1
|
Jin K, Tian N, da Silva Ferreira JF, Sandhu D, Xiao L, Gu M, Luo Y, Zhang X, Liu G, Liu Z, Huang J, Liu S. Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules 2022; 12:688. [PMID: 35625616 PMCID: PMC9138961 DOI: 10.3390/biom12050688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Tea (Camellia sinensis L.), an important economic crop, is recalcitrant to Agrobacterium-mediated transformation (AMT), which has seriously hindered the progress of molecular research on this species. The mechanisms leading to low efficiency of AMT in tea plants, related to the morphology, growth, and gene expression of Agrobacterium tumefaciens during tea-leaf explant infection, were compared to AMT of Nicotiana benthamiana leaves in the present work. Scanning electron microscopy (SEM) images showed that tea leaves induced significant morphological aberrations on bacterial cells and affected pathogen-plant attachment, the initial step of a successful AMT. RNA sequencing and transcriptomic analysis on Agrobacterium at 0, 3 and 4 days after leaf post-inoculation resulted in 762, 1923 and 1656 differentially expressed genes (DEGs) between the tea group and the tobacco group, respectively. The expressions of genes involved in bacterial fundamental metabolic processes, ATP-binding cassette (ABC) transporters, two-component systems (TCSs), secretion systems, and quorum sensing (QS) systems were severely affected in response to the tea-leaf phylloplane. Collectively, these results suggest that compounds in tea leaves, especially gamma-aminobutyrate (GABA) and catechins, interfered with plant-pathogen attachment, essential minerals (iron and potassium) acquisition, and quorum quenching (QQ) induction, which may have been major contributing factors to hinder AMT efficiency of the tea plant.
Collapse
Affiliation(s)
- Ke Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jorge Freire da Silva Ferreira
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Lizheng Xiao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Yiping Luo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Xiangqin Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| |
Collapse
|
2
|
Manriquez B, Muller D, Prigent-Combaret C. Experimental Evolution in Plant-Microbe Systems: A Tool for Deciphering the Functioning and Evolution of Plant-Associated Microbial Communities. Front Microbiol 2021; 12:619122. [PMID: 34025595 PMCID: PMC8137971 DOI: 10.3389/fmicb.2021.619122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
In natural environments, microbial communities must constantly adapt to stressful environmental conditions. The genetic and phenotypic mechanisms underlying the adaptive response of microbial communities to new (and often complex) environments can be tackled with a combination of experimental evolution and next generation sequencing. This combination allows to analyse the real-time evolution of microbial populations in response to imposed environmental factors or during the interaction with a host, by screening for phenotypic and genotypic changes over a multitude of identical experimental cycles. Experimental evolution (EE) coupled with comparative genomics has indeed facilitated the monitoring of bacterial genetic evolution and the understanding of adaptive evolution processes. Basically, EE studies had long been done on single strains, allowing to reveal the dynamics and genetic targets of natural selection and to uncover the correlation between genetic and phenotypic adaptive changes. However, species are always evolving in relation with other species and have to adapt not only to the environment itself but also to the biotic environment dynamically shaped by the other species. Nowadays, there is a growing interest to apply EE on microbial communities evolving under natural environments. In this paper, we provide a non-exhaustive review of microbial EE studies done with systems of increasing complexity (from single species, to synthetic communities and natural communities) and with a particular focus on studies between plants and plant-associated microorganisms. We highlight some of the mechanisms controlling the functioning of microbial species and their adaptive responses to environment changes and emphasize the importance of considering bacterial communities and complex environments in EE studies.
Collapse
Affiliation(s)
| | | | - Claire Prigent-Combaret
- UMR 5557 Ecologie Microbienne, VetAgro Sup, CNRS, INRAE, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
3
|
Blin P, Robic K, Khayi S, Cigna J, Munier E, Dewaegeneire P, Laurent A, Jaszczyszyn Y, Hong KW, Chan KG, Beury A, Reverchon S, Giraud T, Hélias V, Faure D. Pattern and causes of the establishment of the invasive bacterial potato pathogen Dickeya solani and of the maintenance of the resident pathogen D. dianthicola. Mol Ecol 2020; 30:608-624. [PMID: 33226678 DOI: 10.1111/mec.15751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
Invasive pathogens can be a threat when they affect human health, food production or ecosystem services, by displacing resident species, and we need to understand the cause of their establishment. We studied the patterns and causes of the establishment of the pathogen Dickeya solani that recently invaded potato agrosystems in Europe by assessing its invasion dynamics and its competitive ability against the closely related resident D. dianthicola species. Epidemiological records over one decade in France revealed the establishment of D. solani and the maintenance of the resident D. dianthicola in potato fields exhibiting blackleg symptoms. Using experimentations, we showed that D. dianthicola caused a higher symptom incidence on aerial parts of potato plants than D. solani, while D. solani was more aggressive on tubers (i.e. with more severe symptoms). In co-infection assays, D. dianthicola outcompeted D. solani in aerial parts, while the two species co-existed in tubers. A comparison of 76 D. solani genomes (56 of which have been sequenced here) revealed balanced frequencies of two previously uncharacterized alleles, VfmBPro and VfmBSer , at the vfmB virulence gene. Experimental inoculations showed that the VfmBSer population was more aggressive on tubers, while the VfmBPro population outcompeted the VfmBSer population in stem lesions, suggesting an important role of the vfmB virulence gene in the ecology of the pathogens. This study thus brings novel insights allowing a better understanding of the pattern and causes of the D.solani invasion into potato production agrosystems, and the reasons why the endemic D. dianthicola nevertheless persisted.
