1
|
Bento GA, Cardoso MS, Rodrigues-Ferreira B, Rodrigues-Luiz GF, Rodrigues TDS, Gontijo CMF, Sant'Anna MRV, Valdivia HO, Mesquita SG, Bartholomeu DC. Development of species-specific multiplex PCR for Leishmania identification. Acta Trop 2024; 260:107440. [PMID: 39447953 DOI: 10.1016/j.actatropica.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Leishmaniasis is a diverse group of clinical diseases caused by protozoan parasites of the Leishmania genus. Species-specific identification of Leishmania spp. is challenging due to the high number of different pathogenic species that sometimes co-circulate in the same foci, hampering efforts to effectively control the disease. Multiplex PCR is an attractive alternative for rapid differentiation of Leishmania species with high sensitivity and specificity. We aimed to generate a panel of primers optimized for a multiplex PCR assay capable of identifying different Leishmania species in a single reaction. Species-specific primers were designed based on genomic data using the TipMT tooL. Potential non-specific amplifications of other trypanosomatids as well as human, dog, and sandfly hosts were first evaluated in silico using the Primer-Blast tooL. Species-specific primers for Leishmania amazonensis, Leishmania braziliensis, Leishmania donovani, Leishmania infantum, Leishmania mexicana and for the Leishmania guyanensis complex were tested in vitro. The primers have a limit of detection ranging from 1 to 0.01 ng of parasite gDNA using the same annealing temperature of 66 °C. The primers were specific for their targets when tested against 13 species of Leishmania, six trypanosomatids, and Babesia sp., and to detect the target species in a prepared pool with gDNA of six pathogenic Leishmania species. The designed primers were optimized for multiplex PCR, enabling species-specific identification of all five Leishmania species and one species complex. This new primer set could allow for efficient, fast, and reliable identification of Leishmania parasites.
Collapse
Affiliation(s)
- Gabrielle A Bento
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Mariana S Cardoso
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Beatriz Rodrigues-Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Gabriela F Rodrigues-Luiz
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Thiago de S Rodrigues
- Departamento de Computação, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Célia M F Gontijo
- Instituto René Rachou /IRR- Fiocruz Minas, Belo Horizonte, Minas Gerais 30190-002, Brasil
| | - Maurício Roberto Viana Sant'Anna
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Silvia Gonçalves Mesquita
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Daniella C Bartholomeu
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil.
| |
Collapse
|
2
|
Soares RP, Fontes IC, Dutra-Rêgo F, Rugani JN, Moreira POL, da Matta VLR, Flores GVA, Pacheco CMS, de Andrade AJ, da Costa-Ribeiro MCV, Shaw JJ, Laurenti MD. Unveiling the Enigmatic nature of six neglected Amazonian Leishmania (Viannia) species using the hamster model: Virulence, Histopathology and prospection of LRV1. PLoS Negl Trop Dis 2024; 18:e0012333. [PMID: 39121159 PMCID: PMC11315283 DOI: 10.1371/journal.pntd.0012333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/28/2024] [Indexed: 08/11/2024] Open
Abstract
American tegumentary leishmaniasis (ATL) is highly endemic in the Amazon basin and occurs in all South American countries, except Chile and Uruguay. Most Brazilian ATL cases are due to Leishmania (Viannia) braziliensis, however other neglected Amazonian species are being increasingly reported. They belong to the subgenus L. (Viannia) and information on suitable models to understand immunopathology are scarce. Here, we explored the use of the golden hamster Mesocricetus auratus and its macrophages as a model for L. (Viannia) species. We also studied the interaction of parasite glycoconjugates (LPGs and GIPLs) in murine macrophages. The following strains were used: L. (V.) braziliensis (MHOM/BR/2001/BA788), L. (V.) guyanensis (MHOM/BR/85/M9945), L. (V.) shawi (MHOM/BR/96/M15789), L. (V.) lindenbergi (MHOM/BR/98/M15733) and L. (V.) naiffi (MDAS/BR/79/M5533). In vivo infections were initiated by injecting parasites into the footpad and were followed up at 20- and 40-days PI. Parasites were mixed with salivary gland extract (SGE) from wild-captured Nyssomyia neivai prior to in vivo infections. Animals were euthanized for histopathological evaluation of the footpads, spleen, and liver. The parasite burden was evaluated in the skin and draining lymph nodes. In vitro infections used resident peritoneal macrophages and THP-1 monocytes infected with all species using a MOI (1:10). For biochemical studies, glycoconjugates (LPGs and GIPLs) were extracted, purified, and biochemically characterized using fluorophore-assisted carbohydrate electrophoresis (FACE). They were functionally evaluated after incubation with macrophages from C57BL/6 mice and knockouts (TLR2-/- and TLR4-/-) for nitric oxide (NO) and cytokine/chemokine production. All species, except L. (V.) guyanensis, failed to generate evident macroscopic lesions 40 days PI. The L. (V.) guyanensis lesions were swollen but did not ulcerate and microscopically were characterized by an intense inflammatory exudate. Despite the fact the other species did not produce visible skin lesions there was no or mild pro-inflammatory infiltration at the inoculation site and parasites survived in the hamster skin/lymph nodes and even visceralized. Although none of the species caused severe disease in the hamster, they differentially infected peritoneal macrophages in vitro. LPGs and GIPLs were able to differentially trigger NO and cytokine production via TLR2/TLR4 and TLR4, respectively. The presence of a sidechain in L. (V.) lainsoni LPG (type II) may be responsible for its higher proinflammatory activity. After Principal Component analyses using all phenotypic features, the clustering of L. (V.) lainsoni was separated from all the other L. (Viannia) species. We conclude that M. auratus was a suitable in vivo model for at least four dermotropic L. (Viannia) species. However, in vitro studies using peritoneal cells are a suitable alternative for understanding interactions of the six L. (Viannia) species used here. LRV1 presence was found in L. (V.) guyanensis and L. (V.) shawi with no apparent correlation with virulence in vitro and in vivo. Finally, parasite glycoconjugates were able to functionally trigger various innate immune responses in murine macrophages via TLRs consistent with their inflammatory profile in vivo.
Collapse
Affiliation(s)
- Rodrigo Pedro Soares
- Grupo Biotecnologia Aplicada ao Estudo de Patógenos (BAP), Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Patologia das Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Igor Campos Fontes
- Grupo Biotecnologia Aplicada ao Estudo de Patógenos (BAP), Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Dutra-Rêgo
- Grupo Biotecnologia Aplicada ao Estudo de Patógenos (BAP), Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Jeronimo Nunes Rugani
- Grupo Biotecnologia Aplicada ao Estudo de Patógenos (BAP), Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Otávio L. Moreira
- Grupo Biotecnologia Aplicada ao Estudo de Patógenos (BAP), Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Vânia Lúcia Ribeiro da Matta
- Laboratório de Patologia das Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Gabriela Venícia Araujo Flores
- Laboratório de Patologia das Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Carmen Maria Sandoval Pacheco
- Laboratório de Patologia das Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Andrey José de Andrade
- Laboratório de Parasitologia Molecular, Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Magda Clara Vieira da Costa-Ribeiro
- Laboratório de Parasitologia Molecular, Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Jeffrey Jon Shaw
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Márcia Dalastra Laurenti
- Laboratório de Patologia das Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
de Souza CF, dos Santos CA, Bevilacqua PD, Andrade Filho JD, Brazil RP. Molecular Detection of Leishmania spp. and Blood Source of Female Sand Flies in the Parque Estadual do Rio Doce and Municipality of Timóteo, Minas Gerais, Brazil. Trop Med Infect Dis 2024; 9:133. [PMID: 38922045 PMCID: PMC11209318 DOI: 10.3390/tropicalmed9060133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 06/27/2024] Open
Abstract
Leishmaniasis is a group of diseases caused by protozoa of the genus Leishmania and is transmitted by the bite female sand fly. The present work is characterized as a descriptive study in two areas: a forest area located in the Parque Estadual do Rio Doce, and another urban area located in the municipality of Timóteo-MG, with the objective of identifying the presence of Leishmania spp. and the blood source of the collected female sand flies. Part of the females were obtained from the Parque Estadual do Rio Doce, and part was collected using 19 ligth traps distributed in residences of Timóteo. For molecular studies of Leishmania spp. DNA, the ITS1 gene was used, and in the search for blood source, the CytB gene was used and positive samples were sequenced. The study demonstrated that there are at least three species of Leishmania circulating in the study areas: Leishmania (Viannia) braziliensis, Leishmania (Leishmania) amazonensis, and Leishmania (V.) guyanensis. Nyssomyia whitmani was the predominant sand fly species in the urban area of Timóteo with a positive diagnosis for the presence of Leishmania braziliensis DNA. We found the presence of blood from Gallus gallus (Chicken) and Sus scrofa (Pig) in sand flies. The present study demonstrates that Leishmania braziliensis is the main agent of cutaneous leishmaniasis in the study area, with the effective participation of Nyssomyia whitmani as the vector and both Gallus gallus and Sus scrofa acting as a food source for female sand flies, and helping maintaining the sand fly life.
Collapse
Affiliation(s)
- Cristian Ferreira de Souza
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz (Fiocruz), Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Carlos Alberto dos Santos
- Centro de Controle de Zoonoses, Prefeitura Municipal de Timóteo, Avenida Acesita, 3230, São José, Timóteo 35182-000, MG, Brazil;
| | - Paula Dias Bevilacqua
- Grupo de Pesquisa Violências, Gênero e Saúde, Instituto René Rachou (Fiocruz), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte 30190-002, MG, Brazil;
| | - José Dilermando Andrade Filho
- Grupo de Estudos em Leishmanioses, Instituto René Rachou (Fiocruz), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte 30190-002, MG, Brazil;
| | - Reginaldo Peçanha Brazil
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz (Fiocruz), Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
| |
Collapse
|
4
|
Granato JDT, Silva ETD, Lemos ASDO, Machado PDA, Midlej VDV, Antinarelli LMR, Silva Neto AFD, Souza MVN, Coimbra ES. 4-Quinolinylhydrazone analogues kill Leishmania (Leishmania) amazonensis by inducing apoptosis and mitochondria-dependent pathway cell death. Chem Biol Drug Des 2024; 103:e14535. [PMID: 38772877 DOI: 10.1111/cbdd.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Despite efforts, available alternatives for the treatment of leishmaniasis are still scarce. In this work we tested a class of 15 quinolinylhydrazone analogues and presented data that support the use of the most active compound in cutaneous leishmaniasis caused by Leishmania amazonensis. In general, the compounds showed activity at low concentrations for both parasitic forms (5.33-37.04 μM to promastigotes, and 14.31-61.98 μM to amastigotes). In addition, the best compound (MHZ15) is highly selective for the parasite. Biochemical studies indicate that the treatment of promastigotes with MHZ15 leads the loss of mitochondrial potential and increase in ROS levels as the primary effects, which triggers accumulation of lipid droplets, loss of plasma membrane integrity and apoptosis hallmarks, including DNA fragmentation and phosphatidylserine exposure. These effects were similar in the intracellular form of the parasite. However, in this parasitic form there is no change in plasma membrane integrity in the observed treatment time, which can be attributed to metabolic differences and the resilience of the amastigote. Also, ultrastructural changes such as vacuolization suggesting autophagy were observed. The in vivo effectiveness of MHZ15 in the experimental model of cutaneous leishmaniasis was carried out in mice of the BALB/c strain infected with L. amazonensis. The treatment by intralesional route showed that MHZ15 acted with great efficiency with significantly reduction in the parasite load in the injured paws and draining lymph nodes, without clinical signs of distress or compromise of animal welfare. In vivo toxicity was also evaluated and null alterations in the levels of hepatic enzymes aspartate aminotransferase, and alanine aminotransferase was observed. The data presented herein demonstrates that MHZ15 exhibits a range of favorable characteristics conducive to the development of an antileishmanial agent.
