation, no changes were observed in the number of neurons and glial cells on the analyzed layers. Furthermore, PPF did not impact the head ossification process. These findings reveal that PPF is a strong stressor for neurodevelopment, causing damage to the cell architecture of brain vesicles.
Collapse
Affiliation(s)
- Maico Roberto Luckmann
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Mirian Celene Spricigo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Norma Machado da Silva
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
9
|
Vancamp P, Spirhanzlova P, Sébillot A, Butruille L, Gothié JD, Le Mével S, Leemans M, Wejaphikul K, Meima M, Mughal BB, Roques P, Remaud S, Fini JB, Demeneix BA. The pyriproxyfen metabolite, 4'-OH-PPF, disrupts thyroid hormone signaling in neural stem cells, modifying neurodevelopmental genes affected by ZIKA virus infection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117654. [PMID: 34289950 DOI: 10.1016/j.envpol.2021.117654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
North-Eastern Brazil saw intensive application of the insecticide pyriproxyfen (PPF) during the microcephaly outbreak caused by the Zika virus (ZIKV). ZIKV requires the neural RNA-binding protein Musashi-1 to replicate. Thyroid hormone (TH) represses MSI1. PPF is a suspected TH disruptor. We hypothesized that co-exposure to the main metabolite of PPF, 4'-OH-PPF, could exacerbate ZIKV effects through increased MSI1 expression. Exposing an in vivo reporter model, Xenopus laevis, to 4'-OH-PPF decreased TH signaling and increased msi1 mRNA and protein, confirming TH-antagonistic properties. Next, we investigated the metabolite's effects on mouse subventricular zone-derived neural stem cells (NSCs). Exposure to 4'-OH-PPF dose-dependently reduced neuroprogenitor proliferation and dysregulated genes implicated in neurogliogenesis. The highest dose induced Msi1 mRNA and protein, increasing cell apoptosis and the ratio of neurons to glial cells. Given these effects of the metabolite alone, we considered if combined infection with ZIKV worsened neurogenic events. Only at the fourth and last day of incubation did co-exposure of 4'-OH-PPF and ZIKV decrease viral replication, but viral RNA copies stayed within the same order of magnitude. Intracellular RNA content of NSCs was decreased in the combined presence of 4'-OH-PPF and ZIKV, suggesting a synergistic block of transcriptional machinery. Seven out of 12 tested key genes in TH signaling and neuroglial commitment were dysregulated by co-exposure, of which four were unaltered when exposed to 4'-OH-PPF alone. We conclude that 4'-OH-PPF is an active TH-antagonist, altering NSC processes known to underlie correct cortical development. A combination of the TH-disrupting metabolite and ZIKV could aggravate the microcephaly phenotype.
Collapse
Affiliation(s)
- Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Petra Spirhanzlova
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Anthony Sébillot
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Jean-David Gothié
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Sébastien Le Mével
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Michelle Leemans
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Karn Wejaphikul
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Marcel Meima
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bilal B Mughal
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Pierre Roques
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, 92265, Fontenay-aux-Roses, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Jean-Baptiste Fini
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France.
| |
Collapse
|
10
|
Abstract
Fish embryo toxicity (FET) test using zebrafish (Danio rerio) has been established as an alternative assay to animal experimentation. The FET assay enables the assessment of multiple morphological endpoints during the development of zebrafish early life stages, showing high impact to the field of ecotoxicology on risk assessment of chemicals and pollutants. Moreover, it is also applied to screening drug-induced toxicity and human diseases, due to the high genetic and physiological orthology between zebrafish and humans. Here, we describe FET test, with all steps and several adaptations involved in the methodological procedures. To demonstrate the efficiency of this method, results using the reference substance 3,4-dichloroaniline (DCA) were included to demonstrate sublethal and teratogenic malformations on zebrafish embryos. Thus, there is a strong tendency for using FET tests as a replacement strategy of traditional tests in toxicology and ecotoxicology.
Collapse
Affiliation(s)
- Flávia Renata Abe
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
- National Institute for Alternative Technologies ofremoval of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, Araraquara, Brazil.
| |
Collapse
|
11
|
Vani JM, de Carvalho Schweich-Adami L, Auharek SA, Antoniolli-Silva ACMB, Oliveira RJ. Pyriproxyfen does not cause microcephaly or malformations in a preclinical mammalian model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4585-4593. [PMID: 32948939 DOI: 10.1007/s11356-020-10517-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Pyriproxyfen is used in Brazil to combat epidemics of Dengue Fever, Chikungunya Fever, and Zika virus. This study assessed the effects of pyriproxyfen on reproductive performance, embryo-fetal development, head measurements, and DNA integrity in a preclinical model. Thirty pregnant mice were divided into three groups (n = 10): control (drinking water-0.1 ml/10 g (body weight-b.w., gavage) and treated with pyriproxyfen 0.0002 mg/kg and 0.0021 mg/kg (b.w., gavage) during the gestational period. Analysis of biometric, reproductive performance and embryo-fetal development parameters related to control presented no significant differences, suggesting no maternal or embryo-fetal toxicity. Head measurements showed no differences except an increase in anterior/posterior measurement and glabella/external occipital protuberance. Analysis of DNA integrity showed an increase in micronucleus only at 72 h for the lowest dose group. Thus, we infer that pyriproxyfen is not related to the occurrence of microcephaly, nor does it alter reproductive performance, embryo-fetal development or DNA integrity.
