1
|
Sahin Aktura S, Sahin K, Tumkaya L, Mercantepe T, Topcu A, Pinarbas E, Yazici ZA. The Nephroprotective Effect of Punica granatum Peel Extract on LPS-Induced Acute Kidney Injury. Life (Basel) 2024; 14:1316. [PMID: 39459616 PMCID: PMC11509784 DOI: 10.3390/life14101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Sepsis is an exaggerated immune response resulting from systemic inflammation, which can damage tissues and organs. Acute kidney injury has been detected in at least one-third of patients with sepsis. Sepsis-associated acute kidney injury increases the risk of a secondary infection. Rapid diagnosis and appropriate initiation of antibiotics can significantly reduce mortality and morbidity. However, microorganisms are known to develop resistance to antibiotics. Estimations indicate that the annual casualties caused by microbial resistance will surpass cancer fatalities by 2050. The prevalence of bacterial infections and their growing antibiotic resistance has brought immediate attention to the search for novel treatments. Plant-derived supplements contain numerous bioactive components with therapeutic potential against a variety of conditions, including infections. Punica granatum peel is rich in phenolic compounds. The purpose of this study was to determine the anti-inflammatory and anti-bacterial properties of P. granatum peel extract (PGPE) on lipopolysaccharide (LPS)-induced acute kidney injury. Experimental groups were Control, LPS (10 mg/kg LPS, intraperitoneally), PGPE100, and PGPE300 (100 and 300 mg/mL PGPE via oral gavage, respectively, for 7 days). According to biochemical results, serum blood urea nitrogen (BUN), creatinine (Cr) and C-reactive protein (CRP), kidney tissue thiobarbituric acid reactive substances (TBARS), and reduced glutathione (GSH) levels significantly decreased in the PGPE groups compared to the LPS group. Histopathological and immunohistochemical findings revealed that toll-like receptor 4 (TLR4) level and nuclear factor kappa B (NF-κB) expression increased in the LPS group compared to the Control group. In addition, the anti-Gram-negative activity showed a dose-dependent effect on Acinetobacter baumannii, Escherichia coli, and Pseudomonas aeruginosa with the agar well diffusion method and the minimal inhibitory concentration (MIC). The MIC value was remarkable, especially on A. baumannii. We conclude that PGPE has the potential to generate desirable anti-bacterial and anti-inflammatory effects on LPS-induced acute kidney injury in rats.
Collapse
Affiliation(s)
- Sena Sahin Aktura
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey (K.S.)
| | - Kazim Sahin
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey (K.S.)
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Esra Pinarbas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Zihni Acar Yazici
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey (K.S.)
| |
Collapse
|
2
|
Guo Q, Li H, Zeng C, Lü Z, Jiang M. Associations of cold-inducible RNA-binding protein with bacterial load, proinflammatory cytokines and mortality from pneumonia. Clin Transl Sci 2024; 17:e13850. [PMID: 38807464 PMCID: PMC11134167 DOI: 10.1111/cts.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern that plays a critical role in triggering inflammatory responses. It remains unknown whether CIRP is strongly associated with bacterial load, inflammatory response, and mortality in sepsis model. Pneumonia was induced in specific pathogen-free 8-9-week old male rats by injecting bacteria via puncture of the tracheal cartilage. The expressions of CIRP and proinflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β] in lung tissues, alveolar macrophages (AMs), plasma, and bronchoalveolar lavage fluid (BALF) were determined by reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The numbers of bacteria recovered from the lungs were correlated with the bacterial loads injected and mortality. The expressions of CIRP increased sharply as the bacterial loads increased in the lung tissues and AMs. The amounts of TNF-α, IL-6 and IL-1β proteins synthesized were dependent on the bacterial load in the lung tissues. Releases of CIRP, TNF-α, IL-6, and IL-1β increased with the bacterial load in the blood plasma. The proteins confirmed similar patterns in the BALF. CIRP was strongly associated with the releases of TNF-α, IL-6, and IL-1β in the lung tissues, blood plasma, and BALF, and showed a close correlation with mortality. CIRP demonstrated a strong association with bacterial load, which is new evidence, and close correlations with proinflammatory cytokines and mortality of pneumonia in rats, suggesting that it might be an interesting pneumonic biomarker for monitoring host response and predicting mortality, and a promising target for immunotherapy.
Collapse
Affiliation(s)
- Qi Guo
- Department of Pulmonary and Critical Care Medicine, Shenzhen HospitalPeking UniversityShenzhenGuangdongChina
- Department of Pulmonary and Critical Care MedicineThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hai‐yan Li
- Department of General MedicineThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Chao Zeng
- Department of Pulmonary and Critical Care Medicine, Shenzhen HospitalPeking UniversityShenzhenGuangdongChina
| | - Zhong‐dong Lü
- Department of Pulmonary and Critical Care Medicine, Shenzhen HospitalPeking UniversityShenzhenGuangdongChina
| | - Mei Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Hu Z, Li J, Zhang F, Jacob A, Wang P. A NOVEL OLIGONUCLEOTIDE MRNA MIMIC ATTENUATES HEMORRHAGE-INDUCED ACUTE LUNG INJURY. Shock 2024; 61:630-637. [PMID: 38300836 PMCID: PMC11009070 DOI: 10.1097/shk.0000000000002309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ABSTRACT Hemorrhagic shock (HS) is accompanied by a pronounced activation of the inflammatory response in which acute lung injury (ALI) is one of the most frequent consequences. Among the pivotal orchestrators of this inflammatory cascade, extracellular cold-inducible RNA-binding protein (eCIRP) emerges as a noteworthy focal point, rendering it as a promising target for the management of inflammation and tissue injury. Recently, we have reported that oligonucleotide poly(A) mRNA mimic termed A 12 selectively binds to the RNA binding region of eCIRP and inhibits eCIRP binding to its receptor TLR4. Furthermore, in vivo administration of eCIRP induces lung injury in healthy mice and that mouse deficient in CIRP showed protection from inflammation-associated lung injury. We hypothesize that A 12 inhibits systemic inflammation and ALI in HS. To test the impacts of A 12 on systemic and lung inflammation, extent of inflammatory cellular infiltration and resultant lung damage were evaluated in a mouse model of HS. Male mice were subjected to controlled hemorrhage with a mean arterial pressure of 30 mm Hg for 90 min and then resuscitated with Ringer's lactate solution containing phosphate-buffered saline (vehicle) or A 12 at a dose of 4 nmol/g body weight (treatment). The infusion volume was twice that of the shed blood. At 4 h after resuscitation, mice were euthanized, and blood and lung tissues were harvested. Blood and tissue markers of inflammation and injury were evaluated. Serum markers of injury (lactate dehydrogenase, alanine transaminase, and blood urea nitrogen) and inflammation (TNF-α, IL-6) were increased after HS and A 12 treatment significantly decreased their levels. A 12 treatment also decreased lung levels of TNF-α, MIP-2, and KC mRNA expressions. Lung histological injury score, neutrophil infiltration (Ly6G staining and myeloperoxidase activity), and lung apoptosis were significantly attenuated after A 12 treatment. Our study suggests that the capacity of A 12 in attenuating HS-induced ALI and may provide novel perspectives in developing efficacious pharmaceutics for improving hemorrhage prognosis.