Collapse
Affiliation(s)
- Juliana da Trindade Granato
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Emerson Teixeira da Silva
- Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos Farmanguinhos, Rio de Janeiro, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Patrícia de Almeida Machado
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Victor do Valle Midlej
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Luciana Maria Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Adolfo Firmino da Silva Neto
- Departamento de Medicina Veterinária, Faculdade de Medicina, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Marcus Vinícius Nora Souza
- Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos Farmanguinhos, Rio de Janeiro, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
5
|
Dantas-Torres F. Canine leishmaniasis in the Americas: etiology, distribution, and clinical and zoonotic importance. Parasit Vectors 2024; 17:198. [PMID: 38689318 PMCID: PMC11061994 DOI: 10.1186/s13071-024-06282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Canine leishmaniasis is a widespread disease on the American continent, with cases reported from Uruguay to the USA and Canada. While numerous Leishmania spp. have been reported in dogs in this region, Leishmania infantum and Leishmania braziliensis are the most common etiological agents of canine leishmaniasis from a continental perspective. Nonetheless, other species may predominate locally in some countries. The participation of dogs in the transmission cycle of various Leishmania spp. has long been speculated, but evidence indicates that their role as reservoirs of species other than L. infantum is negligible. Various native wildlife (e.g., small rodents, marsupials, sloths, and monkeys) are, in fact, the primary hosts of Leishmania spp. in the Americas. In this review, an updated list of Leishmania spp. infecting dogs in the Americas is presented, along with their distribution and clinical and zoonotic importance.
Collapse
|
6
|
Ricotta TQN, Dos Santos LM, Oliveira LG, Souza-Testasicca MC, Nascimento FC, Vago JP, Carvalho AFS, Queiroz-Junior CM, Sousa LP, Fernandes AP. Annexin A1 improves immune responses and control of tissue parasitism during Leishmania amazonensis infection in BALB/c mice. Biomed Pharmacother 2024; 172:116254. [PMID: 38340398 DOI: 10.1016/j.biopha.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Leishmaniases, a group of diseases caused by the species of the protozoan parasite Leishmania, remains a significant public health concern worldwide. Host immune responses play a crucial role in the outcome of Leishmania infections, and several mediators that regulate inflammatory responses are potential targets for therapeutic approaches. Annexin A1 (AnxA1), an endogenous protein endowed with anti-inflammatory and pro-resolving properties, has emerged as a potential player. We have shown that during L. braziliensis infection, deficiency of AnxA1 exacerbates inflammatory responses but does not affect parasite burden. Here, we have investigated the role of AnxA1 in L. amazonensis infection, given the non-healing and progressive lesions characteristic of this infectious model. Infection of AnxA1 KO BALB/c mice resulted in increased lesion size and tissue damage associated with higher parasite burdens and enhanced inflammatory response. Notably, therapeutic application of the AnxA1 peptidomimetic Ac2-26 improves control of parasite replication and increases IL-10 production in vivo and in vitro, in both WT and AnxA1 KO mice. Conversely, administration of WRW4, an inhibitor of FPR2/3, resulted in larger lesions and decreased production of IL-10, suggesting that the effects of AnxA1 during L. amazonensis infection are associated with the engagement of these receptors. Our study illuminates the role of AnxA1 in L. amazonensis infection, demonstrating its impact on the susceptibility phenotype of BALB/c mice. Furthermore, our results indicate that targeting the AnxA1 pathway by using the Ac2-26 peptide could represent a promising alternative for new treatments for leishmaniasis.
Collapse
Affiliation(s)
- Tiago Queiroga Nery Ricotta
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Liliane Martins Dos Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Leandro Gonzaga Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | | | - Frederico Crepaldi Nascimento
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Juliana P Vago
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Antônio Felipe S Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | | | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
7
|
Montaner-Angoiti E, Llobat L. Is leishmaniasis the new emerging zoonosis in the world? Vet Res Commun 2023; 47:1777-1799. [PMID: 37438495 DOI: 10.1007/s11259-023-10171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Leishmania is a genus of parasitic protozoa that causes a disease called leishmaniasis. Leishmaniasis is transmitted to humans through the bites of infected female sandflies. There are several different species of Leishmania that can cause various forms of the disease, and the symptoms can range from mild to severe, depending on species of Leishmania involved and the immune response of the host. Leishmania parasites have a variety of reservoirs, including humans, domestic animals, horses, rodents, wild animals, birds, and reptiles. Leishmaniasis is endemic of 90 countries, mainly in South American, East and West Africa, Mediterranean region, Indian subcontinent, and Central Asia. In recent years, cases have been detected in other countries, and it is already an infection present throughout the world. The increase in temperatures due to climate change makes it possible for sandflies to appear in countries with traditionally colder regions, and the easy movement of people and animals today, facilitate the appearance of Leishmania species in new countries. These data mean that leishmaniasis will probably become an emerging zoonosis and a public health problem in the coming years, which we must consider controlling it from a One Health point of view. This review summarizes the prevalence of Leishmania spp. around the world and the current knowledge regarding the animals that could be reservoirs of the parasite.
Collapse
Affiliation(s)
- Esperanza Montaner-Angoiti
- Molecular Mechanisms of Zoonotic Disease (MMOPS) Group, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities Valencia, Valencia, Spain
| | - Lola Llobat
- Molecular Mechanisms of Zoonotic Disease (MMOPS) Group, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities Valencia, Valencia, Spain.
| |
Collapse
|
8
|
Goes WM, Brasil CRF, Reis-Cunha JL, Coqueiro-Dos-Santos A, Grazielle-Silva V, de Souza Reis J, Souto TC, Laranjeira-Silva MF, Bartholomeu DC, Fernandes AP, Teixeira SMR. Complete assembly, annotation of virulence genes and CRISPR editing of the genome of Leishmania amazonensis PH8 strain. Genomics 2023; 115:110661. [PMID: 37263313 DOI: 10.1016/j.ygeno.2023.110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
We report the sequencing and assembly of the PH8 strain of Leishmania amazonensis one of the etiological agents of leishmaniasis. After combining data from long Pacbio reads, short Illumina reads and synteny with the Leishmania mexicana genome, the sequence of 34 chromosomes with 8317 annotated genes was generated. Multigene families encoding three virulence factors, A2, amastins and the GP63 metalloproteases, were identified and compared to their annotation in other Leishmania species. As they have been recently recognized as virulence factors essential for disease establishment and progression of the infection, we also identified 14 genes encoding proteins involved in parasite iron and heme metabolism and compared to genes from other Trypanosomatids. To follow these studies with a genetic approach to address the role of virulence factors, we tested two CRISPR-Cas9 protocols to generate L. amazonensis knockout cell lines, using the Miltefosine transporter gene as a proof of concept.
Collapse
Affiliation(s)
- Wanessa Moreira Goes
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Carlos Rodolpho Ferreira Brasil
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - João Luis Reis-Cunha
- Departamento de Veterinária Preventiva, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil; Departamento de Parasitologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Anderson Coqueiro-Dos-Santos
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Júlia de Souza Reis
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Tatiane Cristina Souto
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Maria Fernanda Laranjeira-Silva
- Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Daniella Castanheira Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Belo Horizonte, MG, CEP 31.210-360, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG CEP 31.270-901, Brazil; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Belo Horizonte, MG, CEP 31.210-360, Brazil.
| |
Collapse
|
9
|
Sobotyk C, Baldissera FG, Rodrigues Junior LC, Romão PRT, de Oliveira JS, Dornelles GL, de Andrade CM, Maciel RM, Danesi CC, de Padua Ferreira RV, Bellini MH, de Avila Botton S, Vogel FSF, Sangioni LA. Zinc and Manganese Imbalances in BALB/c Mice Experimentally Infected with Leishmania (Leishmania) amazonensis. Acta Parasitol 2023:10.1007/s11686-023-00666-1. [PMID: 36884141 DOI: 10.1007/s11686-023-00666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 01/26/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE The clinical progression of Leishmania (Leishmania) amazonensis infection depends on multiple factors, including immunological status of the host and their genotypic interaction. Several immunological processes depend directly on minerals for an efficient performance. Therefore, this study used an experimental model to investigate the alterations of trace metals in L. amazonensis infection associate with clinical outcome, parasite load, and histopathological lesions, and the effect of CD4 + T cells depletion on these parameters. METHODS A total of 28 BALB/c mice were divided into 4 groups: 1-non-infected; 2-treated with anti-CD4 antibody; 3-infected with L. amazonensis; and 4-treated with anti-CD4 antibody and infected with L. amazonensis. After 24 weeks post-infection, levels of calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), Cu, and Zn were determined by inductively coupled plasma optical emission spectroscopy using tissue samples of the spleen, liver, and kidneys. Additionally, parasite burdens were determined in the infected footpad (inoculation site) and samples of inguinal lymph node, spleen, liver, and kidneys were submitted to histopathological analysis. RESULTS Despite no significant difference was observed between groups 3 and 4, L. amazonensis-infected mice had a significant reduction of Zn (65.68-68.32%) and Mn (65.98 to 82.17%) levels. Presence of L. amazonensis amastigotes was also detected in the inguinal lymph node, spleen, and liver samples in all infected animals. CONCLUSION The results showed that significant alterations in micro-elements levels occur in BALB/c mice experimentally infected with L. amazonensis and may increase the susceptibility of individuals to the infection.
Collapse
Affiliation(s)
- Caroline Sobotyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Departamento de Medicina Veterinária Preventiva, PPGMV, UFSM, Av. Roraima, 1000, Camobi, Santa Maria, RS, 97105900, Brazil.
| | - Fernanda Giesel Baldissera
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Luiz Carlos Rodrigues Junior
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Pedro Roosevelt Torres Romão
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Juliana Sorraila de Oliveira
- Programa de Pós-graduação em Medicina Veterinária (PPGMV), Departamento de Clínica de Pequenos Animais, Universidade Federal de Santa (UFSM), Av. Roraima, 1000, Camobi, Santa Maria, RS, 97105900, Brazil
| | - Guilherme Lopes Dornelles
- Programa de Pós-graduação em Medicina Veterinária (PPGMV), Departamento de Clínica de Pequenos Animais, Universidade Federal de Santa (UFSM), Av. Roraima, 1000, Camobi, Santa Maria, RS, 97105900, Brazil
| | - Cinthia Melazzo de Andrade
- Programa de Pós-graduação em Medicina Veterinária (PPGMV), Departamento de Clínica de Pequenos Animais, Universidade Federal de Santa (UFSM), Av. Roraima, 1000, Camobi, Santa Maria, RS, 97105900, Brazil
| | - Roberto Marinho Maciel
- Departamento de Patologia, UFSM, Av. Roraima, 1000, Camobi, Santa Maria, RS, 97105900, Brazil
| | | | - Rafael Vicente de Padua Ferreira
- Laboratório de Biologia Celular e Molecular do Câncer, Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, 2242, Cidade Universitária, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Maria Helena Bellini
- Laboratório de Biologia Celular e Molecular do Câncer, Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, 2242, Cidade Universitária, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Sônia de Avila Botton
- Departamento de Medicina Veterinária Preventiva, PPGMV, UFSM, Av. Roraima, 1000, Camobi, Santa Maria, RS, 97105900, Brazil
| | - Fernanda Silveira Flores Vogel
- Departamento de Medicina Veterinária Preventiva, PPGMV, UFSM, Av. Roraima, 1000, Camobi, Santa Maria, RS, 97105900, Brazil
| | - Luis Antonio Sangioni
- Departamento de Medicina Veterinária Preventiva, PPGMV, UFSM, Av. Roraima, 1000, Camobi, Santa Maria, RS, 97105900, Brazil
| |
Collapse
|
10
|
Phenotypical Differences between Leishmania ( Leishmania) amazonensis PH8 and LV79 Strains May Impact Survival in Mammal Host and in Phlebotomine Sand Flies. Pathogens 2023; 12:pathogens12020173. [PMID: 36839445 PMCID: PMC9965022 DOI: 10.3390/pathogens12020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
We previously showed that L. (Leishmania) amazonensis promastigotes and amastigotes of the PH8 strain generated larger lesions in mice than LV79, and that lesion-derived amastigotes from the two strains differ in their proteomes. We recently reported that PH8 promastigotes are more phagocytized by macrophages. Promastigotes' membrane-enriched proteomes showed several differences, and samples of each strain clustered based on proteomes. In this paper, we show phenotypic differences between PH8 and LV79 promastigotes that may explain the higher virulence of PH8. We compared in vitro macrophage infections by day 4 (early) and day 6 (late stationary phase) cultures, resistance to complement, and LPG characteristics. PH8 promastigotes showed a higher infectivity and were more resistant to murine complement. LPG was different between the strains, which may influence the interaction with macrophages and survival to complement. We compared the infection of the permissive vector Lutzomyia longipalpis. PH8 was more abundant in the vector's gut 72 h after feeding, which is a moment where blood digestion is finished and the parasites are exposed to the gut environment. Our results indicate that PH8 promastigotes are more infective, more resistant to complement, and infect the permissive vector more efficiently. These data suggest that PH8 is probably better adapted to the sand fly and more prone to survive in the vertebrate host.