Collapse
Affiliation(s)
- Juliana Miron Vani
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica - CeTroGen, Hospital Universitário Maria Aparecida Pedrossian - HUMAP, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
- Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina Dr. Hélio Mandetta - FAMED, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
| | - Laynna de Carvalho Schweich-Adami
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica - CeTroGen, Hospital Universitário Maria Aparecida Pedrossian - HUMAP, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
- Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina Dr. Hélio Mandetta - FAMED, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
| | - Sarah Alves Auharek
- Faculdade de Medicina do Mucuri, Universidade Federal dos Vales do Jequitinhonha e do Mucuri - UFVJM, Teofilo Otoni, MG, Brazil
| | - Andréia Conceição Millan Brochado Antoniolli-Silva
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica - CeTroGen, Hospital Universitário Maria Aparecida Pedrossian - HUMAP, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
- Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina Dr. Hélio Mandetta - FAMED, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
| | - Rodrigo Juliano Oliveira
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica - CeTroGen, Hospital Universitário Maria Aparecida Pedrossian - HUMAP, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil.
- Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina Dr. Hélio Mandetta - FAMED, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil.
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimento e Nutrição - FACFAN, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil.
- Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas - CCB, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
12
|
Azevedo RDS, Falcão KVG, Assis CRD, Martins RMG, Araújo MC, Yogui GT, Neves JL, Seabra GM, Maia MBS, Amaral IPG, Leite ACR, Bezerra RS. Effects of pyriproxyfen on zebrafish brain mitochondria and acetylcholinesterase. CHEMOSPHERE 2021; 263:128029. [PMID: 33297050 DOI: 10.1016/j.chemosphere.2020.128029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Pyriproxyfen is an insecticide used worldwide that acts as a biomimetic of juvenile hormone. This study investigated metabolic and synaptic impairments triggered by pyriproxyfen using zebrafish acetylcholinesterase (zbAChE) and mitochondria as markers. A brain zbAChE assay was performed in vitro and in vivo covering a range of pyriproxyfen concentrations (0.001-10 μmol/L) to assess inhibition kinetics. Docking simulations were performed to characterize inhibitory interactions. Zebrafish male adults were acutely exposed to 0.001, 0.01 and 0.1 μg/mL pyriproxyfen for 16 h. Mitochondrial respiration of brain tissues was assessed. ROS generation was estimated using H2DCF-DA and MitoSOX. Calcium transport was monitored by Calcium Green™ 5 N. NO synthesis activity was estimated using DAF-FM-DA. Brain acetylcholinesterase showed an in vivo IC20 of 0.30 μmol/L pyriproxyfen, and an IC50 of 92.5 μmol/L. The inhibitory effect on zbAChE activity was competitive-like. Respiratory control of Complex I/II decreased significantly after insecticide exposure. The MitoSOX test showed that O2- generation had a pyriproxyfen dose-dependent effect. Brain tissue lost 50% of Ca2+ uptake capacity at 0.1 μg/mL pyriproxyfen. Ca2+ release showed a clear mitochondrial impairment at lower pyriproxyfen exposures. Thus, Ca2+ transport imbalance caused by pyriproxyfen may be a novel deleterious mechanism of action. Overall, the results showed that pyriproxyfen can compromise multiple and interconnected pathways: (1) zbAChE impairment and (2) the functioning of the electron transport chain, ROS generation and calcium homeostasis in zebrafish brain mitochondria. Considering the many similarities between zebrafish and human, more caution is needed when pyriproxyfen is used in both urban and agricultural pest control.
