1
|
Devi S, Negi S, Tandel N, Dalai SK, Tyagi RK. Oleuropein: a viable therapeutic option for malaria and cancer. Drug Discov Today 2025; 30:104254. [PMID: 39608487 DOI: 10.1016/j.drudis.2024.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Oleuropein (OLP) holds promise as a therapeutic candidate for both Plasmodium falciparum infection and cancer. It modulates the phosphoinositide 3-kinase (PI3K)-Akt1 signaling pathway to regulate inflammation and restore immune homeostasis. Moreover, it influences the cell death/autophagy axis, along with increasing the antimalarial efficacy of artemisinin. Our findings indicate that the anti-breast-cancer effect of OLP could be mediated by regulating the balance of T helper 17 and regulatory T cells. Additionally, we discuss the use of hematopoietic-stem-cell-transplanted immunodeficient mice with a humanized immune system for validating the antimalarial activity, autophagy and anticancer activity of OLP.
Collapse
Affiliation(s)
- Sonia Devi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Nikunj Tandel
- CSIR-Centre For Cellular & Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, SG Highway, Gujarat 382481, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Aquino A, Zaikova E, Kalinina O, Karonova TL, Rubinstein A, Mikhaylova AA, Kudryavtsev I, Golovkin AS. T Regulatory Cell Subsets Do Not Restore for One Year After Acute COVID-19. Int J Mol Sci 2024; 25:11759. [PMID: 39519310 PMCID: PMC11545974 DOI: 10.3390/ijms252111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, triggers a complex immune response, with T regulatory cells (Tregs) playing a crucial role in maintaining immune homeostasis and preventing excessive inflammation. The current study investigates the function of T regulatory cells during COVID-19 infection and the subsequent recovery period, emphasizing their impact on immune regulation and inflammation control. We conducted a comprehensive analysis of Treg subpopulations in peripheral blood samples from COVID-19 patients at different stages: acute infection, early convalescence, and long-term recovery. Flow cytometry was employed to quantify Tregs including "naïve", central memory (CM), effector memory (EM), and terminally differentiated CD45RA+ effector cells (TEMRA). Additionally, the functional state of the Tregs was assessed by the expression of purinergic signaling molecules (CD39, CD73). Cytokine profiles were assessed through multiplex analysis. Our findings indicate a significant decrease in the number of Tregs during the acute phase of COVID-19, which correlates with heightened inflammatory markers and increased disease severity. Specifically, we found a decrease in the relative numbers of "naïve" and an increase in EM Tregs, as well as a decrease in the absolute numbers of "naïve" and CM Tregs. During the early convalescent period, the absolute counts of all Treg populations tended to increase, accompanied by a reduction in pro-inflammatory cytokines. Despite this, one year after recovery, the decreased subpopulations of regulatory T cells had not yet reached the levels observed in healthy donors. Finally, we observed the re-establishment of CD39 expression in all Treg subsets; however, there was no change in CD73 expression among Tregs. Understanding these immunological changes across different T regulatory subsets and adenosine signaling pathways offers important insights into the disease's pathogenesis and provides a broader view of immune system dynamics during recovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexey S. Golovkin
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.A.); (A.R.); (I.K.)
| |
Collapse
|
3
|
Devi S, Negi S, Sharma P, Tandel N, Tyagi RK. Protocol for oleuropein-induced autophagy mediating drug tolerance in P. falciparum. STAR Protoc 2024; 5:103141. [PMID: 38905105 PMCID: PMC11245907 DOI: 10.1016/j.xpro.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
The anti-inflammatory activity of a phytocompound (oleuropein [OLP]) in the lipopolysaccharide (LPS)-mimicked macrophage model of inflammation demonstrates the importance of PI3K-Akt1 signaling in establishing "immune homeostasis." Here, we present a protocol for the cultivation of in vitro cultures of P. falciparum for carrying out drug sensitivity assays. We describe steps for parasite synchronization, drug treatment, DNA isolation, and starvation-induced autophagy. This protocol provides insights into autophagy and parasite tolerance to drug pressure. For complete details on the use and execution of this protocol, please refer to Sharma et al.1.
Collapse
Affiliation(s)
- Sonia Devi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Prakriti Sharma
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad 382481, India.