Collapse
Affiliation(s)
- Zhijian Hu
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Jingsong Li
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Fangming Zhang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, United States
| |
Collapse
|
4
|
Akama Y, Murao A, Aziz M, Wang P. Extracellular CIRP induces CD4CD8αα intraepithelial lymphocyte cytotoxicity in sepsis. Mol Med 2024; 30:17. [PMID: 38302880 PMCID: PMC10835974 DOI: 10.1186/s10020-024-00790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND In sepsis, intestinal barrier dysfunction is often caused by the uncontrolled death of intestinal epithelial cells (IECs). CD4CD8αα intraepithelial lymphocytes (IELs), a subtype of CD4+ T cells residing within the intestinal epithelium, exert cytotoxicity by producing granzyme B (GrB) and perforin (Prf). Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently identified alarmin which stimulates TLR4 on immune cells to induce proinflammatory responses. Here, we hypothesized that eCIRP enhances CD4CD8αα IEL cytotoxicity and induces IEC death in sepsis. METHODS We subjected wild-type (WT) and CIRP-/- mice to sepsis by cecal ligation and puncture (CLP) and collected the small intestines to isolate IELs. The expression of GrB and Prf in CD4CD8αα IELs was assessed by flow cytometry. IELs isolated from WT and TLR4-/- mice were challenged with recombinant mouse CIRP (eCIRP) and assessed the expression of GrB and Prf in CD4CD8αα by flow cytometry. Organoid-derived IECs were co-cultured with eCIRP-treated CD4CD8αα cells in the presence/absence of GrB and Prf inhibitors and assessed IEC death by flow cytometry. RESULTS We found a significant increase in the expression of GrB and Prf in CD4CD8αα IELs of septic mice compared to sham mice. We found that GrB and Prf levels in CD4CD8αα IELs were increased in the small intestines of WT septic mice, while CD4CD8αα IELs of CIRP-/- mice did not show an increase in those cytotoxic granules after sepsis. We found that eCIRP upregulated GrB and Prf in CD4CD8αα IELs isolated from WT mice but not from TLR4-/- mice. Furthermore, we also revealed that eCIRP-treated CD4CD8αα cells induced organoid-derived IEC death, which was mitigated by GrB and Prf inhibitors. Finally, histological analysis of septic mice revealed that CIRP-/- mice were protected from tissue injury and cell death in the small intestines compared to WT mice. CONCLUSION In sepsis, the cytotoxicity initiated by the eCIRP/TLR4 axis in CD4CD8αα IELs is associated with intestinal epithelial cell (IEC) death, which could lead to gut injury.
Collapse
Affiliation(s)
- Yuichi Akama
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
5
|
Zhang R, Fang K, Mu C, Zhang L. Cold-inducible RNA-binding protein induces inflammatory responses via NF-κB signaling pathway in normal human bronchial epithelial cells infected with streptococcus pneumoniae. Int Immunopharmacol 2024; 127:111338. [PMID: 38064816 DOI: 10.1016/j.intimp.2023.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Community-acquired pneumonia causes significant illness and death worldwide, requiring further investigation and intervention. The invasion of Streptococcus pneumoniae (S. pneumoniae, S.p) can lead to serious conditions like meningitis, sepsis, or pneumonia. Extracellular Cold-inducible RNA-binding protein (eCIRP) acts as a damage-associated molecular pattern that triggers inflammatory responses and plays an important role in both acute and chronic inflammatory diseases. It remains unclear whether CIRP is involved in the process of S. pneumoniae infection in normal human bronchial epithelial cells (BEAS-2B). METHODS Cell counting kit (CCK)-8 assay was used to detect the activity of BEAS-2B cells. The subcellular localization of CIRP was detected by immunofluorescence. The mRNA and protein levels of CIRP, nuclear factor kappa-B (NF-κB) p65, toll like receptor-4 (TLR4), interleukin-6 (IL-6) were detected using quantitative real-time PCR (PCR) and Western Blot (WB). The protein expressions of CIRP, IL-1β, IL-6, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) were assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS CIRP affects the activity of BEAS-2B cells induced by S. pneumoniae infection. After infection, CIRP translocates from the nucleus to the cytoplasm, thereby inducing the production of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and MCP-1). Additionally, the NF-κB p65 protein increases in infected cells but decreases with si-CIRP interference. Treatment with TLR4 neutralizing antibodies or NF-κB inhibitor effectively reduces the expressions of IL-1β, IL-6, TNF-α, and MCP-1. CONCLUSIONS The infection with S. pneumoniae upregulates CIRP expression and translocates it from the nucleus to the cytoplasm in BEAS-2B cells, leading to the release of proinflammatory factors via activation of NF-κB signaling pathway. CIRP as a key mediator in S. pneumoniae-induced inflammation offers potential targets for therapeutic intervention against community-acquired pneumonia.