Collapse
Affiliation(s)
- Rafael D S Azevedo
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Kivia V G Falcão
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Caio R D Assis
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos - OrganoMAR, Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | | | - Marlyete C Araújo
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Gilvan T Yogui
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos - OrganoMAR, Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Jorge L Neves
- Laboratório de Química Biológica - LQB, Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Gustavo M Seabra
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), School of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Maria B S Maia
- Laboratório de Farmacologia de Produtos Bioativos, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Ian P G Amaral
- Centro de Biotecnologia, Universidade Federal da Paraiba (UFPB), Campus I, Cidade Universitária, João Pessoa, PB, Brazil.
| | - Ana C R Leite
- Laboratório de Bioenergética Prof. Aníbal Vercesi, Departamento de Química e Biotecnologia, Universidade Federal de Alagoas (UFAL), Maceió, AL, Brazil.
| | - Ranilson S Bezerra
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
13
|
Faria Waziry PA, Raja A, Salmon C, Aldana N, Damodar S, Fukushima AR, Mayi BS. Impact of pyriproxyfen on virus behavior: implications for pesticide-induced virulence and mechanism of transmission. Virol J 2020; 17:93. [PMID: 32631404 PMCID: PMC7339562 DOI: 10.1186/s12985-020-01378-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background More than 3 years since the last Zika virus (ZIKV) outbreak in Brazil, researchers are still deciphering the molecular mechanisms of neurovirulence and vertical transmission, as well as the best way to control spread of ZIKV, a flavivirus. The use of pesticides was the main strategy of mosquito control during the last ZIKV outbreak. Methods We used vesicular stomatitis virus (VSV) tagged with green fluorescent protein (GFP) as our prototypical virus to study the impact of insecticide pyriproxyfen (PPF). VZV-GFP infected and uninfected Jurkat, HeLa and trophoblast cells were treated with PPF and compared to untreated cells (control). Cell viability was determined by the MTT assay. Cell morphology, presence of extracellular vesicles (EVs), virus infection/GFP expression as well as active mitochondrial levels/localization were examined by confocal microscopy. Results PPF, which was used to control mosquito populations in Brazil prior to the ZIKV outbreak, enhances VSV replication and has cell membrane-altering properties in the presence of virus. PPF causes enhanced viral replication and formation of large EVs, loaded with virus as well as mitochondria. Treatment of trophoblasts or HeLa cells with increasing concentrations of PPF does not alter cell viability, however, it proportionately increases Jurkat cell viability. Increasing concentrations of PPF followed by VSV infection does not interfere with HeLa cell viability. Both Jurkats and trophoblasts show proportionately increased cell death with increased concentrations of PPF in the presence of virus. Conclusions We hypothesize that PPF disrupts the lipid microenvironment of mammalian cells, thereby interfering with pathways of viral replication. PPF lowers viability of trophoblasts and Jurkats in the presence of VSV, implying that the combination renders immune system impairment in infected individuals as well as enhanced vulnerability of fetuses towards viral vertical transmission. We hypothesize that similar viruses such as ZIKV may be vertically transmitted via EV-to-cell contact when exposed to PPF, thereby bypassing immune detection. The impact of pesticides on viral replication must be fully investigated before large scale use in future outbreaks of mosquito borne viruses.
Collapse
Affiliation(s)
- Paula A Faria Waziry
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3400 Gulf to Bay Blvd, Clearwater, FL, 33759, USA
| | - Aarti Raja
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Chloe Salmon
- Plymouth University, 3 Endsleigh Place, Drake Circus, Plymouth, England, PL4 8AA
| | - Nathalia Aldana
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S. University Dr, Fort Lauderdale, FL, 33328, USA
| | - Sruthi Damodar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S. University Dr, Fort Lauderdale, FL, 33328, USA
| | - Andre Rinaldi Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| | - Bindu S Mayi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3400 Gulf to Bay Blvd, Clearwater, FL, 33759, USA.
| |
Collapse
|
14
|
Liu H, Li P, Wang P, Liu D, Zhou Z. Toxicity risk assessment of pyriproxyfen and metabolites in the rat liver: A vitro study. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121835. [PMID: 31843398 DOI: 10.1016/j.jhazmat.2019.121835] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/09/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Pyriproxyfen (PYR) is a type of aromatic juvenile hormone analog and a hygienic insecticide used in agriculture to control insect species. Therefore, assessing the metabolic behavior and toxic effects of PYR in mammals is the best means of evaluating its risks to human health. Previous studies have reported conflicting results regarding the toxicity risks of PYR and its metabolites in rat hepatocytes. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to perform a chiral analysis of PYR and its metabolites investigating the enantioselective metabolism of PYR in rat liver microsomes. Our results concluded that the recoveries of PYR, metabolites A and B ranged from 81.13%-111.54 %, with RSD values of 0.01 %-6.52 %. The method limits of detection (LODs) and limits of quantification (LOQs) for PYR, metabolites A and B were in accordance with the analysis requirements. Previous studies have demonstrated the enantioselective metabolism of PYR and the generation of metabolites. Measurements of cell proliferation toxicity to rat hepatocytes, apoptosis and DNA damage induced by PYR and its metabolites in rat hepatocytes indicated that the metabolites reflected higher toxicity potential than PYR in rat hepatocytes. More studies about the molecular mechanism of PYR-induced toxicity are urgently needed in future work.