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Sharma P, Tandel N, Kumar R, Negi S, Sharma P, Devi S, Saxena K, Chaudhary NR, Saini S, Kumar R, Chandel BS, Sijwali PS, Tyagi RK. Oleuropein activates autophagy to circumvent anti-plasmodial defense. iScience 2024; 27:109463. [PMID: 38562521 PMCID: PMC10982566 DOI: 10.1016/j.isci.2024.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Antimalarial drug resistance and unavailability of effective vaccine warrant for newer drugs and drug targets. Hence, anti-inflammatory activity of phyto-compound (oleuropein; OLP) was determined in antigen (LPS)-stimulated human THP-1 macrophages (macrophage model of inflammation; MMI). Reduction in the inflammation was controlled by the PI3K-Akt1 signaling to establish the "immune-homeostasis." Also, OLP treatment influenced the cell death/autophagy axis leading to the modulated inflammation for extended cell survival. The findings with MII prompted us to detect the antimalarial activity of OLP in the wild type (3D7), D10-expressing GFP-Atg18 parasite, and chloroquine-resistant (Dd2) parasite. OLP did not show the parasite inhibition in the routine in vitro culture of P. falciparum whereas OLP increased the antimalarial activity of artesunate. The molecular docking of autophagy-related proteins, investigations with MMI, and parasite inhibition assays indicated that the host activated the autophagy to survive OLP pressure. The challenge model of P. berghei infection showed to induce autophagy for circumventing anti-plasmodial defenses.
Collapse
Affiliation(s)
- Praveen Sharma
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad 382481, India
| | - Rajinder Kumar
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Prakriti Sharma
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Sonia Devi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Kanika Saxena
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, Telangana, India
| | - Neil Roy Chaudhary
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Sheetal Saini
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Reetesh Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, India
| | - Bharat Singh Chandel
- Department of Animal Biotechnology, College of Veterinary Science and AH, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506, India
| | - Puran S. Sijwali
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, Telangana, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Negi S, Tandel N, Garg NK, Sharma P, Kumar R, Sharma P, Kumar R, Saini S, Sharma A, Tyagi RK. Co-Delivery of Aceclofenac and Methotrexate Nanoparticles Presents an Effective Treatment for Rheumatoid Arthritis. Int J Nanomedicine 2024; 19:2149-2177. [PMID: 38482519 PMCID: PMC10933537 DOI: 10.2147/ijn.s439359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/01/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common acute inflammatory autoimmune connective tissue arthropathy. The genetic studies, tissue analyses, experimental animal models, and clinical investigations have confirmed that stromal tissue damage and pathology driven by RA mounts the chronic inflammation and dysregulated immune events. METHODS We developed methotrexate (MTX)-loaded lipid-polymer hybrid nanoparticles (MTX-LPHNPs) and aceclofenac (ACE)-loaded nanostructured lipid carriers (ACE-NLCs) for the efficient co-delivery of MTX and ACE via intravenous and transdermal routes, respectively. Bio-assays were performed using ex-vivo skin permeation and transport, macrophage model of inflammation (MMI) (LPS-stimulated THP-1 macrophages), Wistar rats with experimental RA (induction of arthritis with Complete Freund's adjuvant; CFA and BCG), and programmed death of RA affected cells. In addition, gene transcription profiling and serum estimation of inflammatory, signaling, and cell death markers were performed on the blood samples collected from patients with RA. RESULTS Higher permeation of ACE-NLCs/CE across skin layers confirming the greater "therapeutic index" of ACE. The systemic delivery of MTX-loaded LPHNPs via the parenteral (intravenous) route is shown to modulate the RA-induced inflammation and other immune events. The regulated immunological and signaling pathway(s) influence the immunological axis to program the death of inflamed cells in the MMI and the animals with the experimental RA. Our data suggested the CD40-mediated and Akt1 controlled cell death along with the inhibited autophagy in vitro. Moreover, the ex vivo gene transcription profiling in drug-treated PBMCs and serum analysis of immune/signalling markers confirmed the therapeutic role co-delivery of drug nanoparticles to treat RA. The animals with experimental RA receiving drug treatment were shown to regain the structure of paw bones and joints similar to the control and were comparable with the market formulations. CONCLUSION Our findings confirmed the use of co-delivery of drug nanoformulations as the "combination drug regimen" to treat RA.