Collapse
Affiliation(s)
- Rong Zhang
- Emergency Department of the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Kun Fang
- Emergency Department of the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Chunyan Mu
- Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Liang Zhang
- Emergency Department of the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
6
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
7
|
Murao A, Jha A, Ma G, Chaung W, Aziz M, Wang P. A Synthetic Poly(A) Tail Targeting Extracellular CIRP Inhibits Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1144-1153. [PMID: 37585248 PMCID: PMC10528014 DOI: 10.4049/jimmunol.2300228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
Sepsis is an infectious inflammatory disease that often results in acute lung injury (ALI). Cold-inducible RNA-binding protein (CIRP) is an intracellular RNA chaperon that binds to mRNA's poly(A) tail. However, CIRP can be released in sepsis, and extracellular CIRP (eCIRP) is a damage-associated molecular pattern, exaggerating inflammation, ALI, and mortality. In this study, we developed an engineered poly(A) mRNA mimic, AAAAAAAAAAAA, named A12, with 2'-O-methyl ribose modification and terminal phosphorothioate linkages to protect it from RNase degradation, exhibiting an increased half-life. A12 selectively and strongly interacted with the RNA-binding motif of eCIRP, thereby preventing eCIRP's binding to its receptor, TLR4. In vitro treatment with A12 significantly decreased eCIRP-induced macrophage MAPK and NF-κB activation and inflammatory transcription factor upregulation. A12 also attenuated proinflammatory cytokine production induced by eCIRP in vitro and in vivo in macrophages and mice, respectively. We revealed that treating cecal ligation and puncture-induced sepsis with A12 significantly reduced serum organ injury markers and cytokine levels and ALI, and it decreased bacterial loads in the blood and peritoneal fluid, ultimately improving their survival. Thus, A12's ability to attenuate the clinical models of sepsis sheds lights on inflammatory disease pathophysiology and prevention of the disease progress.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Alok Jha
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Gaifeng Ma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
8
|
Liu A, Zhang Y, Xun S, Zhou G, Hu J, Liu Y. Targeting of cold-inducible RNA-binding protein alleviates sepsis via alleviating inflammation, apoptosis and oxidative stress in heart. Int Immunopharmacol 2023; 122:110499. [PMID: 37392569 DOI: 10.1016/j.intimp.2023.110499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
A systemic inflammatory response is observed in patients undergoing shock and sepsis. This study aimed to explore the effects of cold-inducible RNA-binding protein (CIRP) on sepsis-associated cardiac dysfunction and the underlying mechanism. In vivo and in vitro lipopolysaccharide (LPS)-induced sepsis models were established in mice and neonatal rat cardiomyocytes (NRCMs), respectively. CRIP expressions were increased in the mouse heart and NRCMs treated with LPS. CIRP knockdown alleviated LPS-induced decreases of left ventricular ejection fraction and fractional shortening. CIRP downregulation attenuated the increases of inflammatory factors in the LPS-induced septic mouse heart, and NRCMs. The enhanced oxidative stress in the LPS-induced septic mouse heart and NRCMs was suppressed after CIRP knockdown. By contrast, CIRP overexpression yielded the opposite results. Our current study indicates that the knockdown of CIRP protects against sepsis-induced cardiac dysfunction through alleviating inflammation, apoptosis and oxidative stress of cardiomyocytes.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China.
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yun Liu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
9
|
Jin H, Aziz M, Murao A, Kobritz M, Shih AJ, Adelson RP, Brenner M, Wang P. Antigen-presenting aged neutrophils induce CD4+ T cells to exacerbate inflammation in sepsis. J Clin Invest 2023; 133:e164585. [PMID: 37463445 DOI: 10.1172/jci164585] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/26/2023] [Indexed: 07/20/2023] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) is a key mediator of severity and mortality in sepsis. We found that stimulation of mouse bone marrow-derived neutrophils (BMDNs) with eCIRP generated a distinct neutrophil subpopulation, characterized by cell surface markers of both antigen-presenting cells and aged neutrophils as well as expression of IL-12, which we named antigen-presenting aged neutrophils (APANs). The frequency of APANs was significantly increased in the blood, spleen, and lungs of WT mice subjected to cecal ligation and puncture-induced sepsis but not in CIRP-/- mice. Patients with sepsis had a significant increase in circulating APAN counts compared with healthy individuals. Compared with non-APAN-transfered mice, APAN-transferred septic mice had increased serum levels of injury and inflammatory markers, exacerbated acute lung injury (ALI), and worsened survival. APANs and CD4+ T cells colocalized in the spleen, suggesting an immune interaction between these cells. APANs cocultured with CD4+ T cells significantly induced the release of IFN-γ via IL-12. BMDNs stimulated with eCIRP and IFN-γ underwent hyper-NETosis. Stimulating human peripheral blood neutrophils with eCIRP also induced APANs, and stimulating human neutrophils with eCIRP and IFN-γ caused hyper-NETosis. Thus, eCIRP released during sepsis induced APANs to aggravate ALI and worsen the survival of septic animals via CD4+ T cell activation, Th1 polarization, and IFN-γ-mediated hyper-NETosis.
Collapse
Affiliation(s)
- Hui Jin
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine and
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Molly Kobritz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Andrew J Shih
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Robert P Adelson
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine and
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine and
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| |
Collapse
|
10
|
Duan M, Liu X, Yang Y, Zhang Y, Wu R, Lv Y, Lei H. Orchestrated regulation of immune inflammation with cell therapy in pediatric acute liver injury. Front Immunol 2023; 14:1194588. [PMID: 37426664 PMCID: PMC10323196 DOI: 10.3389/fimmu.2023.1194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Acute liver injury (ALI) in children, which commonly leads to acute liver failure (ALF) with the need for liver transplantation, is a devastating life-threatening condition. As the orchestrated regulation of immune hemostasis in the liver is essential for resolving excess inflammation and promoting liver repair in a timely manner, in this study we focused on the immune inflammation and regulation with the functional involvement of both innate and adaptive immune cells in acute liver injury progression. In the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, it was also important to incorporate insights from the immunological perspective for the hepatic involvement with SARS-CoV-2 infection, as well as the acute severe hepatitis of unknown origin in children since it was first reported in March 2022. Furthermore, molecular crosstalk between immune cells concerning the roles of damage-associated molecular patterns (DAMPs) in triggering immune responses through different signaling pathways plays an essential role in the process of liver injury. In addition, we also focused on DAMPs such as high mobility group box 1 (HMGB1) and cold-inducible RNA-binding protein (CIRP), as well as on macrophage mitochondrial DNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in liver injury. Our review also highlighted novel therapeutic approaches targeting molecular and cellular crosstalk and cell-based therapy, providing a future outlook for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mingyue Duan
- Department of Clinical Laboratory, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoguai Liu
- Department of Infectious Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Yang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Lei
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Wu J, Li G, Guo H, Huang B, Li G, Dai S. Acute cold stress induces intestinal injury via CIRP-TLR4-IRE1 signaling pathway in pre-starter broilers. Mol Biol Rep 2023:10.1007/s11033-023-08487-1. [PMID: 37253919 DOI: 10.1007/s11033-023-08487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cold stress is a common environmental stress in broiler chicks. Cold-inducible RNA-binding protein (CIRP) is a conserved cold shock protein that can regulate inflammatory response through Toll-like receptor 4 (TLR4). The mechanism that how CIRP involves in the regulation of cold stress in broilers remains unclear. METHODS AND RESULTS In this study, 360 7-day-old healthy male SZ901 chicks were selected and randomly allocated to four groups, and then subjected to acute cold exposure at the ambient temperature of 12 ± 1 °C for 0 h, 4 h, 8 h, and 12 h, respectively. After cold exposure, abdominall skin temperature, gene expression of CIRP-TLR4-IRE1 signaling pathway in ileum mucosa, and small intestinal structure were measured. The results showed that cold exposure decreased abdominall skin temperature, upregulated the gene expression of endoplasmic reticulum stress (ERS) markers IRE1, inflammatory factors IL-1β, IL-6, IL-10, TNF-α, and tight junction proteins ZO-1 and Occludin in ileum of chicks compared with the control group with no (0 h) cold exposure. Compared with the control group, a long time cold exposure upregulated the gene expression of CIRP, TLR4, GRP78, NF-κB in ileum mucosa, and decreased the villus height and V/C of small intestine. CONCLUSIONS The above results suggest that acute cold stress induces endoplasmic reticulum stress via upregulating the gene expression of CIRP-TLR4-IRE1 signaling pathway, and results in the structural damage of chick intestine.