Collapse
|
11
|
Comparative Genomic Analyses of New and Old World Viscerotropic Leishmanine Parasites: Further Insights into the Origins of Visceral Leishmaniasis Agents. Microorganisms 2022; 11:microorganisms11010025. [PMID: 36677318 PMCID: PMC9865424 DOI: 10.3390/microorganisms11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis (VL), also known as kala-azar, is an anthropozoonotic disease affecting human populations on five continents. Aetiologic agents belong to the Leishmania (L.) donovani complex. Until the 1990s, three leishmanine parasites comprised this complex: L. (L.) donovani Laveran & Mesnil 1903, L. (L.) infantum Nicolle 1908, and L. (L.) chagasi Lainson & Shaw 1987 (=L. chagasi Cunha & Chagas 1937). The VL causal agent in the New World (NW) was previously identified as L. (L.) chagasi. After the development of molecular characterization, however, comparisons between L. (L.) chagasi and L. (L.) infantum showed high similarity, and L. (L.) chagasi was then regarded as synonymous with L. (L.) infantum. It was, therefore, suggested that L. (L.) chagasi was not native to the NW but had been introduced from the Old World by Iberian colonizers. However, in light of ecological evidence from the NW parasite’s enzootic cycle involving a wild phlebotomine vector (Lutzomyia longipalpis) and a wild mammal reservoir (the fox, Cerdocyon thous), we have recently analyzed by molecular clock comparisons of the DNA polymerase alpha subunit gene the whole-genome sequence of L. (L.) infantum chagasi of the most prevalent clinical form, atypical dermal leishmaniasis (ADL), from Honduras (Central America) with that of the same parasite from Brazil (South America), as well as those of L. (L.) donovani (India) and L. (L.) infantum (Europe), which revealed that the Honduran parasite is older ancestry (382,800 ya) than the parasite from Brazil (143,300 ya), L. (L.) donovani (33,776 ya), or L. (L.) infantum (13,000 ya). In the present work, we have now amplified the genomic comparisons among these leishmanine parasites, exploring mainly the variations in the genome for each chromosome, and the number of genomic SNPs for each chromosome. Although the results of this new analysis have confirmed a high genomic similarity (~99%) among these parasites [except L. (L.) donovani], the Honduran parasite revealed a single structural variation on chromosome 17, and the highest frequency of genomic SNPs (more than twice the number seen in the Brazilian one), which together to its extraordinary ancestry (382,800 ya) represent strong evidence that L. (L.) chagasi/L. (L.) infantum chagasi is, in fact, native to the NW, and therefore with valid taxonomic status. Furthermore, the Honduran parasite, the most ancestral viscerotropic leishmanine parasite, showed genomic and clinical taxonomic characteristics compatible with a new Leishmania species causing ADL in Central America.
Collapse
|
12
|
Rêgo FD, Cardoso CDA, Moreira POL, Nogueira PM, Araújo MS, Borges VM, Laurenti MD, Bartholomeu DC, Reis AB, Monte‐Neto RLD, Soares RP. Leishmania amazonensis from distinct clinical forms/hosts has polymorphisms in Lipophosphoglycans, displays variations in immunomodulatory properties and, susceptibility to antileishmanial drugs. Cell Biol Int 2022; 46:1947-1958. [PMID: 35998255 PMCID: PMC9804363 DOI: 10.1002/cbin.11880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 01/05/2023]
Abstract
Lipophosphoglycan (LPG), the major Leishmania glycoconjugate, induces pro-inflammatory/immunosuppressive innate immune responses. Here, we evaluated functional/biochemical LPG properties from six Leishmania amazonensis strains from different hosts/clinical forms. LPGs from three strains (GV02, BA276, and LV79) had higher pro-inflammatory profiles for most of the mediators, including tumor necrosis factor alpha and interleukin 6. For this reason, glycoconjugates from all strains were biochemically characterized and had polymorphisms in their repeat units. They consisted of three types: type I, repeat units devoid of side chains; type II, containing galactosylated side chains; and type III, containing glucosylated side chains. No relationship was observed between LPG type and the pro-inflammatory properties. Finally, to evaluate the susceptibility against antileishmanial agents, two strains with high (GV02, BA276) and one with low (BA336) pro-inflammatory activity were selected for chemotherapeutic tests in THP-1 cells. All analyzed strains were susceptible to amphotericin B (AmB) but displayed various responses against miltefosine (MIL) and glucantime (GLU). The GV02 strain (canine visceral leishmaniasis) had the highest IC50 for MIL (3.34 μM), whereas diffuse leishmaniasis strains (BA276 and BA336) had a higher IC50 for GLU (6.87-12.19 mM). The highest IC50 against MIL shown by the GV02 strain has an impact on clinical management. Miltefosine is the only drug approved for dog treatment in Brazil. Further studies into drug susceptibility of L. amazonensis strains are warranted, especially in areas where dog infection by this species overlaps with those caused by Leishmania infantum.
Collapse
Affiliation(s)
- Felipe D. Rêgo
- Biotechnology Applied to Pathogens (BAP), Instituto René RachouFundação Oswaldo Cruz (FIOCRUZ)Belo HorizonteMGBrazil
| | - Camila d. A. Cardoso
- Biotechnology Applied to Pathogens (BAP), Instituto René RachouFundação Oswaldo Cruz (FIOCRUZ)Belo HorizonteMGBrazil
| | - Paulo Otávio L. Moreira
- Biotechnology Applied to Pathogens (BAP), Instituto René RachouFundação Oswaldo Cruz (FIOCRUZ)Belo HorizonteMGBrazil
| | - Paula M. Nogueira
- Biotechnology Applied to Pathogens (BAP), Instituto René RachouFundação Oswaldo Cruz (FIOCRUZ)Belo HorizonteMGBrazil
| | - Márcio S. Araújo
- Biotechnology Applied to Pathogens (BAP), Instituto René RachouFundação Oswaldo Cruz (FIOCRUZ)Belo HorizonteMGBrazil
| | - Valéria Matos Borges
- Laboratory of Inflammation and Bioarkers, Instituto Gonçalo MunizFundação Oswaldo Cruz (FIOCRUZ)SalvadorBABrazil
| | - Márcia D. Laurenti
- Departamento de Patologia, Faculdade de MedicinaUniversidade de São Paulo (USP)São PauloSPBrazil
| | - Daniella C. Bartholomeu
- Departamento de ParasitologiaUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteMGBrazil
| | - Alexandre B. Reis
- Núcleo de Pesquisas em Ciências BiológicasUniversidade Federal de Ouro Preto (UFOP)Ouro PretoMGBrazil
| | - Rubens L. d. Monte‐Neto
- Biotechnology Applied to Pathogens (BAP), Instituto René RachouFundação Oswaldo Cruz (FIOCRUZ)Belo HorizonteMGBrazil
| | - Rodrigo P. Soares
- Biotechnology Applied to Pathogens (BAP), Instituto René RachouFundação Oswaldo Cruz (FIOCRUZ)Belo HorizonteMGBrazil
| |
Collapse
|
13
|
Alves-Sobrinho EV, Pinheiro LDJ, Paranaíba LF, Fontes IC, Parreiras PM, Gontijo NF, Tafuri WL, Laurenti MD, Soares RP. Leishmania enriettii visceralises in the trachea, lungs, and spleen of Cavia porcellus. Mem Inst Oswaldo Cruz 2022; 117:e220065. [PMID: 35920504 PMCID: PMC9343011 DOI: 10.1590/0074-02760220065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Leishmania (Mundinia) enriettii is a species commonly found in the guinea pig, Cavia porcellus. Although it is a dermotropic species, there is still an uncertainty regarding its ability to visceralise during Leishmania life cycle. OBJECTIVE Here, we investigated the ability of L. enriettii (strain L88) to visceralise in lungs, trachea, spleen, and liver of C. porcellus, its natural vertebrate host. METHODS Animals were infected sub-cutaneously in the nose and followed for 12 weeks using histological (hematoxilin-eosin) and molecular tools (polymerase chain reaction-restriction fragment length polymorphism - PCR-RFLP). To isolate parasite from C. porcellus, animals were experimentally infected for viscera removal and PCR typing targeting hsp70 gene. FINDINGS Histological analysis revealed intense and diffuse inflammation with the presence of amastigotes in the trachea, lung, and spleen up to 12 weeks post-infection (PI). Molecular analysis of paraffin-embedded tissues detected parasite DNA in the trachea and spleen between the 4th and 8th weeks PI. At the 12th PI, no parasite DNA was detected in any of the organs. To confirm that the spleen could serve as a temporary site for L. enriettii, we performed additional in vivo experiments. During 6th week PI, the parasite was isolated from the spleen confirming previous histopathological and PCR observations. MAIN CONCLUSION Leishmania enriettii (strain L88) was able to visceralise in the trachea, lung, and spleen of C. porcellus.
Collapse
Affiliation(s)
- Ednéia Venâncio Alves-Sobrinho
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| | - Lucélia de Jesus Pinheiro
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Patologia Geral, Belo Horizonte, MG, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | - Larissa Ferreira Paranaíba
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Belo Horizonte, MG, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | - Igor Campos Fontes
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Patologia Geral, Belo Horizonte, MG, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | | | - Nelder Figueiredo Gontijo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| | - Wagner Luiz Tafuri
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Patologia Geral, Belo Horizonte, MG, Brasil
| | - Márcia Dalastra Laurenti
- Universidade de São Paulo, Faculdade de Medicina, Laboratório de Patologia de Moléstias Infecciosas, São Paulo, SP, Brasil
| | - Rodrigo Pedro Soares
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| |
Collapse
|
14
|
Ait Maatallah I, Akarid K, Lemrani M. Tissue tropism: Is it an intrinsic characteristic of Leishmania species? Acta Trop 2022; 232:106512. [PMID: 35568069 DOI: 10.1016/j.actatropica.2022.106512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
The genus Leishmania comprises a wide range of species, some of which are pathogenic to humans and each of which has a different tissue preference, resulting in one of the three clinical forms of human leishmaniasis: visceral, cutaneous, or mucocutaneous. Although, all pathogenic species are deposited intradermally in the mammalian host upon an infectious sand fly bite, only the viscerotropic strains can leave the skin and reach the internal organs. We assume that Leishmania tissue tropism is not only the result of Leishmania genetic determinism but is also governed by the interaction of the parasite with different vectorial and human host elements. To shed light on these elements and key steps determining the course of the infection, we describe throughout this review the disease's progression from the early stages of infection taking place in the skin to the late stages succeeding in the parasite's visceral dissemination. Hence, we address the question of Leishmania tropism, through providing relevant hypotheses and answers gathered from the literature.
Collapse
|
15
|
Leishmania infantum infection rate in dogs housed in open-admission shelters is higher than of domiciled dogs in an endemic area of canine visceral leishmaniasis. Epidemiological implications. Acta Trop 2022; 232:106492. [PMID: 35490730 DOI: 10.1016/j.actatropica.2022.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022]
Abstract
Canine visceral leishmaniasis (CVL) is caused by Leishmania infantum and is endemic in many areas of southeastern Brazil. We have hypothesized that the prevalence of infection by L. infantum in dogs housed in open-admission animal shelters is beyond the range of 3.4 - 9.6% reported among dogs domiciled in similar CVL-endemic areas. Hence, this study aimed to determine the rate of L. infantum infection among dogs maintained in shelters and to investigate the epidemiology of CVL in such environments by analyzing hematological and biochemical parameters. A total of 627 dogs from 17 different shelters across the State of Minas Gerais were screened using the Dual-Path Platform test and enzyme-linked immunosorbent assay and 211 (33.6%) were found to be seropositive in both tests. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed on skin, bone marrow and lymphoid tissues of 118 seropositive dogs with inconclusive CVL clinical diagnosis and, of these, 78 (66.1%) were PCR+ for L. infantum and 7 (5.9%) were PCR+ for L. amazonensis. One dog presented a PCR-RFLP profile that was consistent with co-infection by both parasites. Leishmania amazonensis DNA was detected in skin samples of six single-infected dogs and this constitutes a novel finding. Dogs infected only with L. amazonensis were less debilitated than those infected by L. infantum, which showed typical clinical manifestations of CVL. The co-infected dog showed only mild clinical signs. The results presented herein not only support our original hypothesis but also suggest that dogs are potential reservoirs of L. amazonensis. Public health authorities should acknowledge their responsibility towards animals in collective shelters, recognize that they are potential foci of zoonotic diseases, and establish proper functioning directives to minimize transmission to humans and to other dogs.