Collapse
Affiliation(s)
- Sushmita Negi
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (Acsir), Ghaziabad, 201002, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Neeraj K Garg
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Prakriti Sharma
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Rajinder Kumar
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Praveen Sharma
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Reetesh Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sheetal Saini
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Aman Sharma
- Clinical Immunology and Rheumatology Wing, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rajeev K Tyagi
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (Acsir), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Dhawan M, Rabaan AA, Alwarthan S, Alhajri M, Halwani MA, Alshengeti A, Najim MA, Alwashmi ASS, Alshehri AA, Alshamrani SA, AlShehail BM, Garout M, Al-Abdulhadi S, Al-Ahmed SH, Thakur N, Verma G. Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long COVID. Vaccines (Basel) 2023; 11:vaccines11030699. [PMID: 36992283 DOI: 10.3390/vaccines11030699] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The COVID-19 pandemic has caused havoc all around the world. The causative agent of COVID-19 is the novel form of the coronavirus (CoV) named SARS-CoV-2, which results in immune system disruption, increased inflammation, and acute respiratory distress syndrome (ARDS). T cells have been important components of the immune system, which decide the fate of the COVID-19 disease. Recent studies have reported an important subset of T cells known as regulatory T cells (Tregs), which possess immunosuppressive and immunoregulatory properties and play a crucial role in the prognosis of COVID-19 disease. Recent studies have shown that COVID-19 patients have considerably fewer Tregs than the general population. Such a decrement may have an impact on COVID-19 patients in a number of ways, including diminishing the effect of inflammatory inhibition, creating an inequality in the Treg/Th17 percentage, and raising the chance of respiratory failure. Having fewer Tregs may enhance the likelihood of long COVID development in addition to contributing to the disease's poor prognosis. Additionally, tissue-resident Tregs provide tissue repair in addition to immunosuppressive and immunoregulatory activities, which may aid in the recovery of COVID-19 patients. The severity of the illness is also linked to abnormalities in the Tregs' phenotype, such as reduced expression of FoxP3 and other immunosuppressive cytokines, including IL-10 and TGF-beta. Hence, in this review, we summarize the immunosuppressive mechanisms and their possible roles in the prognosis of COVID-19 disease. Furthermore, the perturbations in Tregs have been associated with disease severity. The roles of Tregs are also explained in the long COVID. This review also discusses the potential therapeutic roles of Tregs in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Al-Madinah 41411, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
7
|
Tandel N, Negi S, Tyagi RK. NKB cells: A double-edged sword against inflammatory diseases. Front Immunol 2022; 13:972435. [PMID: 36405684 PMCID: PMC9669376 DOI: 10.3389/fimmu.2022.972435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Interferon-γ (IFN-γ)-producing natural killer (NK) cells and innate lymphoid cells (ILCs) activate the adaptive system’s B and T cells in response to pathogenic invasion; however, how these cells are activated during infections is not yet fully understood. In recent years, a new lymphocyte population referred to as “natural killer-like B (NKB) cells”, expressing the characteristic markers of innate NK cells and adaptive B cells, has been identified in both the spleen and mesenteric lymph nodes during infectious and inflammatory pathologies. NKB cells produce IL-18 and IL-12 cytokines during the early phases of microbial infection, differentiating them from conventional NK and B cells. Emerging evidence indicates that NKB cells play key roles in clearing microbial infections. In addition, NKB cells contribute to inflammatory responses during infectious and inflammatory diseases. Hence, the role of NKB cells in disease pathogenesis merits further study. An in-depth understanding of the phenotypic, effector, and functional properties of NKB cells may pave the way for the development of improved vaccines and therapeutics for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology (IMTECH), Chandigarh, India
- *Correspondence: Rajeev K. Tyagi, ;
| |
Collapse
|
8
|