Collapse
Affiliation(s)
- Pauline Blin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Kévin Robic
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Slimane Khayi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,Biotechnology Research Unit, National Institute for Agronomic Research (INRA), Rabat, Morocco
| | - Jérémy Cigna
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Euphrasie Munier
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | | | - Angélique Laurent
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Kar-Wai Hong
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Amélie Beury
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Sylvie Reverchon
- Microbiologie Adaptation et Pathogénie (MAP), UMR5240, CNRS, INSA-Lyon, Univ. Lyon, Université Claude Bernard, Lyon 1, Villeurbanne, France
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Valérie Hélias
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res Int 2019; 127:108754. [PMID: 31882100 DOI: 10.1016/j.foodres.2019.108754] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
Food can harbor a variety of microorganisms including spoilage and pathogenic bacteria. Many bacterial processes, including production of degrading enzymes, virulence factors, and biofilm formation are known to depend on cell density through a process called quorum sensing (QS), in which cells communicate by synthesizing, detecting and reacting to small diffusible signaling molecules - autoinducers (AI). The disruption of QS could decisively contribute to control the expression of many harmful bacterial phenotypes. Several quorum sensing inhibitors (QSI) have been extensively studied, being many of them of natural origin. This review provides an analysis on the role of QS in food spoilage and biofilm formation within the food industry. QSI from natural sources are also reviewed towards their putative future applications to prolong shelf life of food products and decrease foodborne pathogenicity.
Collapse
|
5
|
Gonzalez-Mula A, Lachat J, Mathias L, Naquin D, Lamouche F, Mergaert P, Faure D. The biotroph Agrobacterium tumefaciens thrives in tumors by exploiting a wide spectrum of plant host metabolites. THE NEW PHYTOLOGIST 2019; 222:455-467. [PMID: 30447163 DOI: 10.1111/nph.15598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/03/2018] [Indexed: 05/12/2023]
Abstract
Agrobacterium tumefaciens is a niche-constructing biotroph that exploits host plant metabolites. We combined metabolomics, transposon-sequencing (Tn-seq), transcriptomics, and reverse genetics to characterize A. tumefaciens pathways involved in the exploitation of resources from the Solanum lycopersicum host plant. Metabolomics of healthy stems and plant tumors revealed the common (e.g. sucrose, glutamate) and enriched (e.g. opines, γ-aminobutyric acid (GABA), γ-hydroxybutyric acid (GHB), pyruvate) metabolites that A. tumefaciens could use as nutrients. Tn-seq and transcriptomics pinpointed the genes that are crucial and/or upregulated when the pathogen grew on either sucrose (pgi, kdgA, pycA, cisY) or GHB (blcAB, pckA, eno, gpsA) as a carbon source. While sucrose assimilation involved the Entner-Doudoroff and tricarboxylic acid (TCA) pathways, GHB degradation required the blc genes, TCA cycle, and gluconeogenesis. The tumor-enriched metabolite pyruvate is at the node connecting these pathways. Using reverse genetics, we showed that the blc, pckA, and pycA loci were important for aggressiveness (tumor weight), proliferation (bacterial charge), and/or fitness (competition between the constructed mutants and wild-type) of A. tumefaciens in plant tumors. This work highlighted how a biotroph mobilizes its central metabolism for exploiting a wide diversity of resources in a plant host. It further shows the complementarity of functional genome-wide scans by transcriptomics and Tn-seq to decipher the lifestyle of a plant pathogen.