Collapse
|
16
|
Machado PDA, Gomes PS, Carneiro MPD, Midlej V, Coimbra ES, de Matos Guedes HL. Effects of a Serine Protease Inhibitor N-p-Tosyl-L-phenylalanine Chloromethyl Ketone (TPCK) on Leishmania amazonensis and Leishmania infantum. Pharmaceutics 2022; 14:pharmaceutics14071373. [PMID: 35890269 PMCID: PMC9320531 DOI: 10.3390/pharmaceutics14071373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Studies have previously demonstrated the importance of serine proteases in Leishmania. A well-known serine protease inhibitor, TPCK, was used in the present study to evaluate its in vitro and in vivo antileishmanial effects and determine its mechanism of action. Despite slight toxicity against mammalian cells (CC50 = 138.8 µM), TPCK was selective for the parasite due to significant activity against L. amazonensis and L. infantum promastigote forms (IC50 = 14.6 and 31.7 µM for L. amazonensis PH8 and Josefa strains, respectively, and 11.3 µM for L. infantum) and intracellular amastigotes (IC50 values = 14.2 and 16.6 µM for PH8 and Josefa strains, respectively, and 21.7 µM for L. infantum). Leishmania parasites treated with TPCK presented mitochondrial alterations, oxidative stress, modifications in lipid content, flagellar alterations, and cytoplasmic vacuoles, all of which are factors that could be considered as contributing to the death of the parasites. Furthermore, BALB/c mice infected with L. amazonensis and treated with TPCK had a reduction in lesion size and parasite loads in the footpad and spleen. In BALB/c mice infected with L. infantum, TPCK also caused a reduction in the parasite loads in the liver and spleen. Therefore, we highlight the antileishmanial effect of the assessed serine protease inhibitor, proposing a potential therapeutic target in Leishmania as well as a possible new alternative treatment for leishmaniasis.
Collapse
Affiliation(s)
- Patrícia de A. Machado
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (P.d.A.M.); (P.S.G.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo de Pesquisas em Parasitologia (NUPEP), Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil
| | - Pollyanna S. Gomes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (P.d.A.M.); (P.S.G.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Monique P. D. Carneiro
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Elaine S. Coimbra
- Núcleo de Pesquisas em Parasitologia (NUPEP), Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil
- Correspondence: (E.S.C.); or (H.L.d.M.G.)
| | - Herbert L. de Matos Guedes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (P.d.A.M.); (P.S.G.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (E.S.C.); or (H.L.d.M.G.)
| |
Collapse
|
17
|
Solana JC, Chicharro C, García E, Aguado B, Moreno J, Requena JM. Assembly of a Large Collection of Maxicircle Sequences and Their Usefulness for Leishmania Taxonomy and Strain Typing. Genes (Basel) 2022; 13:genes13061070. [PMID: 35741832 PMCID: PMC9222942 DOI: 10.3390/genes13061070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Parasites of medical importance, such as Leishmania and Trypanosoma, are characterized by the presence of thousands of circular DNA molecules forming a structure known as kinetoplast, within the mitochondria. The maxicircles, which are equivalent to the mitochondrial genome in other eukaryotes, have been proposed as a promising phylogenetic marker. Using whole-DNA sequencing data, it is also possible to assemble maxicircle sequences as shown here and in previous works. In this study, based on data available in public databases and using a bioinformatics workflow previously reported by our group, we assembled the complete coding region of the maxicircles for 26 prototypical strains of trypanosomatid species. Phylogenetic analysis based on this dataset resulted in a robust tree showing an accurate taxonomy of kinetoplastids, which was also able to discern between closely related Leishmania species that are usually difficult to discriminate by classical methodologies. In addition, we provide a dataset of the maxicircle sequences of 60 Leishmania infantum field isolates from America, Western Europe, North Africa, and Eastern Europe. In agreement with previous studies, our data indicate that L. infantum parasites from Brazil are highly homogeneous and closely related to European strains, which were transferred there during the discovery of America. However, this study showed the existence of different L. infantum populations/clades within the Mediterranean region. A maxicircle signature for each clade has been established. Interestingly, two L. infantum clades were found coexisting in the same region of Spain, one similar to the American strains, represented by the Spanish JPCM5 reference strain, and the other, named “non-JPC like”, may be related to an important leishmaniasis outbreak that occurred in Madrid a few years ago. In conclusion, the maxicircle sequence emerges as a robust molecular marker for phylogenetic analysis and species typing within the kinetoplastids, which also has the potential to discriminate intraspecific variability.
Collapse
Affiliation(s)
- Jose Carlos Solana
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (C.C.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Chicharro
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (C.C.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emilia García
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (C.C.); (E.G.)
| | - Begoña Aguado
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Genomic and NGS Facility (GENGS), 28049 Madrid, Spain;
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (C.C.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.M.); (J.M.R.)
| | - Jose M. Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.M.); (J.M.R.)
| |
Collapse
|
18
|
Gomes PS, Carneiro MPD, Machado PDA, de Andrade-Neto VV, da Fonseca-Martins AM, Goundry A, Pereira da Silva JVM, Gomes DCO, Lima APCDA, Ennes-Vidal V, Sodero ACR, De-Simone SG, de Matos Guedes HL. Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. Curr Issues Mol Biol 2022; 44:2089-2106. [PMID: 35678670 PMCID: PMC9164065 DOI: 10.3390/cimb44050141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.
Collapse
Affiliation(s)
- Pollyanna Stephanie Gomes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Monique Pacheco Duarte Carneiro
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | - Patrícia de Almeida Machado
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Valter Viana de Andrade-Neto
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Alessandra Marcia da Fonseca-Martins
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Amy Goundry
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | | | | | - Ana Paula Cabral de Araujo Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | - Vítor Ennes-Vidal
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Ana Carolina Rennó Sodero
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.V.M.P.d.S.); (A.C.R.S.)
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Diseases Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Herbert L. de Matos Guedes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
19
|
Leishmania diversity in bats from an endemic area for visceral and cutaneous leishmaniasis in Southeastern Brazil. Acta Trop 2022; 228:106327. [PMID: 35085511 DOI: 10.1016/j.actatropica.2022.106327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/22/2022]
Abstract
This study aimed to determine the occurrence of Leishmania infection in bats in urban and wild areas in an endemic municipality for visceral and cutaneous leishmaniasis in Minas Gerais, Brazil. Between April 2014 to April 2015, 247 bats were captured and classified into 26 species belonging to Phyllostomidae (90.7%), Vespertilionidae (8.1%) and Molossidae (1.2%) families. Blood samples from 247 bats were collected and submitted to nested-PCR, targeting the variable V7-V8 region of the SSU rRNA gene, followed by sequencing of the PCR product. The overall infection rate of Leishmania spp. in bats was 4.4%. Of the eleven bats infected, ten were frugivorous bats: Artibeus planirostris (8/11), Artibeus lituratus (1/11) and Artibeus cinereus (1/11) and one a nectarivorous bat (Glossophaga soricina). None of the individuals exhibited macroscopic alterations in the skin, spleen or liver. Phylogenetic analysis separated Leishmania species in clades corresponding to the subgenera Viannia, Leishmania, and Mundinia, and supported that the isolates characterized in the present study clustered closely with Leishmania (Viannia) sp., Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis. Here we report for the first time the bat Artibeus cinereus as a host of Leishmania (Leishmania) amazonensis. In the study we found that the mean abundance of bats did not differ in wild habitats and urban areas and that bat-parasite interactions were similarly distributed in the two environments. On the other hand, further studies should be conducted in more recent times to verify whether there have been changes in these parameters.
Collapse
|
20
|
Condé CASR, De Almeida MV, Da Silva GDS, Sodré MBPDA, Rodrigues JCF, Navarro M. Synthesis, characterization and antileishmanial activity of copper(II) and zinc(II) complexes with diamine ligands. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Vicente-Barrueco A, Román ÁC, Ruiz-Téllez T, Centeno F. In Silico Research of New Therapeutics Rotenoids Derivatives against Leishmania amazonensis Infection. BIOLOGY 2022; 11:biology11010133. [PMID: 35053132 PMCID: PMC8772715 DOI: 10.3390/biology11010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Yearly, 1,500,000 cases of leishmaniasis are diagnosed, causing thousands of deaths. To advance in its therapy, we present an interdisciplinary protocol that unifies ethnobotanical knowledge of natural compounds and the latest bioinformatics advances to respond to an orphan disease such as leishmaniasis and specifically the one caused by Leishmania amazonensis. The use of ethnobotanical information serves as a basis for the development of new drugs, a field in which computer-aided drug design (CADD) has been a revolution. Taking this information from Amazonian communities, located in the area with a high prevalence of this disease, a protocol has been designed to verify new leads. Moreover, a method has been developed that allows the evaluation of lead molecules, and the improvement of their affinity and specificity against therapeutic targets. Through this approach, deguelin has been identified as a good lead to treat the infection due to its potential as an ornithine decarboxylase (ODC) inhibitor, a key enzyme in Leishmania development. Using an in silico-generated combinatorial library followed by docking approaches, we have found deguelin derivatives with better affinity and specificity against ODC than the original compound, suggesting that this approach could be adapted for developing new drugs against leishmaniasis.
Collapse
Affiliation(s)
- Adrián Vicente-Barrueco
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Ángel Carlos Román
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
- Correspondence: (Á.C.R.); (F.C.)
| | - Trinidad Ruiz-Téllez
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Francisco Centeno
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
- Correspondence: (Á.C.R.); (F.C.)
| |
Collapse
|
22
|
Serra E Meira PCL, Abreu BL, de Almeida Zenóbio APL, de Castilho Sanguinette C, Rêgo FD, de Lima Carvalho GM, Saraiva L, Andrade Filho JD. Phlebotominae Fauna (Diptera: Psychodidae) and Molecular Detection of Leishmania (Kinetoplastida: Trypanosomatidae) in Urban Caves of Belo Horizonte, Minas Gerais, Brazil. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:257-266. [PMID: 34532734 DOI: 10.1093/jme/tjab156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Sand flies are often collected in urban areas, which has several implications for the risk of transmission of Leishmania Ross, 1903, to humans and other mammals. Given this scenario, we describe the sand fly fauna of caves and their surroundings in Mangabeiras Municipal Park (MMP) and Paredão Serra do Curral Park (PSCP), both located in the urban area of Belo Horizonte, Minas Gerais, Brazil, an endemic focus of visceral and cutaneous leishmaniasis. Collections were conducted monthly from November 2011 to October 2012, using CDC light traps exposed for two consecutive nights in four caves and their surroundings. Nonsystematized collections using Shannon traps and active searches were also performed around the caves. The presence of Leishmania DNA in collected female sand flies was evaluated by ITS1-PCR. A total of 857 sand flies representing fourteen species were collected in MMP, of which Evandromyia edwardsi (Mangabeira, 1941) was the most abundant. Leishmania amazonensis was detected in Brumptomyia nitzulescui (Costa Lima, 1932) and Ev. edwardsi, with the latter also having Leishmania braziliensis, Leishmania infantum, and Leishmania sp. A total of 228 sand flies representing four species were collected in PSCP, of which Sciopemyia microps (Mangabeira, 1942) was the most abundant. No females from PSCP were positive for Leishmania-DNA. Studies aimed at describing sand fly faunas of cave environments and detecting Leishmania are essential to understanding the relationship between these insects and this ecotope and assessing and monitoring areas that may pose risks to the health of visitors and employees.