Collapse
Affiliation(s)
- Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|
15
|
Santos VSV, Limongi JE, Pereira BB. Association of low concentrations of pyriproxyfen and spinosad as an environment-friendly strategy to rationalize Aedes aegypti control programs. CHEMOSPHERE 2020; 247:125795. [PMID: 31927181 DOI: 10.1016/j.chemosphere.2019.125795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
The association of low concentrations of pyriproxyfen and Spinosad, a naturally-occurring insecticide, was evaluated as an environment-friendly strategy to rationalize Aedes aegypti control programs by reducing larvicide consumption, saving financial costs and increasing residual effect against mosquitoes development. Firstly, the ecotoxicological parameters of the mixture was performed on non-target species Daphnia magna and the results confirmed that the low concentrations used in this larvicide mixture were not able to alter the reproductive parameters of chronically exposed microcrustaceans. In contrast, the mixture altered the behavior and development of Aedes aegypti, effectively inhibiting the emergence of adult insects for a long period. The results confirm the hypothesis that even at very low concentrations, the combination of the Spinosad and Pyriproxyfen larvicides offers an opportunity for Aedes aegypti public control programs to be more efficient.
Collapse
Affiliation(s)
- Vanessa Santana Vieira Santos
- Federal University of Uberlândia, Institute of Biotechnology, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil
| | - Jean Ezequiel Limongi
- Federal University of Uberlandia, Institute of Geography, Laboratory of Macroecology and Environmental Health, Santa Monica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlândia, Minas Gerais, Brazil
| | - Boscolli Barbosa Pereira
- Federal University of Uberlândia, Institute of Biotechnology, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil; Federal University of Uberlandia, Institute of Geography, Laboratory of Macroecology and Environmental Health, Santa Monica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Alves PES, Oliveira MDDAD, Marcos de Almeida P, Martins FA, Amélia de Carvalho Melo Cavalcante A, de Jesus Aguiar Dos Santos Andrade T, Feitosa CM, Rai M, Campinho Dos Reis A, Soares da Costa Júnior J. Determination by chromatography and cytotoxotoxic and oxidative effects of pyriproxyfen and pyridalyl. CHEMOSPHERE 2019; 224:398-406. [PMID: 30831490 DOI: 10.1016/j.chemosphere.2019.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
Pyriproxyfen (PPF) is a larvicide, used to combat the proliferation of Aedes aegypti larvae. The objective of this study was to analyze the compounds of pyriproxyfen and pyridalyl (PYL) in a commercial larvicide to analyze the cytotoxic and oxidative effects of PPF and PYL. The toxic potential of PPF and PYL were assessed based on lethal concentration (LC50) in Artemia salina, cytotoxicity based on the mitotic index and the chromosomal alterations in Allium cepa and the oxidative damage in Saccharomyces cerevisiae. The PPF and PYL compounds were identified by HPLC-PDA based on their retention times and spectral data. The wavelengths λmax (258 nm) and (271 nm) of the UV spectrum of PYL and PPF and the retention times (RT) (3.38 min) and (4.03 min), respectively. The toxicological potentials of PPF and PYL were significant at concentrations (1, 10, 100 and 1000 ppm), with an LC50 of 48 h (0.5 ppm). PPF and PYL pointed out a cytotoxic effect in A. cepa at all concentrations (0.0001, 0.001, 0.01, 0.1, 1.0, 100 and 1000 ppm), genotoxic effect at concentrations only (0.0001; 0.1; 1; 100 and 1000 ppm), and mutagenic for concentrations (0.1, 100 and 1000 ppm). In relation S. cerevisiae, PPF e PYL prompted oxidative damage at concentrations (100 and 1000 ppm) in all strains (SODWT, Sod1, Sod2, Sod1Sod2, Cat1 and Sod1Cat1). Therefore, the PPF and PYL identificated in commercial larvicide by HPLC-PDA produced cytotoxic and oxidative effects that could cause health and ecosystem risks.
Collapse
Affiliation(s)
- Patrícia E Silva Alves
- Post-Graduation Department in Chemistry, State University of Piauí, zip code 64003-120, Teresina, Piauí, Brazil.
