1
|
Fu Y, Guo X, Yang R, Feng H, Yin X, Wang S, Song L, Wang X, Zhao P, Wang S, Shi Y, Shi H. Hippocampal BAIAP2 prevents chronic mild stress-induced depression-like behaviors in mice. Front Psychiatry 2023; 14:1192379. [PMID: 37234209 PMCID: PMC10206043 DOI: 10.3389/fpsyt.2023.1192379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background The pathogenesis of depression is closely related to changes in hippocampal synaptic plasticity; however, the underlying mechanism is still unclear. Brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2), a postsynaptic scaffold protein in excitatory synapses important for synaptic plasticity, is highly expressed in the hippocampus and has been implicated in several psychiatric disorders. However, the role of BAIAP2 in depression remains poorly understood. Methods In the present study, a mouse model of depression was established via exposure to chronic mild stress (CMS). An adeno-associated virus (AAV) vector expressing BAIAP2 was injected into the hippocampal brain region of mice and a BAIAP2 overexpression plasmid was transfected into HT22 cells to upregulate BAIAP2 expression. Depression- and anxiety-like behaviors and dendritic spine density were examined in mice using behavioral tests and Golgi staining, respectively. In vitro, hippocampal HT22 cells were treated with corticosterone (CORT) to simulate the stress state, and the effect of BAIAP2 on CORT-induced cell injury was explored. Reverse transcription-quantitative PCR and western blotting were employed to determine the expression levels of BAIAP2 and those of the synaptic plasticity-related proteins glutamate receptor ionotropic, AMPA 1 (GluA1), and synapsin 1 (SYN1). Results Mice exposed to CMS exhibited depression- and anxiety-like behaviors accompanied by decreased levels of BAIAP2 in the hippocampus. In vitro, the overexpression of BAIAP2 increased the survival rate of CORT-treated HT22 cells and upregulated the expression of GluA1 and SYN1. Consistent with the in vitro data, the AAV-mediated overexpression of BAIAP2 in the hippocampus of mice significantly inhibited CMS-induced depression-like behavior, concomitant with increases in dendritic spine density and the expression of GluA1 and SYN1 in hippocampal regions. Conclusion Our findings indicate that hippocampal BAIAP2 can prevent stress-induced depression-like behavior and may be a promising target for the treatment of depression or other stress-related diseases.
Collapse
Affiliation(s)
- Yaling Fu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Xiangfei Guo
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Xi Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Xie S, Choudhari S, Wu CL, Abramson K, Corcoran D, Gregory SG, Thimmapuram J, Guilak F, Little D. Aging and obesity prime the methylome and transcriptome of adipose stem cells for disease and dysfunction. FASEB J 2023; 37:e22785. [PMID: 36794668 PMCID: PMC10561192 DOI: 10.1096/fj.202201413r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
The epigenome of stem cells occupies a critical interface between genes and environment, serving to regulate expression through modification by intrinsic and extrinsic factors. We hypothesized that aging and obesity, which represent major risk factors for a variety of diseases, synergistically modify the epigenome of adult adipose stem cells (ASCs). Using integrated RNA- and targeted bisulfite-sequencing in murine ASCs from lean and obese mice at 5- and 12-months of age, we identified global DNA hypomethylation with either aging or obesity, and a synergistic effect of aging combined with obesity. The transcriptome of ASCs in lean mice was relatively stable to the effects of age, but this was not true in obese mice. Functional pathway analyses identified a subset of genes with critical roles in progenitors and in diseases of obesity and aging. Specifically, Mapt, Nr3c2, App, and Ctnnb1 emerged as potential hypomethylated upstream regulators in both aging and obesity (AL vs. YL and AO vs. YO), and App, Ctnnb1, Hipk2, Id2, and Tp53 exhibited additional effects of aging in obese animals. Furthermore, Foxo3 and Ccnd1 were potential hypermethylated upstream regulators of healthy aging (AL vs. YL), and of the effects of obesity in young animals (YO vs. YL), suggesting that these factors could play a role in accelerated aging with obesity. Finally, we identified candidate driver genes that appeared recurrently in all analyses and comparisons undertaken. Further mechanistic studies are needed to validate the roles of these genes capable of priming ASCs for dysfunction in aging- and obesity-associated pathologies.