El-Awady AR, Elashiry M, Morandini AC, Meghil MM, Cutler CW. Dendritic cells a critical link to alveolar bone loss and systemic disease risk in periodontitis: Immunotherapeutic implications. Periodontol 2000 2022; 89:41-50. [PMID: 35244951 DOI: 10.1111/prd.12428] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extensive research in humans and animal models has begun to unravel the complex mechanisms that drive the immunopathogenesis of periodontitis. Neutrophils mount an early and rapid response to the subgingival oral microbiome, producing destructive enzymes to kill microbes. Chemokines and cytokines are released that attract macrophages, dendritic cells, and T cells to the site. Dendritic cells, the focus of this review, are professional antigen-presenting cells on the front line of immune surveillance. Dendritic cells consist of multiple subsets that reside in the epithelium, connective tissues, and major organs. Our work in humans and mice established that myeloid dendritic cells are mobilized in periodontitis. This occurs in lymphoid and nonlymphoid oral tissues, in the bloodstream, and in response to Porphyromonas gingivalis. Moreover, the dendritic cells mature in situ in gingival lamina propria, forming immune conjugates with cluster of differentiation (CD) 4+ T cells, called oral lymphoid foci. At such foci, the decisions are made as to whether to promote bone destructive T helper 17 or bone-sparing regulatory T cell responses. Interestingly, dendritic cells lack potent enzymes and reactive oxygen species needed to kill and degrade endocytosed microbes. The keystone pathogen P. gingivalis exploits this vulnerability by invading dendritic cells in the tissues and peripheral blood using its distinct fimbrial adhesins. This promotes pathogen dissemination and inflammatory disease at distant sites, such as atherosclerotic plaques. Interestingly, our recent studies indicate that such P. gingivalis-infected dendritic cells release nanosized extracellular vesicles called exosomes, in higher numbers than uninfected dendritic cells do. Secreted exosomes and inflammasome-related cytokines are a key feature of the senescence-associated secretory phenotype. Exosomes communicate in paracrine with neighboring stromal cells and immune cells to promote and amplify cellular senescence. We have shown that dendritic cell-derived exosomes can be custom tailored to target and reprogram specific immune cells responsible for inflammatory bone loss in mice. The long-term goal of these immunotherapeutic approaches, ongoing in our laboratory and others, is to promote human health and longevity.
Collapse
Affiliation(s)
- Ahmed R El-Awady
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ana C Morandini
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mohamed M Meghil
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
9
|
Yang J, Hao T, Liu Y, Huang J, Wu W, Wu J, Sun W. Th17/Treg balance and indoleamine 2,3 dioxygenase activity in periodontitis-associated atherosclerotic patients. J Int Med Res 2022; 50:3000605221080877. [PMID: 35220782 PMCID: PMC8894972 DOI: 10.1177/03000605221080877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective This study investigated the peripheral Th17/Treg balance and its potential controlling factor indoleamine 2,3 dioxygenase (IDO) in patients with periodontitis and atherosclerosis (AS), as well as its correlation with Porphyromonas gingivalis infection. Methods In this retrospective study, P. gingivalis-infected atherosclerotic patients (Pg-AS), atherosclerotic patients (AS), P. gingivalis-infected periodontitis patients (Pg), and healthy controls (HCs) were selected after clinical examination, subgingival plaque examination, and plasma anti-P. gingivalis antibody analysis. Treg and Th17 cell percentages, related transcription factors, and functional cytokines in peripheral blood were analysed. Plasma tryptophan (Trp) and kynurenine (Kyn) were measured to determine IDO activity. Results Atherosclerotic patients (Pg-AS and AS groups) had significantly lower IDO activity and higher Th17/Treg ratio than those in the Pg and HC groups. The Th17/Treg ratio was higher and IDO activity was lower in the Pg-AS group compared with the AS group. Transcription factors and cytokines exhibited the same trend as the Th17 and Treg cells. Additionally, IDO activity was negatively correlated with the plasma anti-P. gingivalis antibody titre and the Th17/Treg ratio in the atherosclerotic group. Conclusions P. gingivalis may reduce IDO activity and further promote Th17/Treg imbalance to facilitate AS development. IDO may be a novel molecular marker to predict periodontitis-associated AS.