Collapse
Affiliation(s)
- Almudena Gonzalez-Mula
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Joy Lachat
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Léo Mathias
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Florian Lamouche
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Peter Mergaert
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
6
|
Saxena P, Joshi Y, Rawat K, Bisht R. Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms. Indian J Microbiol 2019; 59:3-12. [PMID: 30728625 PMCID: PMC6328408 DOI: 10.1007/s12088-018-0757-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
Biofilm is a mode of living employed by many pathogenic and environmental microbes to proliferate as multicellular aggregates on inert inanimate or biological substrates. Several microbial diseases are associated with biofilms that pose challenges in treatment with antibiotics targeting individual cells. Bacteria in biofilms secrete exopolymeric substances that contribute to architectural stability and provide a secure niche to inhabiting cells. Quorum sensing (QS) plays essential roles in biofilm development. Pathogenic bacteria in biofilms utilize QS mechanisms to activate virulence and develop antibiotic resistance. This review is a brief overview of biofilm research and provides updates on recent understandings on biofilm development, antibiotic resistance and transmission, and importance of QS mechanisms. Strategies to combat biofilm associated diseases including anti-biofilm substances, quorum quenching molecules, bio-surfactants and competitive inhibitors are briefly discussed. The review concludes with updates on recent approaches utilized for biofilm inhibition and provides perspectives for further research in the field.
Collapse
Affiliation(s)
- Priti Saxena
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Yogesh Joshi
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Kartik Rawat
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Renu Bisht
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| |
Collapse
|
7
|
Vadakkan K, Choudhury AA, Gunasekaran R, Hemapriya J, Vijayanand S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J Genet Eng Biotechnol 2018; 16:239-252. [PMID: 30733731 PMCID: PMC6353778 DOI: 10.1016/j.jgeb.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023]
Abstract
Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Abbas Alam Choudhury
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Ramya Gunasekaran
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | | | - Selvaraj Vijayanand
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| |
Collapse
|
8
|
González-Mula A, Lang J, Grandclément C, Naquin D, Ahmar M, Soulère L, Queneau Y, Dessaux Y, Faure D. Lifestyle of the biotroph Agrobacterium tumefaciens in the ecological niche constructed on its host plant. THE NEW PHYTOLOGIST 2018; 219:350-362. [PMID: 29701262 DOI: 10.1111/nph.15164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 05/23/2023]
Abstract
Agrobacterium tumefaciens constructs an ecological niche in its host plant by transferring the T-DNA from its Ti plasmid into the host genome and by diverting the host metabolism. We combined transcriptomics and genetics for understanding the A. tumefaciens lifestyle when it colonizes Arabidopsis thaliana tumors. Transcriptomics highlighted: a transition from a motile to sessile behavior that mobilizes some master regulators (Hfq, CtrA, DivK and PleD); a remodeling of some cell surface components (O-antigen, succinoglucan, curdlan, att genes, putative fasciclin) and functions associated with plant defense (Ef-Tu and flagellin pathogen-associated molecular pattern-response and glycerol-3-phosphate and nitric oxide signaling); and an exploitation of a wide variety of host resources, including opines, amino acids, sugars, organic acids, phosphate, phosphorylated compounds, and iron. In addition, construction of transgenic A. thaliana lines expressing a lactonase enzyme showed that Ti plasmid transfer could escape host-mediated quorum-quenching. Finally, construction of knock-out mutants in A. tumefaciens showed that expression of some At plasmid genes seemed more costly than the selective advantage they would have conferred in tumor colonization. We provide the first overview of A. tumefaciens lifestyle in a plant tumor and reveal novel signaling and trophic interplays for investigating host-pathogen interactions.
Collapse
Affiliation(s)
- Almudena González-Mula
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Julien Lang
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Catherine Grandclément
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Mohammed Ahmar
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), INSA-Lyon, Université Lyon 1, CNRS, CPE Lyon, ICBMS, UMR5246, INSA Lyon, Villeurbanne, F-69621, France
| | - Laurent Soulère
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), INSA-Lyon, Université Lyon 1, CNRS, CPE Lyon, ICBMS, UMR5246, INSA Lyon, Villeurbanne, F-69621, France
| | - Yves Queneau
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), INSA-Lyon, Université Lyon 1, CNRS, CPE Lyon, ICBMS, UMR5246, INSA Lyon, Villeurbanne, F-69621, France
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
9
|
Dessaux Y, Faure D. Quorum Sensing and Quorum Quenching in Agrobacterium: A "Go/No Go System"? Genes (Basel) 2018; 9:genes9040210. [PMID: 29659511 PMCID: PMC5924552 DOI: 10.3390/genes9040210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023] Open
Abstract
The pathogen Agrobacterium induces gall formation on a wide range of dicotyledonous plants. In this bacteria, most pathogenicity determinants are borne on the tumour inducing (Ti) plasmid. The conjugative transfer of this plasmid between agrobacteria is regulated by quorum sensing (QS). However, processes involved in the disturbance of QS also occur in this bacteria under the molecular form of a protein, TraM, inhibiting the sensing of the QS signals, and two lactonases BlcC (AttM) and AiiB that degrade the acylhomoserine lactone (AHL) QS signal. In the model Agrobacteriumfabrum strain C58, several data, once integrated, strongly suggest that the QS regulation may not be reacting only to cell concentration. Rather, these QS elements in association with the quorum quenching (QQ) activities may constitute an integrated and complex “go/no go system” that finely controls the biologically costly transfer of the Ti plasmid in response to multiple environmental cues. This decision mechanism permits the bacteria to sense whether it is in a gall or not, in a living or decaying tumor, in stressed plant tissues, etc. In this scheme, the role of the lactonases selected and maintained in the course of Ti plasmid and agrobacterial evolution appears to be pivotal.