Collapse
Affiliation(s)
- Shaojun Xie
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Sulbha Choudhari
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
- Advanced Biomedical Computational Science, Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, MD 2170
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14611
| | - Karen Abramson
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
| | - David Corcoran
- Genomic Analysis and Bioinformatics Shared Resource, Duke Center for Genomic and Computational Biology, 101 Science Drive, Duke University Medical Center Box 3382, Durham, NC 27708
- Lineberger Bioinformatics Core, 5200 Marsico Hall, University of North Carolina-Chapel Hill, Chapel Hill, NC 27516
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
- Department of Neurology, Duke University School of Medicine, 311 Research Drive, Durham, NC 27710
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, 4515 McKinley Ave., St. Louis, MO 63110
- Shriners Hospitals for Children – St. Louis, 4400 Clayton Ave, St. Louis Missouri 63110
| | - Dianne Little
- Departments of Basic Medical Sciences and Biomedical Engineering, Purdue University, 2186 Lynn Hall, 625 Harrison St, West Lafayette, IN 47907-2026
| |
Collapse
|
3
|
Tunneling nanotubes and related structures: molecular mechanisms of formation and function. Biochem J 2021; 478:3977-3998. [PMID: 34813650 DOI: 10.1042/bcj20210077] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs) are F-actin-based, membrane-enclosed tubular connections between animal cells that transport a variety of cellular cargo. Over the last 15 years since their discovery, TNTs have come to be recognized as key players in normal cell communication and organism development, and are also exploited for the spread of various microbial pathogens and major diseases like cancer and neurodegenerative disorders. TNTs have also been proposed as modalities for disseminating therapeutic drugs between cells. Despite the rapidly expanding and wide-ranging relevance of these structures in both health and disease, there is a glaring dearth of molecular mechanistic knowledge regarding the formation and function of these important but enigmatic structures. A series of fundamental steps are essential for the formation of functional nanotubes. The spatiotemporally controlled and directed modulation of cortical actin dynamics would be required to ensure outward F-actin polymerization. Local plasma membrane deformation to impart negative curvature and membrane addition at a rate commensurate with F-actin polymerization would enable outward TNT elongation. Extrinsic tactic cues, along with cognate intrinsic signaling, would be required to guide and stabilize the elongating TNT towards its intended target, followed by membrane fusion to create a functional TNT. Selected cargoes must be transported between connected cells through the action of molecular motors, before the TNT is retracted or destroyed. This review summarizes the current understanding of the molecular mechanisms regulating these steps, also highlighting areas that deserve future attention.
Collapse
|
4
|
Pipathsouk A, Brunetti RM, Town JP, Graziano BR, Breuer A, Pellett PA, Marchuk K, Tran NHT, Krummel MF, Stamou D, Weiner OD. The WAVE complex associates with sites of saddle membrane curvature. J Cell Biol 2021; 220:e202003086. [PMID: 34096975 PMCID: PMC8185649 DOI: 10.1083/jcb.202003086] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis.
Collapse
Affiliation(s)
- Anne Pipathsouk
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Rachel M. Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Jason P. Town
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Brian R. Graziano
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Artù Breuer
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Kyle Marchuk
- Department of Pathology and Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA
| | - Ngoc-Han T. Tran
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Matthew F. Krummel
- Department of Pathology and Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA
| | - Dimitrios Stamou
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
5
|
Inamdar K, Tsai FC, Dibsy R, de Poret A, Manzi J, Merida P, Muller R, Lappalainen P, Roingeard P, Mak J, Bassereau P, Favard C, Muriaux D. Full assembly of HIV-1 particles requires assistance of the membrane curvature factor IRSp53. eLife 2021; 10:67321. [PMID: 34114563 PMCID: PMC8260224 DOI: 10.7554/elife.67321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023] Open
Abstract
During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. siRNA-mediated knockdown of IRSp53 gene expression induces a decrease in viral particle production and a viral bud arrest at half completion. Single-molecule localization microscopy at the cell plasma membrane shows a preferential localization of IRSp53 around HIV-1 Gag assembly sites. In addition, we observe the presence of IRSp53 in purified HIV-1 particles. Finally, HIV-1 Gag protein preferentially localizes to curved membranes induced by IRSp53 I-BAR domain on giant unilamellar vesicles. Overall, our data reveal a strong interplay between IRSp53 I-BAR and Gag at membranes during virus assembly. This highlights IRSp53 as a crucial host factor in HIV-1 membrane curvature and its requirement for full HIV-1 particle assembly.