Collapse
Affiliation(s)
- Juanjuan Wu
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Guiyao Li
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Haoneng Guo
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Bo Huang
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Guanhong Li
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, 330045, Jiangxi, China
| | - Sifa Dai
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China.
- Jiujiang Bozheng Institute of Biotechnology Industry, Jiujiang, 332005, Jiangxi, China.
| |
Collapse
|
12
|
Long F, Hu L, Chen Y, Duan X, Xie K, Feng J, Wang M. RBM3 is associated with acute lung injury in septic mice and patients via the NF-κB/NLRP3 pathway. Inflamm Res 2023; 72:731-744. [PMID: 36781430 DOI: 10.1007/s00011-023-01705-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Sepsis refers to host response disorders caused by infection, leading to life-threatening organ dysfunction. RNA-binding motif protein 3 (RBM3) is an important cold-shock protein that is upregulated in response to mild hypothermia or hypoxia. In this study, we aimed to investigate whether RBM3 is involved in sepsis-associated acute lung injury (ALI). Intraperitoneal injection of LPS (10 mg/kg) was performed in wild type (WT) and RBM3 knockout (KO, RBM3-/-) mice to establish an in vivo sepsis model. An NLRP3 inflammasome inhibitor, MCC950 (50 mg/kg), was injected intraperitoneally 30 min before LPS treatment. Serum, lung tissues, and BALF were collected 24 h later for further analysis. In addition, we also collected serum from sepsis patients and healthy volunteers to detect their RBM3 expression. The results showed that the expression of RBM3 in the lung tissues of LPS-induced sepsis mice and the serum of patients with sepsis was significantly increased and positively correlated with disease severity. In addition, RBM3 knockout (KO) mice had a low survival rate, and RBM3 KO mice had more severe lung damage, inflammation, lung cell apoptosis, and oxidative stress than WT mice. LPS treatment significantly increased the levels of nucleotide binding and oligomerization domain-like receptor family 3 (NLRP3) inflammasomes and mononuclear cell nuclear factor-κB (NF-κB) in the lung tissues of RBM3 KO mice. However, these levels were only slightly elevated in WT mice. Interestingly, MCC950 improved LPS-induced acute lung injury in WT and RBM3 KO mice but inhibited the expression of NLRP3, caspase-1, and IL-1β. In conclusion, RBM3 was overexpressed in sepsis patients and LPS-induced mice. RBM3 gene deficiency aggravated sepsis-associated ALI through the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Feiyu Long
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liren Hu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yingxu Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiaoxia Duan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
13
|
Han J, Zhang Y, Ge P, Dakal TC, Wen H, Tang S, Luo Y, Yang Q, Hua B, Zhang G, Chen H, Xu C. Exosome-derived CIRP: An amplifier of inflammatory diseases. Front Immunol 2023; 14:1066721. [PMID: 36865547 PMCID: PMC9971932 DOI: 10.3389/fimmu.2023.1066721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is an intracellular stress-response protein and a type of damage-associated molecular pattern (DAMP) that responds to various stress stimulus by altering its expression and mRNA stability. Upon exposure to ultraviolet (UV) light or low temperature, CIRP get translocated from the nucleus to the cytoplasm through methylation modification and stored in stress granules (SG). During exosome biogenesis, which involves formation of endosomes from the cell membrane through endocytosis, CIRP also gets packaged within the endosomes along with DNA, and RNA and other proteins. Subsequently, intraluminal vesicles (ILVs) are formed following the inward budding of the endosomal membrane, turning the endosomes into multi-vesicle bodies (MVBs). Finally, the MVBs fuse with the cell membrane to form exosomes. As a result, CIRP can also be secreted out of cells through the lysosomal pathway as Extracellular CIRP (eCIRP). Extracellular CIRP (eCIRP) is implicated in various conditions, including sepsis, ischemia-reperfusion damage, lung injury, and neuroinflammation, through the release of exosomes. In addition, CIRP interacts with TLR4, TREM-1, and IL-6R, and therefore are involved in triggering immune and inflammatory responses. Accordingly, eCIRP has been studied as potential novel targets for disease therapy. C23 and M3, polypeptides that oppose eCIRP binding to its receptors, are beneficial in numerous inflammatory illnesses. Some natural molecules such as Luteolin and Emodin can also antagonize CIRP, which play roles similar to C23 in inflammatory responses and inhibit macrophage-mediated inflammation. This review aims to provide a better understanding on CIRP translocation and secretion from the nucleus to the extracellular space and the mechanisms and inhibitory roles of eCIRP in diverse inflammatory illnesses.
Collapse
Affiliation(s)
- Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yibo Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shuangfeng Tang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bianca Hua
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA, United States
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA, United States
| |
Collapse
|
14
|
He F, Gao F, Cai N, Jiang M, Wu C. Chlorogenic acid enhances alveolar macrophages phagocytosis in acute respiratory distress syndrome by activating G protein-coupled receptor 37 (GPR 37). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154474. [PMID: 36194973 DOI: 10.1016/j.phymed.2022.154474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Impaired alveolar macrophages phagocytosis can contribute to pathogenesis of acute respiratory distress syndrome (ARDS) and negatively impacts clinical outcomes. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound with potential anti-inflammatory and antioxidant bioactivities. Studies have shown that CGA plays a protective role in ARDS, however, the precise protective mechanism of CGA against ARDS, is still unclear. PURPOSE The aim of this study was to investigate whether CGA enhances alveolar macrophages phagocytosis to attenuate lung injury during ARDS. METHODS RAW264.7 cells were stimulated with lipopolysaccharides (100 μg/ml for 24 h) and treated with CGA (100, 200, and 400 μM CGA for 1 h) to measure pro-inflammatory cytokine levels, GPR37 expression and macrophages phagocytosis. Mouse models of ARDS induced by cecal ligation and perforation (CLP) surgery were treated with CGA (100 or 200 mg/kg) to investigate lung inflammatory injury and alveolar macrophages phagocytosis. Computational modeling was performed to examine potential binding sites of G protein-coupled receptor 37 (GPR37) with CGA, and the results were validated by interfering with the binding sites. RESULT In vitro, CGA notably ameliorated inflammatory response and increased phagocytosis in lipopolysaccharides-induced RAW264.7 cells. In vivo, CGA administration significantly alleviated lung inflammatory injury, decreased the bacteria load in the lung, promoted alveolar macrophages phagocytosis and improved the survival rate in mice with CLP-induced ARDS. Moreover, CGA markedly upregulated the expression of GPR37 in vivo and in vitro. However, the protective effect of CGA against ARDS were reversed after silencing the expression of GPR37. CONCLUSION CGA has a protective effect against ARDS and may enhance alveolar macrophages phagocytosis and attenuate lung inflammatory injury by upregulating GPR37 expression.