Collapse
Affiliation(s)
- Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif sur Yvette CEDEX, France.
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif sur Yvette CEDEX, France.
| |
Collapse
|
10
|
Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Curr Top Microbiol Immunol 2018; 418:55-86. [PMID: 29556826 DOI: 10.1007/82_2018_83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agrobacterium populations live in different habitats (bare soil, rhizosphere, host plants), and hence face different environmental constraints. They have evolved the capacity to exploit diverse resources and to escape plant defense and competition from other microbiota. By modifying the genome of their host, Agrobacterium populations exhibit the remarkable ability to construct and exploit the ecological niche of the plant tumors that they incite. This niche is characterized by the accumulation of specific, low molecular weight compounds termed opines that play a critical role in Agrobacterium 's lifestyle. We present and discuss the functions, advantages, and costs associated with this niche construction and exploitation.
Collapse
|
11
|
Barton IS, Fuqua C, Platt TG. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol 2018; 20:16-29. [PMID: 29105274 PMCID: PMC5764771 DOI: 10.1111/1462-2920.13976] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023]
Abstract
Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes.
Collapse
Affiliation(s)
- Ian S. Barton
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
12
|
Endogenous physical regulation of population density in the freshwater protozoan Paramecium caudatum. Sci Rep 2017; 7:13800. [PMID: 29062014 PMCID: PMC5653844 DOI: 10.1038/s41598-017-14231-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Studies confirm physical long-range cell-cell communication, most evidently based on electromagnetic fields. Effects concern induction or inhibition of cell growth. Their natural function is unclear. With the protozoan Paramecium caudatum I tested whether the signals regulate cell density and are electromagnetic. Up to 300 cells/mL, cell growth in clones of this study is decreasingly pronounced. Using cuvettes as chemical barriers enabling physical communication I placed 5 indicator cells/mL, the inducer populations, into smaller cuvettes that stand in bigger and contained 50, 100, 200 or 300 cells/mL. Under conditions of total darkness such pairs were mutually exposed for 48 hours. The hypothesis was that indicator cells, too, grow less the more neighbor cells there are. The bigger inducer populations were in the beginning the less they grew. The indicator populations grew accordingly; the more cells they were surrounded by the less they grew. The suppressing neighbors-effect disappeared when inner cuvettes were shielded by graphite known to shield electromagnetic radiation from GHz to PHz, i.e. to absorb energy from microwaves to light. These are the first results demonstrating non-contact physical quorum sensing for cell population density regulation. I assume rules intrinsic to electromagnetic fields interacting with matter and life.
Collapse
|
13
|
Maintenance of Microbial Cooperation Mediated by Public Goods in Single- and Multiple-Trait Scenarios. J Bacteriol 2017; 199:JB.00297-17. [PMID: 28847922 DOI: 10.1128/jb.00297-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microbes often form densely populated communities, which favor competitive and cooperative interactions. Cooperation among bacteria often occurs through the production of metabolically costly molecules produced by certain individuals that become available to other neighboring individuals; such molecules are called public goods. This type of cooperation is susceptible to exploitation, since nonproducers of a public good can benefit from it while saving the cost of its production (cheating), gaining a fitness advantage over producers (cooperators). Thus, in mixed cultures, cheaters can increase in frequency in the population, relative to cooperators. Sometimes, and as predicted by simple game-theoretic arguments, such increases in the frequency of cheaters cause loss of the cooperative traits by exhaustion of the public goods, eventually leading to a collapse of the entire population. In other cases, however, both cooperators and cheaters remain in coexistence. This raises the question of how cooperation is maintained in microbial populations. Several strategies to prevent cheating have been studied in the context of a single trait and a unique environmental constraint. In this review, we describe current knowledge on the evolutionary stability of microbial cooperation and discuss recent discoveries describing the mechanisms operating in multiple-trait and multiple-constraint settings. We conclude with a consideration of the consequences of these complex interactions, and we briefly discuss the potential role of social interactions involving multiple traits and multiple environmental constraints in the evolution of specialization and division of labor in microbes.
Collapse
|