Collapse
Affiliation(s)
- Kaushik Inamdar
- Infectious disease Research Institute of Montpellier (IRIM), CNRS UMR 9004, University of Montpellier, Montpellier, France
| | - Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Rayane Dibsy
- Infectious disease Research Institute of Montpellier (IRIM), CNRS UMR 9004, University of Montpellier, Montpellier, France
| | - Aurore de Poret
- Infectious disease Research Institute of Montpellier (IRIM), CNRS UMR 9004, University of Montpellier, Montpellier, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Peggy Merida
- Infectious disease Research Institute of Montpellier (IRIM), CNRS UMR 9004, University of Montpellier, Montpellier, France
| | - Remi Muller
- CEMIPAI, CNRS UAR3725, University of Montpellier, Montpellier, France
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Johnson Mak
- Institute for Glycomics, Griffith University, Brisbane, Australia
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Cyril Favard
- Infectious disease Research Institute of Montpellier (IRIM), CNRS UMR 9004, University of Montpellier, Montpellier, France
| | - Delphine Muriaux
- Infectious disease Research Institute of Montpellier (IRIM), CNRS UMR 9004, University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Carlton AJ, Halford J, Underhill A, Jeng J, Avenarius MR, Gilbert ML, Ceriani F, Ebisine K, Brown SDM, Bowl MR, Barr‐Gillespie PG, Marcotti W. Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness. J Physiol 2021; 599:1173-1198. [PMID: 33151556 PMCID: PMC7898316 DOI: 10.1113/jp280670] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Mechanoelectrical transduction at auditory hair cells requires highly specialized stereociliary bundles that project from their apical surface, forming a characteristic graded 'staircase' structure. The morphogenesis and maintenance of these stereociliary bundles is a tightly regulated process requiring the involvement of several actin-binding proteins, many of which are still unidentified. We identify a new stereociliary protein, the I-BAR protein BAIAP2L2, which localizes to the tips of the shorter transducing stereocilia in both inner and outer hair cells (IHCs and OHCs). We find that Baiap2l2 deficient mice lose their second and third rows of stereocilia, their mechanoelectrical transducer current, and develop progressive hearing loss, becoming deaf by 8 months of age. We demonstrate that BAIAP2L2 localization to stereocilia tips is dependent on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is a new key protein required for the maintenance of the transducing stereocilia in mature cochlear hair cells. ABSTRACT The transduction of sound waves into electrical signals depends upon mechanosensitive stereociliary bundles that project from the apical surface of hair cells within the cochlea. The height and width of these actin-based stereocilia is tightly regulated throughout life to establish and maintain their characteristic staircase-like structure, which is essential for normal mechanoelectrical transduction. Here, we show that BAIAP2L2, a member of the I-BAR protein family, is a newly identified hair bundle protein that is localized to the tips of the shorter rows of transducing stereocilia in mouse cochlear hair cells. BAIAP2L2 was detected by immunohistochemistry from postnatal day 2.5 (P2.5) throughout adulthood. In Baiap2l2 deficient mice, outer hair cells (OHCs), but not inner hair cells (IHCs), began to lose their third row of stereocilia and showed a reduction in the size of the mechanoelectrical transducer current from just after P9. Over the following post-hearing weeks, the ordered staircase structure of the bundle progressively deteriorates, such that, by 8 months of age, both OHCs and IHCs of Baiap2l2 deficient mice have lost most of the second and third rows of stereocilia and become deaf. We also found that BAIAP2L2 interacts with other key stereociliary proteins involved in normal hair bundle morphogenesis, such as CDC42, RAC1, EPS8 and ESPNL. Furthermore, we show that BAIAP2L2 localization to the stereocilia tips depends on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is key to maintenance of the normal actin structure of the transducing stereocilia in mature mouse cochlear hair cells.