| | | | - Pedro Marcos de Almeida
- Post-Graduation Department in Chemistry, State University of Piauí, zip code 64003-120, Teresina, Piauí, Brazil
| | - Francielle Aline Martins
- Post-Graduation Department in Chemistry, State University of Piauí, zip code 64003-120, Teresina, Piauí, Brazil
| | | | | | | | - Mahendra Rai
- Biotechnology Departament, Sant Gadge Baba Amravati University, Amravati, 444 602, Maharashtra, India
| | - Antonielly Campinho Dos Reis
- Post-Graduation Department in Pharmacy, Federal University of Piauí, zip code 64049-550, Teresina, Piauí, Brazil
| | | |
Collapse
|
17
|
Liu H, Yi X, Bi J, Wang P, Liu D, Zhou Z. The enantioselective environmental behavior and toxicological effects of pyriproxyfen in soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:97-106. [PMID: 30412812 DOI: 10.1016/j.jhazmat.2018.10.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/29/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
We synthesized nine pyriproxyfen (PYR) metabolites and developed a chiral residual analysis method for PYR with its metabolites in five soils using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Soil degradation research showed that higher organic matter content and bigger soil particle size were conducive to the degradation of PYR and metabolites. Metabolite A 4'-OH-PYR was mainly found in five soils. PYR and metabolite A performed enantioselective degradation in soil with half-lives ranging from 2.11 d to 9.69 d and 2.80 d to 13.30 d, respectively. The activity of dehydrogenase, sucrase was inhibited and catalase activity was promoted under the disturbance of PYR. Urease was more sensitive to PYR with uncertain influences. Most soil enzymes were not restored to their initial active state after 120 d. The toxicity of metabolites to earthworms was greater than that of the parent compound PYR. This study provides the basic degradation and toxicity data of chiral pesticide PYR and its main metabolites in soil ecosystem, which is of great significance for guiding safe use and comprehensive evaluation of PYR on environmental risk.
Collapse
Affiliation(s)
- Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China
| | - Xiaotong Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China
| | - Jiawei Bi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China.
| |
Collapse
|
18
|
Azevedo-Linhares M, Souza ATC, Lenz CA, Leite NF, Brito IA, Folle NMT, Garcia JE, Filipak Neto F, Oliveira Ribeiro CA. Microcystin and pyriproxyfen are toxic to early stages of development in Rhamdia quelen: An experimental and modelling study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:311-319. [PMID: 30278392 DOI: 10.1016/j.ecoenv.2018.09.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/21/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
The recent increase of freshwater eutrophication has favored cyanobacteria blooms and consequently the increase of toxins such as microcystin-LR in aquatic environments, but few is know about the associated effect of toxin and other compounds. Pyriproxyfen is an insecticide indicated by WHO (World Health Organization) to control Aedes aegypti mosquito (vector of Dengue, Chikungunya and Zika diseases), however, the effects are not well described to non-target species, such as fish. The early life stages (ELS) of fish are more sensitive to chemical stress due to higher metabolic rate, immature immune system and high superficial area/volume ratio. In the current study, ELS of R. quelen a Neotropical fish were exposed to environmentally realistic concentrations of microcystin (1, 10 and 100 µg L-1; M1, M2 and M3 groups, respectively) from an algal extract, pyriproxyfen (1 and 10 µg L-1, P1 and P2) and their association (co-exposure). The hatching, survival and larvae deformities were analyzed, and applied a mathematical model to evaluate the effects on the population size along further generations. Both compounds were toxic to embryos/larvae of fish, but the effects were more pronounced in M2, P1M2 and P2M1 for hatching and M2, P1M2, P2M1 and P1 for survival. Deformities prevailed in groups exposed to the chemicals at 48 hpf (hours post-fertilization) were suggestions of toxicological interaction in P1M2, P2M1 and P2M2 at 48 and 72 hpf. In 96 hpf, the levels of deformities were lower than in previous times. Model predicted population density over 100 years decreased to lower than 0.5 (50%) in all groups, except for P1M1, indicating risk of extinction. P1M2 had the worse results, followed by M2, P1M3 and P2M1. Cyanobacterial blooms can lead to microcystin-LR levels higher than M2 (10 µg L-1), and the suggestion of toxicological interaction with pyriproxyfen is relevant because both compounds may potentially coexist in aquatic environments. Finally, mathematical models may provide an ecological interpretation of the risk of exposure of fish.
Collapse
Affiliation(s)
- M Azevedo-Linhares
- Centro de Tecnologia em Saúde e Meio Ambiente, Instituto de Tecnologia do Paraná, CEP 81350-010, Curitiba, PR, Brazil.
| | - A T C Souza
- Pós-graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-990 Curitiba, PR, Brazil
| | - C A Lenz
- Centro de Tecnologia em Saúde e Meio Ambiente, Instituto de Tecnologia do Paraná, CEP 81350-010, Curitiba, PR, Brazil
| | - N Ferreira Leite
- Centro de Tecnologia em Saúde e Meio Ambiente, Instituto de Tecnologia do Paraná, CEP 81350-010, Curitiba, PR, Brazil
| | - I A Brito
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-990 Curitiba, PR, Brazil
| | - N M T Folle
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-990 Curitiba, PR, Brazil
| | - J E Garcia
- Estação de Piscicultura Panamá, CEP 88490-000 Paulo Lopes, SC, Brazil
| | - F Filipak Neto
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-990 Curitiba, PR, Brazil
| | - C A Oliveira Ribeiro
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81531-990 Curitiba, PR, Brazil.