Collapse
Affiliation(s)
- Paula Cavalcante Lamy Serra E Meira
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Lacerda Abreu
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Lusardo de Almeida Zenóbio
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Cristiani de Castilho Sanguinette
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Dutra Rêgo
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Mayr de Lima Carvalho
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Lara Saraiva
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - José Dilermando Andrade Filho
- Grupo de Estudos em Leishmanioses-Instituto René Rachou-FIOCRUZ Minas, Avenida Augusto de Lima, 1715 Barro Preto, CEP 30190-002, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
23
|
Nunes DCDOS, Costa MS, Bispo-da-Silva LB, Ferro EAV, Zóia MAP, Goulart LR, Rodrigues RS, Rodrigues VDM, Yoneyama KAG. Mitochondrial dysfunction on Leishmania (Leishmania) amazonensis induced by ketoconazole: insights into drug mode of action. Mem Inst Oswaldo Cruz 2022; 117:e210157. [PMID: 35508030 PMCID: PMC9060495 DOI: 10.1590/0074-02760210157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Leishmania parasites cause leishmaniasis that range from self-limiting cutaneous lesions to more serious forms of the disease. The search for potential drug targets focusing on biochemical and metabolic pathways revealed the sterol biosynthesis inhibitors (SBIs) as a promising approach. In this class of inhibitors is found ketoconazole, a classical inhibitor of 14α-methysterol 14-demethylase. OBJECTIVE The present study aimed to better understand the biological response of Leishmania (Leishmania) amazonensis promastigotes at the cellular level after ketoconazole treatment. METHODS Herein, techniques, such as fluorimetry, flow cytometry, fluorescence microscopy, electron and scanning microscopy were used to investigate the cellular structures and to identify organelles affected by ketoconazole treatment. FINDINGS The study demonstrated, for the first time, the effect of ketoconazole on mitochondrion functioning and its probable relationship to cell cycle and death on L. (L.) amazonensis promastigotes (IFLA/BR/67/PH8 strain). MAIN CONCLUSIONS Ketoconazole-induced mitochondrial damages led to hyperpolarisation of this single organelle and autophagic vacuoles formation, as a parasite survival strategy. These damages did not reflect directly on the parasite cell cycle, but drove the parasites to death, making them susceptible to ketoconazole treatment in in vitro models.
Collapse
|
24
|
Silva RCRD, Cruz LNPD, Coutinho JMDS, Fonseca-Alves CE, Rebêlo JMM, Pereira SRF. Experimental transmission of Leishmania (Leishmania) amazonensis to immunosuppressed mice through the bite of Lutzomyia longipalpis (Diptera: Psychodidae) results in cutaneous leishmaniasis. Rev Inst Med Trop Sao Paulo 2021; 63:e81. [PMID: 34878039 PMCID: PMC8670602 DOI: 10.1590/s1678-9946202163081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Lutzomyia longipalpis is the natural vector of
Leishmania (Leishmania) infantum, but it is also permissive
for several Leishmania species that are related to cutaneous
leishmaniasis (CL). Maranhao State (Northeast of Brazil) is endemic for CL and
has the highest number of cases of diffuse cutaneous leishmaniasis (DCL) in the
country. It is a rare disease associated with a defective immune response mainly
caused by L. (L.) amazonensis. Additionally, the number of
immunosuppressed patients infected with the etiologic agents of CL has
increased, including regions in which the main vectors of CL are rare.
Therefore, we investigated whether Lu. longipalpis is able to
transmit L. (L.) amazonensis to uninfected and immunosuppressed
mice, resulting in CL. For that, 291 sand flies took an initial blood meal in
mice infected with L. (L.) amazonensis. Of these, 17 underwent
a second feeding on uninfected and immunosuppressed mice (of which 58.8% were
also positive for Leishmania according to data on the
dissection of the intestine). After 27 days of infection, these mice exhibited
leishmaniotic lesions. The occurrence of parasites on the animal’s skin was
confirmed by limiting dilution and immunohistopathological analyses. Parasite
DNA was also detected in paw lesions and inguinal lymph nodes. DNA sequencing
confirmed the Leishmania species in insects and mice. The
results confirmed the ability of Lu. longipalpis to become
infected and experimentally transmit L. (L.) amazonensis to
immunosuppressed rodents, resulting in leishmaniotic lesions. Our data open
perspectives for the potential role of Lu. longipalpis in the
epidemiology of urban cutaneous leishmaniasis, especially in immunosuppressed
patients.
Collapse
Affiliation(s)
- Rosa Cristina Ribeiro da Silva
- Universidade Federal do Maranhão, Programa de Pós-Graduação em Ciências da Saúde, São Luís, Maranhão, Brazil.,Universidade Federal do Maranhão, Departamento de Biologia, Laboratório de Genética e Biologia Molecular, São Luís, Maranhão, Brazil.,Universidade Federal do Maranhão Departamento de Biologia, Laboratório de Entomologia e Vetores, São Luís, Maranhão, Brazil
| | - Léo Nava Piorsky Dominici Cruz
- Universidade Federal do Maranhão, Departamento de Biologia, Laboratório de Genética e Biologia Molecular, São Luís, Maranhão, Brazil.,Universidade Federal do Maranhão Departamento de Biologia, Laboratório de Entomologia e Vetores, São Luís, Maranhão, Brazil
| | - João Manoel da Silva Coutinho
- Universidade Federal do Maranhão, Programa de Pós-Graduação em Ciências da Saúde, São Luís, Maranhão, Brazil.,Universidade Federal do Maranhão Departamento de Biologia, Laboratório de Entomologia e Vetores, São Luís, Maranhão, Brazil
| | | | - José Manuel Macário Rebêlo
- Universidade Federal do Maranhão Departamento de Biologia, Laboratório de Entomologia e Vetores, São Luís, Maranhão, Brazil
| | - Silma Regina Ferreira Pereira
- Universidade Federal do Maranhão, Departamento de Biologia, Laboratório de Genética e Biologia Molecular, São Luís, Maranhão, Brazil
| |
Collapse
|
25
|
Mathison BA, Sapp SGH. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. Zookeys 2021; 1069:1-313. [PMID: 34819766 PMCID: PMC8595220 DOI: 10.3897/zookeys.1069.67403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The classification of "parasites" in the medical field is a challenging notion, a group which historically has included all eukaryotes exclusive of fungi that invade and derive resources from the human host. Since antiquity, humans have been identifying and documenting parasitic infections, and this collective catalog of parasitic agents has expanded considerably with technology. As our understanding of species boundaries and the use of molecular tools has evolved, so has our concept of the taxonomy of human parasites. Consequently, new species have been recognized while others have been relegated to synonyms. On the other hand, the decline of expertise in classical parasitology and limited curricula have led to a loss of awareness of many rarely encountered species. Here, we provide a comprehensive checklist of all reported eukaryotic organisms (excluding fungi and allied taxa) parasitizing humans resulting in 274 genus-group taxa and 848 species-group taxa. For each species, or genus where indicated, a concise summary of geographic distribution, natural hosts, route of transmission and site within human host, and vectored pathogens are presented. Ubiquitous, human-adapted species as well as very rare, incidental zoonotic organisms are discussed in this annotated checklist. We also provide a list of 79 excluded genera and species that have been previously reported as human parasites but are not believed to be true human parasites or represent misidentifications or taxonomic changes.
Collapse
Affiliation(s)
- Blaine A. Mathison
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USAInstitute for Clinical and Experimental PathologySalt Lake CityUnited States of America
| | - Sarah G. H. Sapp
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USACenters for Disease Control and PreventionAtlantaUnited States of America
| |
Collapse
|
26
|
Patino LH, Castillo-Castañeda A, Muñoz M, Muskus C, Rivero-Rodríguez M, Pérez-Doria A, Bejarano EE, Ramírez JD. Revisiting the heterogeneous global genomic population structure of Leishmania infantum. Microb Genom 2021; 7. [PMID: 34491157 PMCID: PMC8715437 DOI: 10.1099/mgen.0.000640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leishmania infantum is the main causative agent responsible for visceral leishmaniasis (VL), a disease with global distribution. The genomic structure and genetic variation of this species have been widely studied in different parts of the world. However, in some countries, this information is still yet unknown, as is the genomic behaviour of the main antigens used in VL diagnosis (rK39 and rK28), which have demonstrated variable sensitivity and specificity in a manner dependent on the geographic region analysed. The objective of this study was to explore the genomic architecture and diversity of four Colombian L. infantum isolates obtained in this study and to compare these results with the genetic analysis of 183 L. infantum isolates from across the world (obtained from public databases), as well as to analyse the whole rK39 and rK28 antigen sequences in our dataset. The results showed that, at the global level, L. infantum has high genetic homogeneity and extensive aneuploidy. Furthermore, we demonstrated that there are distinct populations of L. infantum circulating in various countries throughout the globe and that populations of distant countries have close genomic relationships. Additionally, this study demonstrated the high genetic variability of the rK28 antigen worldwide. In conclusion, our study allowed us to (i) expand our knowledge of the genomic structure of global L. infantum; (ii) describe the intra-specific genomic variability of this species; and (iii) understand the genomic characteristics of the main antigens used in the diagnosis of VL. Additionally, this is the first study to report whole-genome sequences of Colombian L. infantum isolates.
Collapse
Affiliation(s)
- Luz H Patino
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Adriana Castillo-Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Estudios y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Matilde Rivero-Rodríguez
- Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia.,Candidata a doctor en Medicina Tropical, Universidad de Cartagena-SUE Caribe, Colombia
| | - Alveiro Pérez-Doria
- Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
| | - Eduar E Bejarano
- Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
27
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
28
|
Phenotypical and genotypical differences among Leishmania (Leishmania) amazonensis isolates that caused different clinical frames in humans and dogs: A systematic review. Acta Trop 2021; 221:106018. [PMID: 34157292 DOI: 10.1016/j.actatropica.2021.106018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022]
Abstract
Leishmania (Leishmania) amazonensis is an important etiological agent of American cutaneous leishmaniasis (ACL) in Brazil. The species causes a large spectrum of clinical manifestations in humans and dogs, ranging from cutaneous, cutaneous diffuse, mucocutaneous, and visceral involvement, however, the factors that drive the development of different disease forms by the same species are not yet fully known. In the present work, it was systematically reviewed the studies addressing phenotypic and genotypic characteristics of Leishmania (L.) amazonensis isolates causing cutaneous and visceral clinical frames in humans and dogs, comparing the results observed. For this, four research databases were searched for the following keywords: (Leishmania amazonensis AND visceral leishmaniasis) AND (tropism OR virulence OR visceralization OR adaptations OR mutation OR clinical presentation OR resistance OR survival OR wide spectrum). The results revealed that the complexity disease seems to involve the combination of genetic factors of the parasite (as modifications in molecules related to the virulence and metabolism) and also of the host's immune background and status. Nonetheless, the exact mechanism that leads to different clinical manifestations between strains of the same species is still uncertain and future studies must be developed to better elucidate this phenomenon.
Collapse
|
29
|
Camacho E, González-de la Fuente S, Solana JC, Rastrojo A, Carrasco-Ramiro F, Requena JM, Aguado B. Gene Annotation and Transcriptome Delineation on a De Novo Genome Assembly for the Reference Leishmania major Friedlin Strain. Genes (Basel) 2021; 12:genes12091359. [PMID: 34573340 PMCID: PMC8468144 DOI: 10.3390/genes12091359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023] Open
Abstract
Leishmania major is the main causative agent of cutaneous leishmaniasis in humans. The Friedlin strain of this species (LmjF) was chosen when a multi-laboratory consortium undertook the objective of deciphering the first genome sequence for a parasite of the genus Leishmania. The objective was successfully attained in 2005, and this represented a milestone for Leishmania molecular biology studies around the world. Although the LmjF genome sequence was done following a shotgun strategy and using classical Sanger sequencing, the results were excellent, and this genome assembly served as the reference for subsequent genome assemblies in other Leishmania species. Here, we present a new assembly for the genome of this strain (named LMJFC for clarity), generated by the combination of two high throughput sequencing platforms, Illumina short-read sequencing and PacBio Single Molecular Real-Time (SMRT) sequencing, which provides long-read sequences. Apart from resolving uncertain nucleotide positions, several genomic regions were reorganized and a more precise composition of tandemly repeated gene loci was attained. Additionally, the genome annotation was improved by adding 542 genes and more accurate coding-sequences defined for around two hundred genes, based on the transcriptome delimitation also carried out in this work. As a result, we are providing gene models (including untranslated regions and introns) for 11,238 genes. Genomic information ultimately determines the biology of every organism; therefore, our understanding of molecular mechanisms will depend on the availability of precise genome sequences and accurate gene annotations. In this regard, this work is providing an improved genome sequence and updated transcriptome annotations for the reference L. major Friedlin strain.