Collapse
Affiliation(s)
- Adam J. Carlton
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Julia Halford
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
| | - Anna Underhill
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Matthew R. Avenarius
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Present address: Department of Pathology Wexner Medical CenterThe Ohio State UniversityColumbusOHUSA
| | - Merle L. Gilbert
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Present address: US Army Medical Department Activity‐KoreaCamp HumphreysRepublic of Korea
| | - Federico Ceriani
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | | - Steve D. M. Brown
- Mammalian Genetics UnitMRC Harwell InstituteHarwell CampusOxfordshireUK
| | - Michael R. Bowl
- Mammalian Genetics UnitMRC Harwell InstituteHarwell CampusOxfordshireUK
- Present address: UCL Ear InstituteUniversity College LondonLondonUK
| | - Peter G. Barr‐Gillespie
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Oregon Hearing Research CenterOregon Health & Science UniversityPortlandORUSA
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
7
|
Bisi S, Marchesi S, Rizvi A, Carra D, Beznoussenko GV, Ferrara I, Deflorian G, Mironov A, Bertalot G, Pisati F, Oldani A, Cattaneo A, Saberamoli G, Pece S, Viale G, Bachi A, Tripodo C, Scita G, Disanza A. IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules. Nat Commun 2020; 11:3516. [PMID: 32665580 PMCID: PMC7360740 DOI: 10.1038/s41467-020-17091-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
It is unclear whether the establishment of apical–basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. Genetic removal of IRSp53 results in abnormal renal tubulogenesis, with altered tubular polarity and architectural organization. Thus, IRSp53 acts as a membrane curvature-sensing platform for the assembly of multi-protein complexes that control the trafficking of apical determinants and the integrity of the luminal plasma membrane. The I-BAR protein IRSp53 senses membrane curvature but its physiological role is unclear. Here, the authors show that during early lumen morphogenesis, IRSp53 controls the shape of the apical plasma membrane and polarized trafficking and ensures the correct epithelial tubular architecture and if deleted, affects renal tubules morphogenesis in various organisms.
Collapse
Affiliation(s)
- Sara Bisi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Stefano Marchesi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Abrar Rizvi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Davide Carra
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Galina V Beznoussenko
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Ines Ferrara
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Via del Vespro 129, 90127, Palermo, Italy
| | | | - Alexander Mironov
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Giovanni Bertalot
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Amanda Oldani
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | | | - Ghazaleh Saberamoli
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Salvatore Pece
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Via Santa Sofia 9/1, 20122, Milan, Italy
| | - Giuseppe Viale
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Claudio Tripodo
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.,Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Via del Vespro 129, 90127, Palermo, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy. .,Department of Oncology and Haemato-Oncology, University of Milan, Via Santa Sofia 9/1, 20122, Milan, Italy.