| |
Collapse
|
19
|
Chłopecka M, Mendel M, Dziekan N, Karlik W. The effect of pyriproxyfen on the motoric activity of rat intestine - In vitro study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1146-1152. [PMID: 30029324 DOI: 10.1016/j.envpol.2018.06.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/13/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
The application of pyriproxyfen (PPF) to drinking water and constant exposure of the whole population to this insecticide is an unprecedented action on a world scale and presents a new and serious challenge for toxicology. The aim of the study was to evaluate the potential effect of PPF on the intestine muscle activity. The experiments were performed on isolated duodenum and jejunum strips of rat, in isometric conditions. Doses of PPF in the range of 0.032-100 μM were used in the experiments. The obtained results indicate that PPF affected significantly the spontaneous activity of duodenum and jejunum strips, PPF caused the muscle relaxation when used in the concentration of 0.8 μM and higher. The reaction to acetylcholine (ACh) when PPF preceded or followed ACh application was also reduced. It is demonstrated that the reduction of the contraction caused by ACh was stronger when duodenum strips were preincubated in the presence of PPF solution than in case of ACh-precontracted strips. The first significant reaction of duodenal strips appeared in the presence of PPF in a dose of 0.16 μM and 0.8 μM when the insecticide application preceded and followed ACh treatment, respectively. Besides, the duodenum turned out to be much more susceptible to the tested insecticide than jejunum. Taking into account PPF kinetic data obtained in animals, the observed disturbances were caused by the insecticide used in relatively high concentrations. However, the full risk estimation requires the kinetic data obtained in human, especially from monitoring studies on general population after long-term exposure to PPF.
Collapse
Affiliation(s)
- Magdalena Chłopecka
- Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Sciences, Division of Pharmacology and Toxicology, 8, Ciszewskiego St., 02-786, Warsaw, Poland.
| | - Marta Mendel
- Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Sciences, Division of Pharmacology and Toxicology, 8, Ciszewskiego St., 02-786, Warsaw, Poland
| | - Natalia Dziekan
- Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Sciences, Division of Pharmacology and Toxicology, 8, Ciszewskiego St., 02-786, Warsaw, Poland
| | - Wojciech Karlik
- Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Sciences, Division of Pharmacology and Toxicology, 8, Ciszewskiego St., 02-786, Warsaw, Poland
| |
Collapse
|
20
|
Audouze K, Taboureau O, Grandjean P. A systems biology approach to predictive developmental neurotoxicity of a larvicide used in the prevention of Zika virus transmission. Toxicol Appl Pharmacol 2018; 354:56-63. [PMID: 29476864 PMCID: PMC6087490 DOI: 10.1016/j.taap.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 01/26/2023]
Abstract
The need to prevent developmental brain disorders has led to an increased interest in efficient neurotoxicity testing. When an epidemic of microcephaly occurred in Brazil, Zika virus infection was soon identified as the likely culprit. However, the pathogenesis appeared to be complex, and a larvicide used to control mosquitoes responsible for transmission of the virus was soon suggested as an important causative factor. Yet, it is challenging to identify relevant and efficient tests that are also in line with ethical research defined by the 3Rs rule (Replacement, Reduction and Refinement). Especially in an acute situation like the microcephaly epidemic, where little toxicity documentation is available, new and innovative alternative methods, whether in vitro or in silico, must be considered. We have developed a network-based model using an integrative systems biology approach to explore the potential developmental neurotoxicity, and we applied this method to examine the larvicide pyriproxyfen widely used in the prevention of Zika virus transmission. Our computational model covered a wide range of possible pathways providing mechanistic hypotheses between pyriproxyfen and neurological disorders via protein complexes, thus adding to the plausibility of pyriproxyfen neurotoxicity. Although providing only tentative evidence and comparisons with retinoic acid, our computational systems biology approach is rapid and inexpensive. The case study of pyriproxyfen illustrates its usefulness as an initial or screening step in the assessment of toxicity potentials of chemicals with incompletely known toxic properties.