Collapse
Affiliation(s)
- Jie Yang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ting Hao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yu Liu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jin Huang
- Department of Cardiology, Nanjing Chest Hospital, Nanjing Chest Hospital, Nanjing, Jiangsu, China
| | - Wenlei Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Role of Damage-Associated Molecular Pattern/Cell Death Pathways in Vaccine-Induced Immunity. Viruses 2021; 13:v13122340. [PMID: 34960608 PMCID: PMC8708515 DOI: 10.3390/v13122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Immune responses induced by natural infection and vaccination are known to be initiated by the recognition of microbial patterns by cognate receptors, since microbes and most vaccine components contain pathogen-associated molecular patterns. Recent discoveries on the roles of damage-associated molecular patterns (DAMPs) and cell death in immunogenicity have improved our understanding of the mechanism underlying vaccine-induced immunity. DAMPs are usually immunologically inert, but can transform into alarming signals to activate the resting immune system in response to pathogenic infection, cellular stress and death, or tissue damage. The activation of DAMPs and cell death pathways can trigger local inflammation, occasionally mediating adaptive immunity, including antibody- and cell-mediated immune responses. Emerging evidence indicates that the components of vaccines and adjuvants induce immunogenicity via the stimulation of DAMP/cell death pathways. Furthermore, strategies for targeting this pathway to enhance immunogenicity are being investigated actively. In this review, we describe various DAMPs and focus on the roles of DAMP/cell death pathways in the context of vaccines for infectious diseases and cancer.
Collapse
|
11
|
Rojas C, García MP, Polanco AF, González-Osuna L, Sierra-Cristancho A, Melgar-Rodríguez S, Cafferata EA, Vernal R. Humanized Mouse Models for the Study of Periodontitis: An Opportunity to Elucidate Unresolved Aspects of Its Immunopathogenesis and Analyze New Immunotherapeutic Strategies. Front Immunol 2021; 12:663328. [PMID: 34220811 PMCID: PMC8248545 DOI: 10.3389/fimmu.2021.663328] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an oral inflammatory disease in which the polymicrobial synergy and dysbiosis of the subgingival microbiota trigger a deregulated host immune response, that leads to the breakdown of tooth-supporting tissues and finally tooth loss. Periodontitis is characterized by the increased pathogenic activity of T helper type 17 (Th17) lymphocytes and defective immunoregulation mediated by phenotypically unstable T regulatory (Treg), lymphocytes, incapable of resolving the bone-resorbing inflammatory milieu. In this context, the complexity of the immune response orchestrated against the microbial challenge during periodontitis has made the study of its pathogenesis and therapy difficult and limited. Indeed, the ethical limitations that accompany human studies can lead to an insufficient etiopathogenic understanding of the disease and consequently, biased treatment decision-making. Alternatively, animal models allow us to manage these difficulties and give us the opportunity to partially emulate the etiopathogenesis of periodontitis by inoculating periodontopathogenic bacteria or by placing bacteria-accumulating ligatures around the teeth; however, these models still have limited translational application in humans. Accordingly, humanized animal models are able to emulate human-like complex networks of immune responses by engrafting human cells or tissues into specific strains of immunodeficient mice. Their characteristics enable a viable time window for the study of the establishment of a specific human immune response pattern in an in vivo setting and could be exploited for a wider study of the etiopathogenesis and/or treatment of periodontitis. For instance, the antigen-specific response of human dendritic cells against the periodontopathogen Porphyromonas gingivalis favoring the Th17/Treg response has already been tested in humanized mice models. Hypothetically, the proper emulation of periodontal dysbiosis in a humanized animal could give insights into the subtle molecular characteristics of a human-like local and systemic immune response during periodontitis and support the design of novel immunotherapeutic strategies. Therefore, the aims of this review are: To elucidate how the microbiota-elicited immunopathogenesis of periodontitis can be potentially emulated in humanized mouse models, to highlight their advantages and limitations in comparison with the already available experimental periodontitis non-humanized animal models, and to discuss the potential translational application of using these models for periodontitis immunotherapeutics.