| | - Andrea Disanza
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
8
|
Liu J, Shangguan Y, Sun J, Cong W, Xie Y. BAIAP2L2 promotes the progression of gastric cancer via AKT/mTOR and Wnt3a/β-catenin signaling pathways. Biomed Pharmacother 2020; 129:110414. [PMID: 32570120 DOI: 10.1016/j.biopha.2020.110414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Gastric cancer is third leading cause of cancer-related deaths worldwide and remarkably threatens human health and life. BAIAP2L2 is an epithelial-specific BAR domain protein that considered to be closely related to cell migration. In this study, we explored the specific role of BAIAP2L2 in human gastric cancer. METHODS BAIAP2L2 expression was analyzed via online database and immunohistochemistry. The proliferation was detected using CCK8 and colony formation assay. The migration and invasion was confirmed by transwell assay, and the apoptosis of gastric cancer cells was detected by flow cytometry. RESULTS BAIAP2L2 was highly expressed in tumour tissues and its expression significantly correlated with tumor diameter, T stage, pTNM stage and lymph node metastasis, respectively. Compared with GES-1 cells, SGC7901, MKN28, MKN45, AGS and BGC-823 tumor cells were all presented a high-expression of BAIAP2L2. The in vitro results showed that knockdown of BAIAP2L2 inhibited the proliferation, migration and invasion, and induced the apoptosis of gastric cancer cell. Further, knockdown of BAIAP2L2 inhibited the expression of the related proteins of AKT/mTOR and Wnt3a/β-catenin signaling pathways. CONCLUSION BAIAP2L2 is upregulated in gastric cancer, and knockdown of BAIAP2L2 inhibited the proliferation and metastasis through the inactivation of AKT/mTOR and Wnt3a/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Jianing Liu
- Thyroid and Pancreatic Surgery, The Second Hospital of Shandong University, China.
| | - Yumeng Shangguan
- Outpatient Department, The Second Hospital of Shandong University, China
| | - Jingfu Sun
- Thyroid and Pancreatic Surgery, The Second Hospital of Shandong University, China
| | - Wei Cong
- Thyroid and Pancreatic Surgery, The Second Hospital of Shandong University, China
| | - Yuxiang Xie
- Thyroid and Pancreatic Surgery, The Second Hospital of Shandong University, China
| |
Collapse
|
9
|
Li L, Baxter SS, Zhao P, Gu N, Zhan X. Differential interactions of missing in metastasis and insulin receptor tyrosine kinase substrate with RAB proteins in the endocytosis of CXCR4. J Biol Chem 2019; 294:6494-6505. [PMID: 30808710 DOI: 10.1074/jbc.ra118.006071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/15/2019] [Indexed: 12/26/2022] Open
Abstract
Missing in metastasis (MIM), an inverse Bin-Amphiphysin-Rvs (I-BAR) domain protein, promotes endocytosis of C-X-C chemokine receptor 4 (CXCR4) in mammalian cells. In response to the CXCR4 ligand stromal cell-derived factor 1 (SDF-1 or CXCL12), MIM associates with RAS-related GTP-binding protein 7 (RAB7) 30 min after stimulation. However, RAB7's role in MIM function remains undefined. Here we show that RNAi-mediated suppression of RAB7 expression in human HeLa cells has little effect on the binding of MIM to RAB5 and on the recruitment of CXCR4 to early endosomes but effectively abolishes MIM-mediated CXCR4 degradation, chemotactic response, and sorting into late endosomes and lysosomes. To determine whether I-BAR domain proteins interact with RAB7, we examined cells expressing insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein bearing an Src homology 3 (SH3) domain. We observed that both MIM and IRTKS interact with RAB5 at an early response to SDF-1 and that IRTKS binds poorly to RAB7 but strongly to RAB11 at a later time point. Moreover, IRTKS overexpression reduced CXCR4 internalization and enhanced the chemotactic response to SDF-1. Interestingly, deletion of the SH3 domain in IRTKS abolished the IRTKS-RAB11 interaction and promoted CXCR4 degradation. Furthermore, the SH3 domain was required for selective targeting of MIM-IRTKS fusion proteins by both RAB7 and RAB11. Hence, to the best of our knowledge, our results provide first evidence that the SH3 domain is critical in the regulation of specific endocytic pathways by I-BAR domain proteins.
Collapse
Affiliation(s)
- Lushen Li
- From the Center for Vascular and Inflammatory Diseases
| | | | - Peng Zhao
- the State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- the State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xi Zhan
- From the Center for Vascular and Inflammatory Diseases, .,Department of Pathology, and.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
10
|
Zhu X, Xu X, Du K, Lu J, Song E. I-BAR protein IRSp53 regulates clathrin-independent endocytosis in a biphasic manner. Sci Bull (Beijing) 2018; 63:149-151. [PMID: 36658998 DOI: 10.1016/j.scib.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Xinyu Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojun Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingze Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|