Collapse
|
30
|
Staniek ME, Hamilton JGC. Odour of domestic dogs infected with Leishmania infantum is attractive to female but not male sand flies: Evidence for parasite manipulation. PLoS Pathog 2021; 17:e1009354. [PMID: 33735302 PMCID: PMC7971543 DOI: 10.1371/journal.ppat.1009354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Globally visceral leishmaniasis (VL) causes thousands of human deaths every year. In South America, the etiologic agent, Leishmania infantum, is transmitted from an infected canine reservoir to human hosts by the bite of the sand fly vector; predominantly Lutzomyia longipalpis. Previous evidence from model rodent systems have suggested that the odour of infected hosts is altered by the parasite making them more attractive to the vector leading to an increased biting rate and improved transmission prospects for the pathogen. However, there has been no assessment of the effect of Le infantum infection on the attractiveness of dogs, which are the natural reservoirs for human infection. Hair collected from infected and uninfected dogs residing in a VL endemic city in Brazil was entrained to collect the volatile chemical odours present in the headspace. Female and male Lu. longipalpis sand flies were offered a choice of odour entrained from infected and uninfected dogs in a series of behavioural experiments. Odour of uninfected dogs was equally attractive to male or female Lu. longipalpis when compared to a solvent control. Female Lu. longipalpis were significantly more attracted to infected dog odour than uninfected dog odour in all 15 experimental replicates (average 45.7±0.87 females attracted to infected odour; 23.9±0.82 to uninfected odour; paired T-test, P = 0.000). Male Lu. longipalpis did not significantly prefer either infected or uninfected odour (average 36.1±0.4 males to infected odour; 35.7±0.6 to uninfected odour; paired T-test, P = 0.722). A significantly greater proportion of females chose the infected dog odour compared to the males (paired T-test, P = 0.000). The results showed that the odour of dogs infected with Le. infantum was significantly more attractive to blood-seeking female sand flies than it was to male sand flies. This is strong evidence for parasite manipulation of the host odour in a natural transmission system and indicates that infected dogs may have a disproportionate significance in maintaining infection in the canine and human population.
Collapse
Affiliation(s)
- Monica E. Staniek
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| | - James G. C. Hamilton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| |
Collapse
|
31
|
Ramos GS, Vallejos VMR, Ladeira MS, Reis PG, Souza DM, Machado YA, Ladeira LO, Pinheiro MBV, Melo MN, Fujiwara RT, Frézard F. Antileishmanial activity of fullerol and its liposomal formulation in experimental models of visceral leishmaniasis. Biomed Pharmacother 2021; 134:111120. [PMID: 33341671 DOI: 10.1016/j.biopha.2020.111120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniasis (VL) is a systemic parasitic disease that leads to high rates of morbidity and mortality in humans worldwide. There is a great need to develop new drugs and novel strategies to make chemotherapy for this disease more efficacious and well tolerated. Recent reports on the immunomodulatory effects and the low toxicity of the spherical carbon nanostructure fullerol led us to investigate in vitro and in vivo antileishmanial activity in free and encapsulated forms in liposomes. When assayed against intramacrophagic Leishmania amastigotes, fullerol showed a dose-dependent reduction of the infection index with IC50 of 0.042 mg/mL. When given daily by i.p. route for 20 days (0.05 mg/kg/d) in a murine model of acute VL, fullerol promoted significant reduction in the liver parasite load. To improve the delivery of fullerol to the infection sites, liposomal formulations were prepared by the dehydration-rehydration method. When evaluated in the acute VL model, liposomal fullerol (Lip-Ful) formulations given i.p. at 0.05 and 0.2 mg/kg with 4-days intervals were more effective than the free form, with significant parasite reductions in both liver and spleen. Lip-Ful at 0.2 mg/kg promoted complete parasite elimination in the liver. The antileishmanial activity of Lip-Ful was further confirmed in a chronic model of VL. Lip-Ful was also found to induce secretion of pro-inflammatory TNF-α, IFN-γ and IL-1β cytokines. In conclusion, this work reports for the first time the antileishmanial activity of fullerol and introduces an innovative approach for treatment of VL based on the association of this nanostructure with liposomes.
Collapse
Affiliation(s)
- Guilherme S Ramos
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Virgínia M R Vallejos
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Marina S Ladeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Priscila G Reis
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel M Souza
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Yuri A Machado
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz O Ladeira
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício B V Pinheiro
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Maria N Melo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
32
|
de Araújo Barbosa V, de Souza CF, Pereira A, Gatherer D, Brazil RP, Bray DP, Hamilton JG. Insecticide-impregnated netting: A surface treatment for killing Lutzomyia longipalpis (Diptera: Psychodidae), the vector of Leishmania infantum. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:None. [PMID: 35005688 PMCID: PMC8716342 DOI: 10.1016/j.crpvbd.2021.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022]
Abstract
The sand fly Lutzomyia longipalpis is the main vector of Leishmania infantum in Brazil. Synthetic male-produced sex/aggregation pheromone co-located with micro-encapsulated λ-cyhalothrin in chicken sheds can significantly reduce canine infection and sand fly densities in a lure-and-kill strategy. In this study, we determined if insecticide-impregnated netting (IN) could replace insecticide residual spraying (IRS). We compared numbers of Lu. longipalpis attracted and killed in experimental and real chicken sheds baited with pheromone and treated with a 1 m2 area of either insecticide spray or netting. First, we compared both treatments in experimental sheds to control mortality established from light trap captures. We then compared the long-term killing effect of insecticide spray and netting, without renewal, in experimental sheds over a period of 16 weeks. Finally, a longitudinal intervention study in real chicken sheds compared the numbers and proportions of Lu. longipalpis collected and killed before and after application of both treatments. In Experiment 1, a higher proportion of males and females captured in IRS- and IN-treated sheds were dead at 24 h compared to controls (P < 0.05). No difference was found in the proportion of females killed in sheds treated with IN or IRS (P = 0.15). A slightly higher proportion of males were killed by IRS (100%) compared to IN (98.6%; P < 0.05). In Experiment 2, IN- and IRS-treated traps were equally effective at killing females (P = 0.21) and males (P = 0.08). However, IRS killed a significantly higher proportion of females and males after 8 (P < 0.05) and 16 (P < 0.05) weeks. In Experiment 3, there was no significant difference between treatments in the proportion of females killed before (P = 0.88) or after (P = 0.29) or males killed before (P = 0.76) or after (P = 0.73) intervention. Overall, initially the IN was as effective as IRS at killing female and male Lu. longipalpis in both experimental and real chicken sheds. However, the relative lethal effect of the IN deteriorated over time when stored under prevailing environmental conditions. Chicken sheds treated with netting or spray insecticide killed Lutzomyia longipalpis. Same effect was seen in experimental and real chicken sheds. Netting was as effective as spraying insecticide initially. Sprayed insecticide killed a higher proportion of both sexes after 8 and 16 weeks. The relative lethal effect of the netting deteriorated over time.
Collapse
|
33
|
Pramanik PK, Chakraborti S, Bagchi A, Chakraborti T. Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Sci Rep 2020; 10:20440. [PMID: 33235245 PMCID: PMC7686382 DOI: 10.1038/s41598-020-77066-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis, a major neglected tropical disease, affects millions of individuals worldwide. Among the various clinical forms, visceral leishmaniasis (VL) is the deadliest. Current antileishmanial drugs exhibit toxicity- and resistance-related issues. Therefore, advanced chemotherapeutic alternatives are in demand, and currently, plant sources are considered preferable choices. Our previous report has shown that the chloroform extract of Corchorus capsularis L. leaves exhibits a significant effect against Leishmania donovani promastigotes. In the current study, bioassay-guided fractionation results for Corchorus capsularis L. leaf-derived β-sitosterol (β-sitosterolCCL) were observed by spectroscopic analysis (FTIR, 1H NMR, 13C NMR and GC–MS). The inhibitory efficacy of this β-sitosterolCCL against L. donovani promastigotes was measured (IC50 = 17.7 ± 0.43 µg/ml). β-SitosterolCCL significantly disrupts the redox balance via intracellular ROS production, which triggers various apoptotic events, such as structural alteration, increased storage of lipid bodies, mitochondrial membrane depolarization, externalization of phosphatidylserine and non-protein thiol depletion, in promastigotes. Additionally, the antileishmanial activity of β-sitosterolCCL was validated by enzyme inhibition and an in silico study in which β-sitosterolCCL was found to inhibit Leishmania donovani trypanothione reductase (LdTryR). Overall, β-sitosterolCCL appears to be a novel inhibitor of LdTryR and might represent a successful approach for treatment of VL in the future.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
34
|
Patino LH, Muñoz M, Cruz-Saavedra L, Muskus C, Ramírez JD. Genomic Diversification, Structural Plasticity, and Hybridization in Leishmania (Viannia) braziliensis. Front Cell Infect Microbiol 2020; 10:582192. [PMID: 33178631 PMCID: PMC7596589 DOI: 10.3389/fcimb.2020.582192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
Leishmania (Viannia) braziliensis is an important Leishmania species circulating in several Central and South American countries. Among Leishmania species circulating in Brazil, Argentina and Colombia, L. braziliensis has the highest genomic variability. However, genomic variability at the whole genome level has been only studied in Brazilian and Peruvian isolates; to date, no Colombian isolates have been studied. Considering that in Colombia, L. braziliensis is a species with great clinical and therapeutic relevance, as well as the role of genetic variability in the epidemiology of leishmaniasis, we analyzed and evaluated intraspecific genomic variability of L. braziliensis from Colombian and Bolivian isolates and compared them with Brazilian isolates. Twenty-one genomes were analyzed, six from Colombian patients, one from a Bolivian patient, and 14 Brazilian isolates downloaded from public databases. The results obtained of Phylogenomic analysis showed the existence of four well-supported clades, which evidenced intraspecific variability. The whole-genome analysis revealed structural variations in the somy, mainly in the Brazilian genomes (clade 1 and clade 3), low copy number variations, and a moderate number of single-nucleotide polymorphisms (SNPs) in all genomes analyzed. Interestingly, the genomes belonging to clades 2 and 3 from Colombia and Brazil, respectively, were characterized by low heterozygosity (~90% of SNP loci were homozygous) and regions suggestive of loss of heterozygosity (LOH). Additionally, we observed the drastic whole genome loss of heterozygosity and possible hybridization events in one genome belonging to clade 4. Unique/shared SNPs between and within the four clades were identified, revealing the importance of some of them in biological processes of L. braziliensis. Our analyses demonstrate high genomic variability of L. braziliensis in different regions of South America, mainly in Colombia and suggest that this species exhibits striking genomic diversity and a capacity of genomic hybridization; additionally, this is the first study to report whole-genome sequences of Colombian L. braziliensis isolates.
Collapse
Affiliation(s)
- Luz H Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
35
|
Nadaes NR, Silva da Costa L, Santana RC, LaRocque-de-Freitas IF, Vivarini ÁDC, Soares DC, Wardini AB, Gazos Lopes U, Saraiva EM, Freire-de-Lima CG, Decote-Ricardo D, Pinto-da-Silva LH. DH82 Canine and RAW264.7 Murine Macrophage Cell Lines Display Distinct Activation Profiles Upon Interaction With Leishmania infantum and Leishmania amazonensis. Front Cell Infect Microbiol 2020; 10:247. [PMID: 32596164 PMCID: PMC7303514 DOI: 10.3389/fcimb.2020.00247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/29/2020] [Indexed: 11/15/2022] Open
Abstract
Leishmaniasis is an anthropozoonotic disease, and dogs are considered the main urban reservoir of the parasite. Macrophages, the target cells of Leishmania sp., play an important role during infection. Although dogs have a major importance in the epidemiology of the disease, the majority of the current knowledge about Leishmania–macrophage interaction comes from murine experimental models. To assess whether the canine macrophage strain DH82 is an accurate model for the study of Leishmania interaction, we compared its infection by two species of Leishmania (Leishmania infantum and L. amazonensis) with the murine macrophage cell line (RAW264.7). Our results demonstrated that L. amazonensis survival was around 40% at 24 h of infection inside both macrophage cell lines; however, a reduction of 4.3 times in L. amazonensis infection at 48 h post-infection in RAW 264.7 macrophages was observed. The survival index of L. infantum in DH82 canine macrophages was around 3 times higher than that in RAW264.7 murine cells at 24 and 48 h post-infection; however, at 48 h a reduction in both macrophages was observed. Surprisingly at 24 h post-infection, NO and ROS production by DH82 canine cells stimulated with LPS or menadione or during Leishmania infection was minor compared to murine RAW264.7. However, basal arginase activity was higher in DH82 cells when compared to murine RAW264.7 cells. Analysis of the cytokines showed that these macrophages present a different response profile. L. infantum induced IL-12, and L. amazonensis induced IL-10 in both cell lines. However, L. infantum and L. amazonensis also induced TGF-β in RAW 264.7. CD86 and MHC expression showed that L. amazonensis modulated them in both cell lines. Conversely, the parasite load profile did not show significant difference between both macrophage cell lines after 48 h of infection, which suggests that other mechanisms of Leishmania control could be involved in DH82 cells.