Collapse
Affiliation(s)
- Karine Audouze
- INSERM UMR-S 973, 75013 Paris, France; University of Paris Diderot, 75013 Paris, France
| | - Olivier Taboureau
- INSERM UMR-S 973, 75013 Paris, France; University of Paris Diderot, 75013 Paris, France
| | - Philippe Grandjean
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
21
|
Bora K, Das D, Barman B, Borah P. Are internet videos useful sources of information during global public health emergencies? A case study of YouTube videos during the 2015-16 Zika virus pandemic. Pathog Glob Health 2018; 112:320-328. [PMID: 30156974 DOI: 10.1080/20477724.2018.1507784] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Internet-videos, though popular sources of public health information, are often unverified and anecdotal. We critically evaluated YouTube videos about Zika virus available during the recent Zika pandemic. METHODS Hundred-and-one videos were retrieved from YouTube (search term: zika virus). Based upon content, they were classified as: informative, misleading or personal experience videos. Quality and reliability of these videos were evaluated using standardized tools. The viewer interaction metrics (e.g. no. of views, shares, etc.), video characteristics (video length, etc.) and the sources of upload were also assessed; and their relationship with the type, quality and reliability of the videos analyzed. RESULTS Overall, 70.3% videos were informative, while 23.8% and 5.9% videos were misleading and related to personal experiences, respectively. Although with shorter lengths (P < 0.01) and superior quality (P < 0.01), yet informative videos were viewed (P = 0.054), liked (P < 0.01) and shared (P < 0.05) less often than their misleading counterparts. Videos from independent users were more likely to be misleading (adjusted OR = 6.48, 95% CI: 1.69 - 24.83), of poorer (P < 0.05) quality and reliability than government/news agency videos. CONCLUSION A considerable chunk of the videos were misleading. They were more popular (than informative videos) and could potentially spread misinformation. Videos from trustworthy sources like university/health organizations were scarce. Curation/authentication of health information in online video platforms (like YouTube) is necessary. We discuss means to harness them as useful source of information and highlight measures to curb dissemination of misinformation during public health emergencies.
Collapse
Affiliation(s)
- Kaustubh Bora
- a ICMR - Regional Medical Research Centre, N.E. Region , Dibrugarh , Assam , India
| | - Dulmoni Das
- b Department of Psychology , Indira Gandhi National Open University, Regional Study Centre , Shillong , Meghalaya , India.,c Department of Mental Health Nursing , Army Institute of Nursing , Guwahati , Assam , India
| | - Bhupen Barman
- d Department of General Medicine , North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS) , Shillong , Meghalaya , India
| | - Probodh Borah
- e Bioinformatics Infrastructure Facility (BIF) & Advanced State Biotech Hub and Department of Animal Biotechnology , College of Veterinary Sciences , Khanapara, Guwahati , Assam , India
| |
Collapse
|
22
|
Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadirvelu K. Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): A multi biomarker study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:132-145. [PMID: 29407799 DOI: 10.1016/j.aquatox.2018.01.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Pyriproxyfen (2-[1-methyl-2-(4-phenoxyphenoxy) ethoxy] pyridine) (PPF), a pyridine-based pesticide widely used to control agricultural insect pests and mosquitoes in drinking water sources. However, its ecotoxicological data is limited in aquatic vertebrates particularly in fish. Hence, the present study aimed to evaluate the adverse effect of PPF in zebrafish embryo development (Danio rerio). In order to investigate the impact of PPF, embryos were exposed to 0.16, 0.33 and 1.66 μg/mL (0.52, 1.04 and 5.2 μM, respectively) for 96 hpf and various biomarker indices such as developmental toxicity (edema formation, hyperemia, heart size and scoliosis), oxidative stress (reactive oxygen species (ROS), lipid peroxidation (LPO) and nitric oxide (NO)), antioxidant responses (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx) and reduced glutathione (GSH)), biochemical (lactate dehydrogenase (LDH) and acid phosphatase (AP)), neurotoxicity (acetylcholinesterase (AChE)), genotoxicity (apoptosis and DNA damage) and histopathological changes were determined. The results showed that severe developmental deformities and changes in heart rate were observed in embryos treated with highest (1.66 μg/mL) concentration than the control (P < 0.05). Heart size measurement showed that, significant change in heart size (P < 0.01) was observed in embryos of 96 hpf only at 1.66 μg/mL PPF exposure. The oxidative stress was apparent at highest test concentration (1.66 μg/mL) as reflected by the elevated ROS, LPO and NO and changes in antioxidant enzyme activities including SOD, CAT, GST and GPx (P < 0.05). Besides, GSH level and AChE activity were significantly lowered in 1.66 μg/mL PPF exposed group than the control. After 96 hpf of PPF exposure, no significant changes were found in AP activity whereas, a biphasic response was observed in the LDH activity. There was no genotoxic effect in embryos exposed to PPF at 0.16 and 0.33 μg/mL, while significant (P < 0.05) DNA damage and apoptosis were found in 1.66 μg/mL treated group. Histopathological analysis revealed that exposure to PPF at 1.66 μg/mL resulted in thinning of heart muscles, pericardial edema and hyperemia while there was no obvious changes were observed in other treatment groups. Hence, the results of the present study demonstrate that PPF could cause adverse effect on early developmental stages of zebrafish at higher concentration.