Collapse
Affiliation(s)
- Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Michelle P García
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alan F Polanco
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Elsayed R, Elashiry M, Liu Y, El-Awady A, Hamrick M, Cutler CW. Porphyromonas gingivalis Provokes Exosome Secretion and Paracrine Immune Senescence in Bystander Dendritic Cells. Front Cell Infect Microbiol 2021; 11:669989. [PMID: 34141629 PMCID: PMC8204290 DOI: 10.3389/fcimb.2021.669989] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is a disease of ageing or inflammaging, and is comorbid with other more severe age-related chronic diseases. With advanced age comes an increase in accumulation of senescent cells that release soluble and insoluble pro-inflammatory factors collectively termed the senescence associated secretory phenotype (SASP). In the present report, we examined whether immune cells typical of those at the oral mucosa-microbe interface, are vulnerable to cellular senescence (CS) and the role of dysbiotic oral pathogen Porphyromonas gingivalis. Bone marrow-derived dendritic cells (DCs) from young (yDCs) and old (oDCs) mice were co-cultured in vitro with CS inducer doxorubicin or P.gingivalis (Pg), plus or minus senolytic agent rapamycin. CS profiling revealed elevated CS mediators SA-β-Gal, p16 INK4A, p53, and p21Waf1/Clip1 in oDCs, or yDCs in response to doxorubicin or P. gingivalis, reversible with rapamycin. Functional studies indicate impaired maturation function of oDCs, and yDC exposed to P. gingivalis; moreover, OVA-driven proliferation of CD4+ T cells from young OTII transgenic mice was impaired by oDCs or yDCs+Pg. The SASP of DCs, consisting of secreted exosomes and inflammasome-related cytokines was further analyzed. Exosomes of DCs cocultured with P. gingivalis (PgDCexo) were purified, quantitated and characterized. Though typical in terms of size, shape and phenotype, PgDCexo were 2-fold greater in number than control DCs, with several important distinctions. Namely, PgDCexo were enriched in age-related miRNAs, and miRNAs reported to disrupt immune homeostasis through negative regulation of apoptosis and autophagy functions. We further show that PgDCexo were enriched in P. gingivalis fimbrial adhesin protein mfa1 and in inflammasome related cytokines IL-1β, TNFα and IL-6. Functionally PgDCexo were readily endocytosed by recipient yDCs, amplifying functional impairment in maturation and ability to promote Ova-driven proliferation of OTII CD4+ T cells from young mice. In conclusion P. gingivalis induces premature (autocrine) senescence in DCs by direct cellular invasion and greatly amplifies senescence, in paracrine, of bystander DCs by secretion of inflammatory exosomes. The implications of this pathological pathway for periodontal disease in vivo is under investigation in mouse models.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, United States
| | - Ahmed El-Awady
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, United States
| | - Christopher W. Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Christopher W. Cutler,
| |
Collapse
|
13
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
14
|
Microbial Lipid A Remodeling Controls Cross-Presentation Efficiency and CD8 T Cell Priming by Modulating Dendritic Cell Function. Infect Immun 2021; 89:IAI.00335-20. [PMID: 33257533 DOI: 10.1128/iai.00335-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-β) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.
Collapse
|
15
|
Rabelo MDS, El-Awady A, Moura Foz A, Hisse Gomes G, Rajendran M, Meghil MM, Lowry S, Romito GA, Cutler CW, Susin C. Influence of T2DM and prediabetes on blood DC subsets and function in subjects with periodontitis. Oral Dis 2019; 25:2020-2029. [PMID: 31541516 DOI: 10.1111/odi.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To compare the myeloid and plasmacytoid DC counts and maturation status among subjects with/without generalized periodontitis (GP) and type 2 diabetes mellitus (T2DM). METHODS The frequency and maturation status of myeloid and plasmacytoid blood DCs were analyzed by flow cytometry in four groups of 15 subjects: healthy controls, T2DM with generalized CP (T2DM + GP), prediabetes with GP (PD + GP), and normoglycemics with GP (NG + GP). RT-PCR was used to determine levels of Porphyromonas gingivalis in the oral biofilms and within panDCs. The role of exogenous glucose effects on differentiation and apoptosis of healthy human MoDCs was explored in vitro. RESULTS Relative to controls and to NG + GP, T2DM + GP showed significantly lower CD1c + and CD303 + DC counts, while CD141 + DCs were lower in T2DM + GP relative to controls. Blood DC maturation required for mobilization and immune responsiveness was not observed. A statistically significant trend was observed for P. gingivalis levels in the biofilms of groups as follows: controls <NG+GP < PD+GP < T2DM+GP. Moreover, significantly higher P. gingivalis levels were observed in blood DCs of NG + GP than controls, whereas no differences were observed between controls and PD + GP/T2DM + GP. In vitro differentiation of MoDCs was significantly decreased, and apoptosis was increased by physiologically relevant glucose levels. CONCLUSION Type 2 diabetes mellitus appears to inhibit important DC immune homeostatic functions, including expansion and bacterial scavenging, which might be mediated by hyperglycemia.