Collapse
Affiliation(s)
- Fei He
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China..
| | - Fengjuan Gao
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Nan Cai
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Min Jiang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Chao Wu
- Department of Infectious Disease, Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
15
|
Vitamin-D ameliorates sepsis-induced acute lung injury via augmenting miR-149-5p and downregulating ER stress. J Nutr Biochem 2022; 110:109130. [PMID: 35988833 DOI: 10.1016/j.jnutbio.2022.109130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Acute lung injury is a life-threatening medical problem induced by sepsis or endotoxins and may be associated with enhanced Endoplasmic reticulum stress (ER stress). Vitamin-D (Vit-D) possesses an anti-inflammatory effect; however, this specific mechanism on acute lung injury is still unknown. Here we scrutinize the mechanism of Vit-D on Acute lung injury (ALI) models and explored the Vit-D augmented miRNA's role in regulating the ER stress pathway in ALI. Sepsis was induced by CLP, and Endotoxemia was caused by lipopolysaccharide (LPS). We found that Vit-D alleviates pulmonary edema, improves lung histoarchitecture, infiltration of neutrophils, endothelial barrier in mice, and improves ER stress markers Activating Transcription Factor 6 (ATF6) and CHOP (C/EBP Homologous Protein) expression elevated by CLP/LPS induce ALI. Vit-D decreases the nitric oxide production and ATF6 in macrophages induced by LPS. Vit-D augments miR (miR-149-5p) in LPS-induce macrophages, CLP, and LPS-induced ALI models. Vit-D enhanced miRNA-149-5p when overexpressed, inhibited ER-specific ATF6 inflammatory pathway in LPS-stimulated macrophages, and improved histoarchitecture of the lung in LPS/CLP-induced mice models. This vitro and vivo studies demonstrate that Vit-D could improve ALI induced by CLP/LPS. In this regard, miR-149-5p may play a crucial role in vitamin-D inhibiting LPS/CLP induce ALI. The mechanism might be an association of increased miR-149-5p and its regulated gene target ATF6, and downstream CHOP proteins were suppressed. Thus, these findings demonstrate that the anti-inflammatory effect of Vit-D is achieved by augmentation of miRNA-149-5p expression, which may be a key physiologic mediator in the prevention and treatment of ALI.
Collapse
|
16
|
Kim SY, Ban HJ, Lee S, Jin HJ. Regulation of CIRP by genetic factors of SP1 related to cold sensitivity. Front Immunol 2022; 13:994699. [PMID: 36189232 PMCID: PMC9524288 DOI: 10.3389/fimmu.2022.994699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cold-inducible RNA-binding-protein (CIRP) is a cold shock protein that plays a protective role in genotoxic stress response. CIRP modulates inflammation in human diseases, inhibits cell proliferation, and protects cells from genotoxic damage during cellular stress. The mild cold responsive element and specificity protein 1 (SP1) play a role in Cirp expression at low temperatures. Although previous studies have provided insights into the immune functions of SP1 or CIRP, the mechanisms by which CIRP and SP1 me diate inflammatory responses remain largely unknown. Therefore, in the current study, we examined whether Cirp expression is affected by genetic factors related to temperature sensitivity as well as under low temperature. We performed a genome-wide association study on cold sensitivity in 2,000 participants. Fifty-six genome-wide significant trait-locus pairs were identified (p<1×10-5, false discovery rate < 0.05). Among these variants, rs1117050 and rs11170510 had a strong linkage disequilibrium (r2 > 0.8) relationship and expression quantitative trait locus-associated signals with the nearest Sp1 gene. We confirmed that the minor alleles of rs11170510 and rs58123204 were associated with increased Sp1 expression. Additionally, Sp1 overexpression led to CIRP translocation from the nucleus to the cytoplasm. CIRP protein levels increased in serum samples that had minor alleles of rs11170510 and rs58123204. Levels of various pro-inflammatory cytokines were also significantly increased in human peripheral blood mononuclear cells with minor alleles of rs11170510 and rs58123204. These results suggest that genetic factors related to cold sensitivity regulate CIRP expression and function and provide valuable insights into prediction of potential diseases through analysis of inherent genetic factors in humans.
Collapse
|
17
|
Takizawa S, Lee Y, Jacob A, Aziz M, Wang P. Neutrophil trogocytosis during their trans-endothelial migration: role of extracellular CIRP. Mol Med 2022; 28:91. [PMID: 35941574 PMCID: PMC9358840 DOI: 10.1186/s10020-022-00515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Neutrophils are the most abundant innate immune cells in the circulating blood, and they act as the first responder against bacterial and fungal infection. However, accumulation of activated neutrophils can cause severe inflammation and tissue damage. Recently, neutrophil trogocytosis or membrane transfer with neighboring cells was reported to modulate immune responses. Extracellular cold-inducible RNA binding protein (eCIRP) is a newly identified damage-associated molecular pattern (DAMP). eCIRP can activate neutrophils to be more pro-inflammatory. This study aimed to identify the role of eCIRP in neutrophil trogocytosis during their trans-endothelial migration. Methods A trans-endothelial migration (TEM) assay using bone marrow neutrophils and mouse primary lung vascular endothelial cells was conducted using transwell chambers and neutrophil trogocytosis was assessed in vitro. In an in vivo mouse model of acute lung injury, neutrophil trogocytosis was assessed from bronchoalveolar lavage fluid. Results In TEM assay, the trogocytosis of neutrophils occurred during trans-endothelial migration and eCIRP significantly increased the percentage of these neutrophils. The trogocytosed neutrophils acquired the endothelial membrane containing junctional adhesion molecule-C (JAM-C) and VE-cadherin, and these membrane patches were polarized by Mac-1 binding. Furthermore, eCIRP-induced JAM-C positive trogocytosed neutrophils are more pro-inflammatory than the JAM-C negative counterpart. JAM-C positive trogocytosed neutrophils were also observed in the bronchoalveolar lavage fluid of a mouse model of acute lung injury. Conclusion These data suggest that during the paracellular trans-endothelial migration of neutrophils in response to inflammation, eCIRP induces trogocytosis of neutrophils, and the trogocytosed neutrophils exhibit an exaggerated pro-inflammatory phenotype promoting acute lung injury. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00515-3.