Collapse
Affiliation(s)
- Natalia Rocha Nadaes
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | - Leandro Silva da Costa
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raissa Couto Santana
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | | | | | - Deivid Costa Soares
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Brito Wardini
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | - Ulisses Gazos Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | | |
Collapse
|
36
|
Veasey JV, Zampieri RA, Lellis RF, Freitas THPD, Winter LMF. Identification of Leishmania species by high-resolution DNA dissociation in cases of American cutaneous leishmaniasis. An Bras Dermatol 2020; 95:459-468. [PMID: 32518010 PMCID: PMC7335872 DOI: 10.1016/j.abd.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Background American cutaneous leishmaniasis is an infectious dermatosis caused by protozoa of the genus Leishmania, which comprises a broad spectrum of clinical manifestations depending on the parasite species involved in the infections and the immunogenetic response of the host. The use of techniques for amplification of the parasites DNA based on polymerase chain reaction polymerase chain reaction and the recent application of combined techniques, such as high-resolution DNA dissociation, have been described as a viable alternative for the detection and identification of Leishmania spp. in biological samples. Objectives To identify the Leishmania species using the polymerase chain reaction high-resolution DNA dissociation technique in skin biopsies of hospital-treated patients, and compare with results obtained by other molecular identification techniques. Methods A retrospective study assessing patients with suspected American cutaneous leishmaniasis seen at a hospital in São Paulo/Brazil was conducted. The paraffin blocks of 22 patients were analyzed by polymerase chain reaction high-resolution DNA dissociation to confirm the diagnosis and identify the species. Results Of the 22 patients with suspected American cutaneous leishmaniasis, the parasite was identified in 14, comprising five cases (35.6%) of infection by L. amazonensis, four (28.5%) by L. braziliensis, two (14.4%) by L. amazonensis + L. infantum chagasi, two (14.4%) by L. guyanensis, and one (7.1%) by Leishmania infantum chagasi. In one of the samples, in which the presence of amastigotes was confirmed on histopathological examination, the polymerase chain reaction high-resolution DNA dissociation technique failed to detect the DNA of the parasite. Study limitations The retrospective nature of the study and small number of patients. Conclusions The method detected and identified Leishmania species in paraffin-embedded skin biopsies with a sensitivity of 96.4% and could be routinely used in the public health system.
Collapse
Affiliation(s)
- John Verrinder Veasey
- Dermatology Clinic, Faculdade de Ciências Médicas, Hospital da Santa Casa de Misericórdia de São Paulo, Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil.
| | - Ricardo Andrade Zampieri
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rute Facchini Lellis
- Department of Pathological Anatomy, Hospital da Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil
| | - Thaís Helena Proença de Freitas
- Dermatology Clinic, Faculdade de Ciências Médicas, Hospital da Santa Casa de Misericórdia de São Paulo, Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
37
|
Shaw J. The importance of understanding enzootic cycles in the epidemiology of zoonotic diseases with special reference to the American leishmaniases. Trans R Soc Trop Med Hyg 2020; 113:108-109. [PMID: 30358870 DOI: 10.1093/trstmh/try090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jeffrey Shaw
- Parasitology Department, Biomedical Sciences Institute, São Paulo University, São Paulo, Brazil
| |
Collapse
|
38
|
Patino LH, Muskus C, Muñoz M, Ramírez JD. Genomic analyses reveal moderate levels of ploidy, high heterozygosity and structural variations in a Colombian isolate of Leishmania (Leishmania) amazonensis. Acta Trop 2020; 203:105296. [PMID: 31836281 DOI: 10.1016/j.actatropica.2019.105296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
Leishmania amazonensis is one of the causative agents of the different forms of cutaneous leishmaniasis present in Latin America. This species has been isolated from humans and animals (canine/feline) in some endemic regions of Colombia. Therefore, L. amazonensis is of great relevance at the clinical and epidemiological levels in medicine and veterinary science. Until now, very few genomes from this species are available. Here, we report the complete genome sequence of a laboratory-adapted L. amazonensis strain isolated from a human patient with clinical manifestation of cutaneous leishmaniasis in Colombia. The genome sequence not only allowed inter and intra-species comparative analyses to be performed with the sequenced genomes of L. amazonensis strains from different geographical regions, but also increased our knowledge about the genomic behavior of this L. amazonensis Colombian strain. This isolate was also characterized in terms of single nucleotide polymorphisms, chromosome and gene copy number variations (CNVs). The results revealed moderate aneuploidy, CNVs in genes involved in the virulence, growth, and survival of the parasite, and in the distributions of the multicopy genes on some chromosomes, as well as a high level of heterozygosity. The data confirmed previous reports that identified unique variations in L. amazonensis, suggesting aneuploidy may not have a high fitness cost and may allow the rapid generation of diversity in Leishmania parasites growing normally.
Collapse
Affiliation(s)
- Luz H Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Control y Estudio de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia..
| |
Collapse
|
39
|
Seroprevalence, Clinical, and Pathological Characteristics of Canine Leishmaniasis in a Central Region of Colombia. J Vet Res 2020; 64:85-94. [PMID: 32258804 PMCID: PMC7105987 DOI: 10.2478/jvetres-2020-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 02/03/2020] [Indexed: 01/21/2023] Open
Abstract
Introduction Leishmaniasis is a zoonotic disease which is caused by protozoan parasites of the genus Leishmania. Canids are the most important reservoir of the parasites; however, limited data are available on the species of Leishmania prevalent in these animals and their impact on human health. The objective of this study was to estimate the seroprevalence of leishmaniasis in dogs from an inter-Andean region of Colombia during July 2016–July 2017, and to describe the clinical and histopathological features of the disease. Material and Methods A total of 155 dogs were subjected to clinical examination and a serological test for detection of antibodies against Leishmania. Necropsy was carried out on positive animals and tissue samples were processed by routine histopathology. Results Altogether 19 dogs were positive in the serological test, establishing a 12% seroprevalence of Leishmania. Clinical examination and necropsy revealed exfoliative and ulcerative dermatitis with haemorrhagic borders on the ears, head, nose, and legs. Histopathology revealed severe multifocal dermatitis with abundant Leishmania amastigotes within the cytoplasm of phagocytic cells, depletion of lymphocytes in lymphoid tissues, interstitial pneumonia, and interstitial nephritis. Tissue samples were positive for Leishmania by PCR. Conclusion The macro- and microscopic changes correlated with the presence of Leishmania as established by serological test and PCR.
Collapse
|
40
|
Diotallevi A, Buffi G, Ceccarelli M, Neitzke-Abreu HC, Gnutzmann LV, da Costa Lima MS, Di Domenico A, De Santi M, Magnani M, Galluzzi L. Real-time PCR to differentiate among Leishmania (Viannia) subgenus, Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis: Application on Brazilian clinical samples. Acta Trop 2020; 201:105178. [PMID: 31606374 DOI: 10.1016/j.actatropica.2019.105178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 01/31/2023]
Abstract
Leishmaniasis is a complex disease caused by Leishmania species belonging to subgenera Leishmania and Viannia. In South America, L. (L.) infantum is considered the most important causative agent of visceral leishmaniasis, while L. (L.) amazonensis and Viannia subgenus species are responsible for the different cutaneous or mucocutaneous forms. In our previous work, we developed a diagnostic approach for Leishmania species discrimination based on two qPCRs (qPCR-ML and qPCR-ama) targeting the minicircle kDNA followed by melting analysis. This approach allowed to (i) differentiate the subgenera Leishmania and Viannia, and (ii) distinguish between L. (L.) infantum and L. (L.) amazonensis. The aim of this work was to demonstrate the applicability of the approach previously described, using human and canine clinical samples and strains from a Brazilian region, where L. (L.) infantum, L. (L.) amazonensis and Viannia subgenus species coexist. After validation on New World strains, the diagnostic approach was applied blindly to 36 canine clinical samples (peripheral blood and bone marrow) and 11 human clinical samples (peripheral blood and bone marrow). The sensitivity was 95.6% (95% confidence interval 77.3-100%) and 100% (95% confidence interval 76.9-100%) in the canine bone marrow samples and human (peripheral blood and bone marrow) samples, respectively, compared to conventional PCR assays. Concerning the Leishmania species identification, the conventional and qPCR-based methods showed kappa value of 0.876 (95% confidence interval 0.638-1.000), indicating good agreement. Therefore, this approach proved to be useful in both veterinary and human clinical context in regions co-endemic for L. (L.) infantum, L. (L.) amazonensis, and Viannia subgenus, helping to provide rapid diagnosis and to allow studies of species distribution.
Collapse
|
41
|
Martínez-Rodrigo A, S. Dias D, Ribeiro PAF, Roatt BM, Mas A, Carrión J, Coelho EAF, Domínguez-Bernal G. Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines (Basel) 2019; 7:vaccines7040183. [PMID: 31739549 PMCID: PMC6963319 DOI: 10.3390/vaccines7040183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/04/2022] Open
Abstract
Leishmania amazonensis is the aetiological agent of a broad spectrum of leishmaniosis in South America. It can cause not only numerous cases of cutaneous leishmaniosis but also diffuse cutaneous leishmaniosis. Considering the diversity of parasite species causing different forms of the disease that coexist in the same region, it is desirable to develop a vaccine capable of eliciting cross-protection. We have previously described the use of HisAK70 DNA vaccine for immunization of mice to assess the induction of a resistant phenotype against Leishmania major and infantum infections. In this study, we extended its application in the murine model of infection by using L. amazonensis promastigotes. Our data revealed that 14 weeks post-infection, HisAK70-vaccinated mice showed key biomarkers of protection, such as higher iNOS/arginase activity, IFN-γ/IL-10, IFN-γ/IL-4, and GM-CSF/IL-10 ratios, in addition to an IgG2a-type response when compared to the control group. These findings correlated with the presentation of lower footpad swelling and parasite burdens in the immunized compared to the control mice. Overall, this study suggests that immunization with HisAK70 may be considered a suitable tool to combat leishmaniosis as it is able to induce a potent cellular immune response, which allows to control the infection caused by L. amazonensis.
Collapse
Affiliation(s)
- Abel Martínez-Rodrigo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Daniel S. Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
| | - Patrícia A. F. Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
| | - Bruno M. Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil;
| | - Alicia Mas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Javier Carrión
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Gustavo Domínguez-Bernal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
- Correspondence: ; Tel.: +34-913943712
| |
Collapse
|
42
|
Camacho E, Rastrojo A, Sanchiz Á, González-de la Fuente S, Aguado B, Requena JM. Leishmania Mitochondrial Genomes: Maxicircle Structure and Heterogeneity of Minicircles. Genes (Basel) 2019; 10:genes10100758. [PMID: 31561572 PMCID: PMC6826401 DOI: 10.3390/genes10100758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 01/27/2023] Open
Abstract
The mitochondrial DNA (mtDNA), which is present in almost all eukaryotic organisms, is a useful marker for phylogenetic studies due to its relative high conservation and its inheritance manner. In Leishmania and other trypanosomatids, the mtDNA (also referred to as kinetoplast DNA or kDNA) is composed of thousands of minicircles and a few maxicircles, catenated together into a complex network. Maxicircles are functionally similar to other eukaryotic mtDNAs, whereas minicircles are involved in RNA editing of some maxicircle-encoded transcripts. Next-generation sequencing (NGS) is increasingly used for assembling nuclear genomes and, currently, a large number of genomic sequences are available. However, most of the time, the mitochondrial genome is ignored in the genome assembly processes. The aim of this study was to develop a pipeline to assemble Leishmania minicircles and maxicircle DNA molecules, exploiting the raw data generated in the NGS projects. As a result, the maxicircle molecules and the plethora of minicircle classes for Leishmania major, Leishmania infantum and Leishmania braziliensis have been characterized. We have observed that whereas the heterogeneity of minicircle sequences existing in a single cell hampers their use for Leishmania typing and classification, maxicircles emerge as an extremely robust genetic marker for taxonomic studies within the clade of kinetoplastids.