Collapse
Affiliation(s)
- Mariana de Sousa Rabelo
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Ahmed El-Awady
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Adriana Moura Foz
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Giovane Hisse Gomes
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Mythilpriya Rajendran
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohamed M Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Lowry
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Giuseppe Alexandre Romito
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Christopher W Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Cristiano Susin
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Rajendran M, Looney S, Singh N, Elashiry M, Meghil MM, El-Awady AR, Tawfik O, Susin C, Arce RM, Cutler CW. Systemic Antibiotic Therapy Reduces Circulating Inflammatory Dendritic Cells and Treg-Th17 Plasticity in Periodontitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:2690-2699. [PMID: 30944162 DOI: 10.4049/jimmunol.1900046] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Periodontitis (PD) is a common dysbiotic inflammatory disease that leads to local bone deterioration and tooth loss. PD patients experience low-grade bacteremias with oral microbes implicated in the risk of heart disease, cancer, and kidney failure. Although Th17 effectors are vital to fighting infection, functional imbalance of Th17 effectors and regulatory T cells (Tregs) promote inflammatory diseases. In this study, we investigated, in a small pilot randomized clinical trial, whether expansion of inflammatory blood myeloid dendritic cells (DCs) and conversion of Tregs to Th17 cells could be modulated with antibiotics (AB) as part of initial therapy in PD patients. PD patients were randomly assigned to either 7 d of peroral metronidazole/amoxicillin AB treatment or no AB, along with standard care debridement and chlorhexidine mouthwash. 16s ribosomal RNA analysis of keystone pathogen Porphyromonas gingivalis and its consortium members Fusobacterium nucleatum and Streptococcus gordonii confirmed the presence of all three species in the reservoirs (subgingival pockets and blood DCs) of PD patients before treatment. Of the three species, P. gingivalis was reduced in both reservoirs 4-6 wk after therapy. Further, the frequency of CD1C+CCR6+ myeloid DCs and IL-1R1 expression on IL-17A+FOXP3+CD4+ T cells in PD patients were reduced to healthy control levels. The latter led to decreased IL-1β-stimulated Treg plasticity in PD patients and improvement in clinical measures of PD. Overall, we identified an important, albeit short-term, beneficial role of AB therapy in reducing inflammatory DCs and Treg-Th17 plasticity in humans with PD.
Collapse
Affiliation(s)
- Mythilypriya Rajendran
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Stephen Looney
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912.,Cancer Research Center, Augusta University, Augusta, GA 30912
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Mohamed M Meghil
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Ahmed R El-Awady
- Department of Research, Immunology Program, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Omnia Tawfik
- Department of Oral Medicine and Periodontology, Cairo University, Cairo 12613, Egypt; and
| | - Cristiano Susin
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Roger M Arce
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912;
| |
Collapse
|
17
|
Yang Y, Liu K, Chen Y, Gong Y, Liang Y. Indoleamine 2,3-Dioxygenase (IDO) Regulates Th17/Treg Immunity in Experimental IgA Nephropathy. Folia Biol (Praha) 2019; 65:101-108. [PMID: 31464185 DOI: 10.14712/fb2019065020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide. Current studies have shown that the Th17/Treg immune balance may be involved in the occurrence of IgAN, but the exact mechanism is still unclear. Indoleamine 2,3-dioxygenase (IDO) is an enzyme that catalyses degradation of tryptophan (Trp) through the kynurenine (Kyn) pathway; it can control inflammation and immune response by inducing Trp starvation. IDO may be a key molecule in regulating the Th17/Treg immune balance. However, it is not clear whether IDO is involved in the IgAN disease occurrence by regulating the Th17/Treg immune balance. In this study, an IgAN mouse model was established. The mice were intraperitoneally inoculated with IDO inhibitor 1-MT or agonist ISS-ODN to observe whether the IDO signalling pathway participates in the occurrence and development of IgAN by regulating the Th17/Treg immune balance. The results showed that IDO inhibitor 1-MT significantly increased renal injury and glomerular IgA accumulation and up-regulated Th17/Treg and Th17-related cytokine expression in IgAN mice, while ISS-ODN significantly decreased renal injury and glomerular IgA accumulation, down-regulated Th17/Treg expression and inhibited Th17-related cytokine expression in IgAN mice. In conclusion, IDO was involved in the occurrence and progress of IgAN by regulating the Th17/ Treg balance.