Collapse
Affiliation(s)
- Satoshi Takizawa
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
18
|
Schagatay F, Diamant K, Lidén M, Edin A, Athlin S, Hultgren O, Ahlm C, Forsell MNE, Savilampi J, Normark J, Lange A, Cajander S. Serum concentration of extracellular cold-inducible RNA-binding protein is associated with respiratory failure in COVID-19. Front Immunol 2022; 13:945603. [PMID: 35967397 PMCID: PMC9373926 DOI: 10.3389/fimmu.2022.945603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Uncontrolled release of damage-associated molecular patterns (DAMPs) is suggested to be a major trigger for the dysregulated host immune response that leads to severe COVID-19. Cold-inducible RNA-binding protein (CIRP), is a newly identified DAMP that aggravates inflammation and tissue injury, and induces respiratory failure in sepsis. Whether CIRP contributes to the pathogenesis of respiratory failure in COVID-19 has not yet been explored. Aim To investigate if the concentration of extracellular CIRP (eCIRP) in serum associates with respiratory failure and lung involvement by chest computed tomography (CT) in COVID-19. Methods Herein we report a prospective observational study of patients with COVID-19 included at two University Hospitals in Sweden between April 2020 and May 2021. Serum from hospitalized patients in Örebro (N=97) were used to assess the association between eCIRP and the level of respiratory support and its correlation with pulmonary involvement on chest CT and inflammatory biomarkers. A cohort of hospitalized and non-hospitalized patients from Umeå (N=78) was used as an external validation cohort. The severity of disease was defined according to the highest degree of respiratory support; mild disease (no oxygen), non-severe hypoxemia (conventional oxygen or high-flow nasal oxygen, HFNO <50% FiO2), and severe hypoxemia (HFNO ≥50% FiO2, mechanical ventilation). Unadjusted and adjusted linear regression was used to evaluate peak eCIRP day 0-4 in respect to severity, age, sex, Charlson comorbidity score, symptom duration, and BMI. Results Peak eCIRP concentrations were higher in patients with severe hypoxemia and were independently associated with the degree of respiratory support in both cohorts (Örebro; p=0.01, Umeå; p<0.01). The degree of pulmonary involvement measured by CT correlated with eCIRP, rs=0.30, p<0.01 (n=97). Conclusion High serum levels of eCIRP are associated with acute respiratory failure in COVID-19. Experimental studies are needed to determine if treatments targeting eCIRP reduces the risk of acute respiratory failure in COVID-19.
Collapse
Affiliation(s)
- Felix Schagatay
- Department of Infectious Diseases, CKF Region Västmanland, Västerås Hospital, Västerås, Sweden
| | - Klara Diamant
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Mats Lidén
- Department of Radiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alicia Edin
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Simon Athlin
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Olof Hultgren
- Department of Laboratory medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | - Johanna Savilampi
- Department of Anaesthesiology and Intensive Care, Örebro University, Örebro, Sweden
| | - Johan Normark
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anna Lange
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
19
|
Shimizu J, Murao A, Nofi C, Wang P, Aziz M. Extracellular CIRP Promotes GPX4-Mediated Ferroptosis in Sepsis. Front Immunol 2022; 13:903859. [PMID: 35844517 PMCID: PMC9277504 DOI: 10.3389/fimmu.2022.903859] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis is characterized by life-threatening organ dysfunction caused by a dysregulated host response to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern (DAMP) that promotes inflammation and induces cell death via apoptosis, NETosis, and/or pyroptosis. Ferroptosis is a form of regulated cell death characterized by the accumulation of lipid peroxide on cellular membranes. We hypothesize that eCIRP induces ferroptosis in macrophages and lung tissue during sepsis. RAW 264.7 cells stimulated with recombinant murine (rm) CIRP significantly decreased the expression of glutathione peroxidase 4 (GPX4), a negative regulator of ferroptosis, and increased lipid reactive oxygen species (ROS) in a TLR4 dependent manner. In TLR4-/- peritoneal macrophages, depression of GPX4 expression and increase in lipid ROS levels were attenuated after rmCIRP-treatment compared to WT macrophages. rmCIRP also induced cell death in RAW 264.7 cells which was corrected by the ferroptosis inhibitor, ferrostatin-1 (Fer-1). Intraperitoneal injection of rmCIRP decreased GPX4 expression and increased lipid ROS in lung tissue, whereas the increase of lipid ROS was reduced by Fer-1 treatment. GPX4 expression was significantly decreased, while malondialdehyde (MDA), iron levels, and injury scores were significantly increased in lungs of WT mice after cecal ligation and puncture (CLP)-induced sepsis compared to CIRP-/- mice. Treatment with C23, a specific eCIRP inhibitor, in CLP mice alleviated the decrease in GPX4 and increase in MDA levels of lung tissue. These findings suggest that eCIRP induces ferroptosis in septic lungs by decreasing GPX4 and increasing lipid ROS. Therefore, regulation of ferroptosis by targeting eCIRP may provide a new therapeutic approach in sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Junji Shimizu
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Colleen Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
20
|
Siwicka-Gieroba D, Terpilowska S, Robba C, Barud M, Kubik-Komar A, Dabrowski W. The Connection Between Selected Caspases Levels in Bronchoalveolar Lavage Fluid and Severity After Brain Injury. Front Neurol 2022; 13:796238. [PMID: 35665033 PMCID: PMC9161272 DOI: 10.3389/fneur.2022.796238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The interaction between the brain and lungs has been the subject of many clinical reports, while the exact impact of brain injury on the physiology of the respiratory system is still subject to numerous experimental studies. The purpose of this study was to investigate the activation of selected caspases levels in bronchoalveolar lavage fluid (mini BALF) of patients after isolated brain injury and their correlation with the severity of the injury. Methods The analysis was performed on patients who were admitted to the intensive care unit (ICU) for severe isolated brain injury from March 2018 to April 2020. All patients were intubated and mechanically ventilated. Mini BALF was collected within the first 6–8 h after trauma and on days 3 and 7 after admission. The concentrations of selected caspases were determined and correlated with the severity of brain injury evaluated by the Rotterdam CT Score, Glasgow Coma Score, and 28-day mortality. Results Our results showed significantly elevated levels of selected caspases on days 3 and 7 after brain injury, and revealed apoptosis activation during the first 7 days after brain trauma. We found a significant different correlation between the elevation of selected caspases 3, 6, 8, and 9, and the Glasgow Coma Score, Rotterdam CT scale, and 28-day mortality. Conclusions The increased levels of selected caspases in the mini BALF in our patients indicate an intensified activation of apoptosis in the lungs, which is related to brain injury itself via various apoptotic pathways and correlates with the severity of brain injury.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