Collapse
Affiliation(s)
- Kannan Maharajan
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India
| | | | - Bojan Nataraj
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, India
| | - Mathan Ramesh
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India; Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, India.
| | - Krishna Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India
| |
Collapse
|
23
|
Alvarado-Socarras JL, Idrovo ÁJ, Contreras-García GA, Rodriguez-Morales AJ, Audcent TA, Mogollon-Mendoza AC, Paniz-Mondolfi A. Congenital microcephaly: A diagnostic challenge during Zika epidemics. Travel Med Infect Dis 2018; 23:14-20. [PMID: 29471046 DOI: 10.1016/j.tmaid.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/02/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023]
Abstract
The multiple, wide and diverse etiologies of congenital microcephaly are complex and multifactorial. Recent advances in genetic testing have improved understanding of novel genetic causes of congenital microcephaly. The recent Zika virus (ZIKV) epidemic in Latin America has highlighted the need for a better understanding of the underlying pathological mechanisms of microcephaly including both infectious and non-infectious causes. The diagnostic approach to microcephaly needs to include potential infectious and genetic etiologies, as well as environmental in-utero exposures such as alcohol, toxins, and medications. Emerging genetic alterations linked to microcephaly include abnormal mitotic microtubule spindle structure and abnormal function of centrosomes. We discuss the diagnostic challenge of congenital microcephaly in the context of understanding the links with ZIKV emergence as a new etiological factor involved in this birth defect.
Collapse
Affiliation(s)
- Jorge L Alvarado-Socarras
- Neonatal Unit, Department of Pediatrics, Fundación Cardiovascular de Colombia, Floridablanca, Santander, Colombia; Organización Latinoamericana para el Fomento de la Investigación en Salud (OLFIS), Bucaramanga, Santander, Colombia; Colombian Collaborative Network on Zika (RECOLZIKA), Pereira, Risaralda, Colombia
| | - Álvaro J Idrovo
- Public Health Department, School of Medicine, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Alfonso J Rodriguez-Morales
- Organización Latinoamericana para el Fomento de la Investigación en Salud (OLFIS), Bucaramanga, Santander, Colombia; Colombian Collaborative Network on Zika (RECOLZIKA), Pereira, Risaralda, Colombia; Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia.
| | - Tobey A Audcent
- Children's Hospital of Eastern Ontario, 401 Smyth Rd, Ottawa, ON, K1H 8L1, Canada
| | - Adriana C Mogollon-Mendoza
- Infectious Diseases Research Incubator and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Venezuela; Health Sciences Department, College of Medicine, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Lara, Venezuela
| | - Alberto Paniz-Mondolfi
- IDB Biomedical Research Center, Department of Infectious Diseases and Tropical Medicine/Infectious Diseases Pathology Laboratory (IDB), Barquisimeto, Venezuela; Directorate of Health, Instituto Venezolano de Los Seguros Sociales (IVSS), Caracas, Dtto. Capital, Venezuela
| |
Collapse
|
24
|
Dubaut JP, Agudelo Higuita NI, Quaas AM. Impact of Zika virus for infertility specialists: current literature, guidelines, and resources. J Assist Reprod Genet 2017; 34:1237-1250. [PMID: 28687969 PMCID: PMC5633575 DOI: 10.1007/s10815-017-0988-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/16/2017] [Indexed: 01/28/2023] Open
Abstract
In the past 2 years, Zika virus has emerged from obscurity onto the world stage-traversing and transcending clinical specialties, basic science disciplines, and public health efforts. The spread of Zika virus has serious implications for the specialty of reproductive endocrinology and infertility. Our patients, practices, and labs-worldwide and specifically in the USA-have been impacted by this teratogenic, sexually transmitted, largely asymptomatic virus. While the World Health Organization's Public Emergency of International Concern designation has lapsed as major epidemics have subsided and understanding of risks is in part clarified, the acute and long-term threat to pregnant patients is not over. The risk of wider spread in the USA is not insignificant, the subtler and long-ranging consequences beyond microcephaly are not fully known, large geographic areas of risk still contain naïve populations, and whether Zika will continue to be an intermittent risk in endemic areas is uncertain. Staying up to date with the burgeoning research on Zika virus is an important objective for the infertility specialist. Here, we review in detail the most relevant recent developments, discuss applicable guidelines, and propose strategies for contributing to a reduction in the risk and burden of Zika virus.
Collapse
Affiliation(s)
- Jamie P Dubaut
- Section of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, P.O. Box 26901, COMB 2400, Oklahoma City, OK, 73126-0901, USA.
| | - Nelson I Agudelo Higuita
- Section of Infectious Disease, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Alexander M Quaas
- Section of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, P.O. Box 26901, COMB 2400, Oklahoma City, OK, 73126-0901, USA
| |
Collapse
|