Collapse
Affiliation(s)
- Y Yang
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - K Liu
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Y Chen
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Y Gong
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Y Liang
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| |
Collapse
|
18
|
Nikolajczyk BS, Dawson DR. Origin of Th17 Cells in Type 2 Diabetes-Potentiated Periodontal Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:45-54. [DOI: 10.1007/978-3-030-28524-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Arjunan P, Meghil MM, Pi W, Xu J, Lang L, El-Awady A, Sullivan W, Rajendran M, Rabelo MS, Wang T, Tawfik OK, Kunde-Ramamoorthy G, Singh N, Muthusamy T, Susin C, Teng Y, Arce RM, Cutler CW. Oral Pathobiont Activates Anti-Apoptotic Pathway, Promoting both Immune Suppression and Oncogenic Cell Proliferation. Sci Rep 2018; 8:16607. [PMID: 30413788 PMCID: PMC6226501 DOI: 10.1038/s41598-018-35126-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
Chronic periodontitis (CP) is a microbial dysbiotic disease linked to increased risk of oral squamous cell carcinomas (OSCCs). To address the underlying mechanisms, mouse and human cell infection models and human biopsy samples were employed. We show that the ‘keystone’ pathogen Porphyromonas gingivalis, disrupts immune surveillance by generating myeloid-derived dendritic suppressor cells (MDDSCs) from monocytes. MDDSCs inhibit CTLs and induce FOXP3 + Tregs through an anti-apoptotic pathway. This pathway, involving pAKT1, pFOXO1, FOXP3, IDO1 and BIM, is activated in humans with CP and in mice orally infected with Mfa1 expressing P. gingivalis strains. Mechanistically, activation of this pathway, demonstrating FOXP3 as a direct FOXO1-target gene, was demonstrated by ChIP-assay in human CP gingiva. Expression of oncogenic but not tumor suppressor markers is consistent with tumor cell proliferation demonstrated in OSCC-P. gingivalis cocultures. Importantly, FimA + P. gingivalis strain MFI invades OSCCs, inducing inflammatory/angiogenic/oncogenic proteins stimulating OSCCs proliferation through CXCR4. Inhibition of CXCR4 abolished Pg-MFI-induced OSCCs proliferation and reduced expression of oncogenic proteins SDF-1/CXCR4, plus pAKT1-pFOXO1. Conclusively, P. gingivalis, through Mfa1 and FimA fimbriae, promotes immunosuppression and oncogenic cell proliferation, respectively, through a two-hit receptor-ligand process involving DC-SIGN+hi/CXCR4+hi, activating a pAKT+hipFOXO1+hiBIM−lowFOXP3+hi and IDO+hi- driven pathway, likely to impact the prognosis of oral cancers in patients with periodontitis.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America.
| | - Mohamed M Meghil
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America.,Department of Oral Biology, Augusta University, Augusta, Georgia, United States of America
| | - Wenhu Pi
- Department of Radiation Oncology, Indiana University, Indianapolis, Indiana, United States of America
| | - Jinxian Xu
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Liwei Lang
- Department of Oral Biology, Augusta University, Augusta, Georgia, United States of America
| | - Ahmed El-Awady
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - William Sullivan
- Department of Energy, Joint Genome Institute, California, United States of America
| | - Mythilypriya Rajendran
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Mariana Sousa Rabelo
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America.,Department of Periodontics, University of São Paulo, Sao Paulo, Brazil
| | - Tong Wang
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Omnia K Tawfik
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | | | - Nagendra Singh
- Department of Biochemistry & Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
| | - Thangaraju Muthusamy
- Department of Biochemistry & Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
| | - Cristiano Susin
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Yong Teng
- Department of Oral Biology, Augusta University, Augusta, Georgia, United States of America
| | - Roger M Arce
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America.
| |
Collapse
|