- *Correspondence: Dorota Siwicka-Gieroba
| | | | - Chiara Robba
- Anaesthesia and Intensive Care, Policlinico San Martino, Deputy of the Neurointensive Care Section of European Society of Intensive Care Medicine, Genova, Italy
| | - Małgorzata Barud
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Kubik-Komar
- Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Lublin, Poland
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
21
|
Endothelial Dysfunction Induced by Extracellular Neutrophil Traps Plays Important Role in the Occurrence and Treatment of Extracellular Neutrophil Traps-Related Disease. Int J Mol Sci 2022; 23:ijms23105626. [PMID: 35628437 PMCID: PMC9147606 DOI: 10.3390/ijms23105626] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Many articles have demonstrated that extracellular neutrophil traps (NETs) are often described as part of the antibacterial function. However, since the components of NETs are non-specific, excessive NETs usually cause inflammation and tissue damage. Endothelial dysfunction (ED) caused by NETs is the major focus of tissue damage, which is highly related to many inflammatory diseases. Therefore, this review summarizes the latest advances in the primary and secondary mechanisms between NETs and ED regarding inflammation as a mediator. Moreover, the detailed molecular mechanisms with emphasis on the disadvantages from NETs are elaborated: NETs can use its own enzymes, release particles as damage-associated molecular patterns (DAMPs) and activate the complement system to interact with endothelial cells (ECs), drive ECs damage and eventually aggravate inflammation. In view of the role of NETs-induced ED in different diseases, we also discussed possible molecular mechanisms and the treatments of NETs-related diseases.
Collapse
|
22
|
Tan C, Reilly B, Jha A, Murao A, Lee Y, Brenner M, Aziz M, Wang P. Active Release of eCIRP via Gasdermin D Channels to Induce Inflammation in Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2184-2195. [PMID: 35418465 PMCID: PMC9050887 DOI: 10.4049/jimmunol.2101004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Extracellular cold-inducible RNA binding protein (eCIRP) is an inflammatory mediator that causes inflammation and tissue injury in sepsis. Gasdermin D (GSDMD) is a protein that, when cleaved, forms pores in the cell membrane, releasing intracellular contents into the extracellular milieu to exacerbate inflammation. We hypothesize that eCIRP is released actively from viable macrophages via GSDMD pores. We found that LPS induced eCIRP secretion from macrophages into the extracellular space. LPS significantly increased the expression of caspase-11 and cleavage of the GSDMD, as evidenced by increased N-terminal GSDMD expression in RAW 264.7 cells and mouse primary peritoneal macrophages. GSDMD inhibitor disulfiram decreased eCIRP release in vitro. Treatment with glycine to prevent pyroptosis-induced cell lysis did not significantly decrease eCIRP release from LPS-treated macrophages, indicating that eCIRP was actively released and was independent of pyroptosis. Downregulation of GSDMD gene expression by siRNA transfection suppressed eCIRP release in vitro after LPS stimulation. Moreover, GSDMD-/- peritoneal macrophages and mice had decreased levels of eCIRP in the culture supernatants and in blood treated with LPS in vitro and in vivo, respectively. GSDMD inhibitor disulfiram inhibited serum levels of eCIRP in endotoxemia and cecal ligation and puncture-induced sepsis. We conclude that eCIRP release from living macrophages is mediated through GSDMD pores, suggesting that targeting GSDMD could be a novel and potential therapeutic approach to inhibit eCIRP-mediated inflammation in sepsis.
Collapse
Affiliation(s)
- Chuyi Tan
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Bridgette Reilly
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Alok Jha
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| |
Collapse
|
23
|
Prognostic Value of Plasma Cold-Inducible RNA-Binding Protein in Patients with Acute Coronary Syndrome. DISEASE MARKERS 2022; 2022:6119601. [PMID: 35531472 PMCID: PMC9068342 DOI: 10.1155/2022/6119601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 11/18/2022]
Abstract
Background. Cold-inducible RNA-binding protein (CIRP) is a proinflammatory cytokine. The Global Registry of Acute Coronary Events (GRACE) risk score has been widely applied in risk stratification in patients with acute coronary syndrome (ACS). We aimed to investigate the prognostic value of CIRP in ACS patients and its incremental prognostic performance on top of GARCE score. Methods. We consecutively enrolled 320 ACS patients, including 128 patients with ST-elevation myocardial infarction (STEMI), 67 patients with non-ST-elevation myocardial infarction (NSTEMI), and 125 patients with unstable angina pectoris (UAP). Plasma CIRP levels were measured at baseline. All patients received one-year follow-up for occurrence of major adverse cardiovascular outcomes (MACEs). Results. STEMI patients had a significantly higher concentration of plasma CIRP than those with NSTEMI (
) and UAP (
). Plasma CIRP level was positively correlated with GRACE score (
,
). Survival analysis revealed that the risk of MACEs increased with increasing CIRP level (log-rank
). During follow-up, 45 (14.1%) patients experienced MACEs. Both GRACE score (hazard ratio: 1.023, 95% confidence interval: 1.007-1.050,
) and plasma CIRP level (hazard ratio:1.800, 95% confidence interval:1.209-2.679,
) were independently predictive of MACEs after Cox multivariate adjustment. Incremental predictive value was observed after combining CIRP with GRACE score. Conclusions. Plasma CIRP was an independent prognostic biomarker and could improve the predictive value of GRACE score for prognosis in ACS patients.