Collapse
Affiliation(s)
- Esther Camacho
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Alberto Rastrojo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - África Sanchiz
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Sandra González-de la Fuente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Begoña Aguado
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
43
|
Gilchrist C, Stelkens R. Aneuploidy in yeast: Segregation error or adaptation mechanism? Yeast 2019; 36:525-539. [PMID: 31199875 PMCID: PMC6772139 DOI: 10.1002/yea.3427] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 01/24/2023] Open
Abstract
Aneuploidy is the loss or gain of chromosomes within a genome. It is often detrimental and has been associated with cell death and genetic disorders. However, aneuploidy can also be beneficial and provide a quick solution through changes in gene dosage when cells face environmental stress. Here, we review the prevalence of aneuploidy in Saccharomyces, Candida, and Cryptococcus yeasts (and their hybrid offspring) and analyse associations with chromosome size and specific stressors. We discuss how aneuploidy, a segregation error, may in fact provide a natural route for the diversification of microbes and enable important evolutionary innovations given the right ecological circumstances, such as the colonisation of new environments or the transition from commensal to pathogenic lifestyle. We also draw attention to a largely unstudied cross link between hybridisation and aneuploidy. Hybrid meiosis, involving two divergent genomes, can lead to drastically increased rates of aneuploidy in the offspring due to antirecombination and chromosomal missegregation. Because hybridisation and aneuploidy have both been shown to increase with environmental stress, we believe it important and timely to start exploring the evolutionary significance of their co-occurrence.
Collapse
Affiliation(s)
- Ciaran Gilchrist
- Division of Population Genetics, Department of ZoologyStockholm UniversityStockholmSweden
| | - Rike Stelkens
- Division of Population Genetics, Department of ZoologyStockholm UniversityStockholmSweden
| |
Collapse
|
44
|
Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of Leishmania amazonensis in skin samples. Exp Parasitol 2019; 203:23-29. [DOI: 10.1016/j.exppara.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022]
|
45
|
Staniek ME, Sedda L, Gibson TD, de Souza CF, Costa EM, Dillon RJ, Hamilton JGC. eNose analysis of volatile chemicals from dogs naturally infected with Leishmania infantum in Brazil. PLoS Negl Trop Dis 2019; 13:e0007599. [PMID: 31386662 PMCID: PMC6697360 DOI: 10.1371/journal.pntd.0007599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/16/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) in Brazil is a neglected, vector-borne, tropical parasitic disease that is responsible for several thousand human deaths every year. The transmission route involves sand flies becoming infected after feeding on infected reservoir host, mainly dogs, and then transmitting the Leishmania infantum parasites while feeding on humans. A major component of the VL control effort is the identification and euthanasia of infected dogs to remove them as a source of infection. A rapid, non-invasive, point-of-care device able to differentiate between the odours of infected and uninfected dogs may contribute towards the accurate diagnosis of canine VL. METHODOLOGY/PRINCIPAL FINDINGS We analysed the headspace volatile chemicals from the hair of two groups of dogs collected in 2017 and 2018 using a bench-top eNose volatile organic chemical analyser. The dogs were categorised as infected or uninfected by PCR analysis of blood samples taken by venepuncture and the number of parasites per ml of blood was calculated for each dog by qPCR analysis. We demonstrated using a robust clustering analysis that the eNose data could be discriminated into infected and uninfected categories with specificity >94% and sensitivity >97%. The eNose device and data analysis were sufficiently sensitive to be able to identify infected dogs even when the Leishmania population in the circulating blood was very low. CONCLUSIONS/SIGNIFICANCE The study illustrates the potential of the eNose to rapidly and accurately identify dogs infected with Le. infantum. Future improvements to eNose analyser sensor sensitivity, sampling methodology and portability suggest that this approach could significantly improve the diagnosis of VL infected dogs in Brazil with additional potential for effective diagnosis of VL in humans as well as for the diagnosis of other parasitic diseases.
Collapse
Affiliation(s)
- Monica E. Staniek
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| | - Luigi Sedda
- Centre for Health Informatics Computation and Statistics, Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| | - Tim D. Gibson
- RoboScientific Ltd., Espace North, Littleport, Cambridgeshire
| | | | - Erika M. Costa
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rod J. Dillon
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| | - James G. C. Hamilton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| |
Collapse
|
46
|
Patino LH, Muskus C, Ramírez JD. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasit Vectors 2019; 12:348. [PMID: 31300064 PMCID: PMC6626383 DOI: 10.1186/s13071-019-3603-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background In the last decade, resistance to antimonials has become a serious problem due to the emergence of drug-resistant strains. Therefore, understanding the mechanisms used by Leishmania parasites to survive under drug pressure is essential, particularly for species of medical-veterinary importance such as L. amazonensis. Methods Here, we used RNA-seq technology to analyse transcriptome profiles and identify global changes in gene expression between antimony-resistant and -sensitive L. amazonensis promastigotes. Results A total of 723 differentially expressed genes were identified between resistant and sensitive lines. Comparative transcriptomic analysis revealed that genes encoding proteins involved in metabolism (fatty acids) and stress response, as well as those associated with antimony resistance in other Leishmania species, were upregulated in the antimony-resistant line. Most importantly, we observed upregulation of genes encoding autophagy proteins, suggesting that in the presence of trivalent stibogluconate (SbIII) L. amazonensis can activate these genes either as a survival strategy or to induce cell death, as has been observed in other parasites. Conclusions This work identified global transcriptomic changes in an in vitro-adapted strain in response to SbIII. Our results provide relevant information to continue understanding the mechanism used by parasites of the subgenus Leishmania (L. amazonensis) to generate an antimony-resistant phenotype. Electronic supplementary material The online version of this article (10.1186/s13071-019-3603-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luz H Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
47
|
S. L. Figueiredo de Sá B, Rezende AM, de Melo Neto OP, de Brito MEF, Brandão Filho SP. Identification of divergent Leishmania (Viannia) braziliensis ecotypes derived from a geographically restricted area through whole genome analysis. PLoS Negl Trop Dis 2019; 13:e0007382. [PMID: 31170148 PMCID: PMC6581274 DOI: 10.1371/journal.pntd.0007382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 06/18/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis (CL) in Latin America, is characterized by major differences in basic biology in comparison with better-known Leishmania species. It is also associated with a high phenotypic and possibly genetic diversity that need to be more adequately defined. Here we used whole genome sequences to evaluate the genetic diversity of ten L. braziliensis isolates from a CL endemic area from Northeastern Brazil, previously classified by Multi Locus Enzyme Electrophoresis (MLEE) into ten distinct zymodemes. These sequences were first mapped using the L. braziliensis M2904 reference genome followed by identification of Single Nucleotide Polymorphisms (SNPs). A substantial level of diversity was observed when compared with the reference genome, with SNP counts ranging from ~95,000 to ~131,000 for the different isolates. When the genome data was used to infer relationship between isolates, those belonging to zymodemes Z72/Z75, recovered from forested environments, were found to cluster separately from the others, generally associated with more urban environments. Among the remaining isolates, those from zymodemes Z74/Z106 were also found to form a separate group. Phylogenetic analyses were also performed using Multi-Locus Sequence Analysis from genes coding for four metabolic enzymes used for MLEE as well as the gene sequence coding for the Hsp70 heat shock protein. All 10 isolates were firmly identified as L. braziliensis, including the zymodeme Z26 isolate previously classified as Leishmania shawi, with the clustering into three groups confirmed. Aneuploidy was also investigated but found in general restricted to chromosome 31, with a single isolate, from zymodeme Z27, characterized by extra copies for other chromosomes. Noteworthy, both Z72 and Z75 isolates are characterized by a much reduced heterozygosity. Our data is consistent with the existence of distinct evolutionary groups in the restricted area sampled and a substantial genetic diversity within L. braziliensis.
Collapse
Affiliation(s)
| | - Antonio M. Rezende
- Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
48
|
Cardoso MS, Bento GA, de Almeida LV, de Castro JC, Reis-Cunha JL, Barbosa VDA, de Souza CF, Brazil RP, Valdivia HO, Bartholomeu DC. Detection of multiple circulating Leishmania species in Lutzomyia longipalpis in the city of Governador Valadares, southeastern Brazil. PLoS One 2019; 14:e0211831. [PMID: 30721272 PMCID: PMC6363391 DOI: 10.1371/journal.pone.0211831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/21/2019] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis encompasses a group of diverse clinical diseases caused by protozoan parasites of the Leishmania genus. This disease is a major public health problem in the New World affecting people exposed in endemic regions. The city of Governador Valadares (Minas Gerais/Brazil) is a re-emerging area for visceral leishmaniasis, with 191 human cases reported from 2008 to 2017 and a lethality rate of 14.7%. The transmission of the parasite occurs intensely in this region with up to 22% of domestic dogs with positive serology for the visceral form. Lu. longipalpis is one of the most abundant sand fly species in this area. Despite this scenario, so far there is no information regarding the circulating Leishmania species in the insect vector Lutzomyia longipalpis in this focus. We collected 616 female Lutzomyia longipalpis sand flies between January and September 2015 in the Vila Parque Ibituruna neighborhood (Governador Valadares/MG), which is located on a transitional area between the sylvatic and urban environments with residences built near a preserved area. After DNA extraction of individual sand flies, the natural Leishmania infections in Lu. longipalpis were detected by conventional PCR, using primers derived from kDNA sequences, specific for L. (Leishmania) or L. (Viannia) subgenus. The sensitivity of these PCR reactions was 0.1 pg of DNA for each Leishmania subgenus and the total infection rate of 16.2% (100 positive specimens). Species-specific PCR detected the presence of multiple Leishmania species in infected Lu. longipalpis specimens in Governador Valadares, including L. amazonensis (n = 3), L. infantum (n = 28), L. (Viannia) spp. (n = 20), coinfections with L. infantum and L. (Viannia) spp. (n = 5), and L. (Leishmania) spp (n = 44). Our results demonstrate that multiple Leishmania species circulate in Lu. longipalpis in Governador Valadares and reveal a potential increasing risk of transmission of the different circulating parasite species. This information reinforces the need for epidemiological and entomological surveillance in this endemic focus, and the development of effective control strategies against leishmaniasis.
Collapse
Affiliation(s)
- Mariana Santos Cardoso
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabrielle Ariadine Bento
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laila Viana de Almeida
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Joseane Camilla de Castro
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Daniella Castanheira Bartholomeu
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
49
|
Kumar A. Transmission of leishmaniasis from human to other vertebrates: a rapid zooanthroponotic evolution. Int Microbiol 2019; 22:399-401. [PMID: 30810999 DOI: 10.1007/s10123-019-00055-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 11/24/2022]
Abstract
Research regarding zoonotic diseases often focuses on those diseases that are transferred from animals to humans. However, humans are also transmitting pathogens to animals but research on this topic is not given priority and importance. I have tried to draw the attention of researchers to this area also which is equally important. The aim of this letter was to provide a brief overview of published literature regarding reverse zoonoses or zooanthroponosis in the field of leishmaniasis and highlight the need for future work in this area. Scientific research must be conducted in the field of reverse zoonoses to provide an enriched understanding of emerging disease threats to animals and should not be neglected.
Collapse
Affiliation(s)
- Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
50
|
Herrera G, Higuera A, Patiño LH, Ayala MS, Ramírez JD. Description of Leishmania species among dogs and humans in Colombian Visceral Leishmaniasis outbreaks. INFECTION GENETICS AND EVOLUTION 2018; 64:135-138. [DOI: 10.1016/j.meegid.2018.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/25/2022]
|