Collapse
|
24
|
Zhang H, Zhu K, Zhang X, Ding Y, Zhu B, Meng W, Zhang F. Rutaecarpine ameliorates lipopolysaccharide‑induced BEAS‑2B cell injury through inhibition of endoplasmic reticulum stress via activation of the AMPK/SIRT1 signaling pathway. Exp Ther Med 2022; 23:373. [PMID: 35495603 PMCID: PMC9019775 DOI: 10.3892/etm.2022.11300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2022] [Indexed: 11/05/2022] Open
Abstract
Rutaecarpine (RUT) is an alkaloid isolated from Tetradium ruticarpum, which has been reported to protect against several inflammatory diseases. However, to the best of our knowledge, the role of RUT in acute lung injury (ALI) and the specific molecular mechanism remain unknown. In the present study, an in vitro model of ALI was established in BEAS-2B cells by lipopolysaccharide (LPS) administration. Cell viability following RUT treatment with or without LPS stimulation was evaluated using a Cell Counting Kit-8 assay. The inflammatory response and oxidative stress were detected using ELISA kits and commercially available kits, respectively. TUNEL assay and western blotting were performed to assess cell apoptosis. The expression levels of endoplasmic reticulum (ER) stress-related proteins and AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling pathway-related proteins were measured by western blotting. The results revealed that RUT markedly improved cell viability after LPS treatment in a dose-dependent manner. In addition, RUT inhibited the LPS-induced inflammatory response and oxidative stress in BEAS-2B cells, and suppressed the LPS-induced apoptosis of BEAS-2B cells. Mechanistically, RUT alleviated ER stress by inhibiting the production of CHOP, glucose-regulated protein-78, caspase-12 and activating transcription factor 6. Additionally, western blotting demonstrated that RUT activated the phosphorylation of AMPK and SIRT1, which indicated the involvement of the AMPK/SIRT1 signaling pathway in the protective effect of RUT against LPS-induced lung injury. In conclusion, these results demonstrated that RUT mitigated LPS-induced lung cell injury by inhibiting ER stress via the activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Emergency Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Kun Zhu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang 161000, P.R. China
| | - Xuefeng Zhang
- Department of Cardiothoracic Surgery, The Affiliated Heilongjiang Provincial Hospital of Harbin Institute of Technology, Harbin, Heilongjiang 150036, P.R. China
| | - Yihui Ding
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Bing Zhu
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Wen Meng
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Fan Zhang
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
25
|
Bolourani S, Sari E, Brenner M, Wang P. The role of eCIRP in bleomycin-induced pulmonary fibrosis in mice. PLoS One 2022; 17:e0266163. [PMID: 35377906 PMCID: PMC8979429 DOI: 10.1371/journal.pone.0266163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE AND DESIGN We examined the role of eCIRP in the pathogenesis of bleomycin-induced pulmonary fibrosis (PF). MATERIAL AND METHODS Publicly available gene expression omnibus datasets were analyzed for the expression of CIRP in lung samples from patients with PF. Wild type (WT) or CIRP-/- mice received daily injections of 10 μg/g bleomycin for 10 days. A subset of bleomycin-injected WT mice was treated with the eCIRP antagonist C23 (8 μg/g/day) from day 10 to day 19. At three weeks, transthoracic echocardiography was performed to measure the degree of pulmonary hypertension, and lung tissues were collected and analyzed for markers of fibrosis. RESULTS Analysis of the mRNA data of human lung samples showed a significant positive correlation between CIRP and α-smooth muscle actin (α-SMA), an important marker of fibrosis. Moreover, the expression of CIRP was higher in patients with acute exacerbation of PF than in patients with stable PF. CIRP-/- mice showed attenuated induction of α-SMA and collagens (Col1a1, Col3a1), reduced hydroxyproline content, decreased histological fibrosis scores, and improved pulmonary hypertension as compared to WT mice. WT mice treated with C23 also had significant attenuation of the above endpoint measure. CONCLUSIONS Our study demonstrates that eCIRP plays a key role in promoting the development of PF, and blocking eCIRP with C23 can significantly attenuate this process.
Collapse
Affiliation(s)
- Siavash Bolourani
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| | - Ezgi Sari
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| |
Collapse
|
26
|
Zhong P, Zhou M, Zhang J, Peng J, Zeng G, Huang H. The role of Cold-Inducible RNA-binding protein in respiratory diseases. J Cell Mol Med 2021; 26:957-965. [PMID: 34953031 PMCID: PMC8831972 DOI: 10.1111/jcmm.17142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
Cold‐inducible RNA‐binding protein (CIRP) is a stress‐response protein that is expressed in various types of cells and acts as an RNA chaperone, modifying the stability of its targeted mRNA. Intracellular CIRP could also be released into extracellular space and once released, extracellular CIRP (eCIRP) acts as a damage‐associated molecular pattern (DAMP) to induce and amplify inflammation. Recent studies have found that eCIRP could promote acute lung injury (ALI) via activation of macrophages, neutrophils, pneumocytes and lung vascular endothelial cells in context of sepsis, haemorrhagic shock, intestinal ischemia/reperfusion injury and severe acute pancreatitis. In addition, CIRP is also highly expressed in the bronchial epithelial cells and its expression is upregulated in the bronchial epithelial cells of patients with chronic obstructive pulmonary diseases (COPD) and rat models with chronic bronchitis. CIRP is a key contributing factor in the cold‐induced exacerbation of COPD by promoting the expression of inflammatory genes and hypersecretion of airway mucus in the bronchial epithelial cells. Besides, CIRP is also involved in regulating pulmonary fibrosis, as eCIRP could directly activate and induce an inflammatory phenotype in pulmonary fibroblast. This review summarizes the findings of CIRP investigation in respiratory diseases and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Miao Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingjing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Jianye Peng
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Hengyang, Hunan, China.,Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China
| | - Gaofeng Zeng
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Hengyang, Hunan, China.,Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
27
|
Abstract
Significance: Sepsis is defined as a life-threatening organ dysfunction caused by dysregulated host response to infection. This leads to an uncontrolled inflammatory response at the onset of infection, followed by immunosuppression. The development of a specific treatment modality for sepsis is still challenging, reflecting our inadequate understanding of its pathophysiology. Understanding the mechanism and transition of the early hyperinflammation to late stage of immunosuppression in sepsis is critical for developing sepsis therapeutics. Recent Advances: Damage-associated molecular patterns (DAMPs) are intracellular molecules and released upon tissue injury and cell death in sepsis. DAMPs are recognized by pattern recognition receptors to initiate inflammatory cascades. DAMPs not only elicit an inflammatory response but also they subsequently induce immunosuppression, both are equally important for exacerbating sepsis. Recent advances on a new DAMP, extracellular cold-inducible RNA-binding protein for fueling inflammation and immunosuppression in sepsis, have added a new avenue into the dual functions of DAMPs in sepsis. Critical Issues: The molecular modification of DAMPs and their binding to pattern recognition receptors transit dynamically by the cellular environment in pathophysiologic conditions. Correlation between the dynamic changes of the impacts of DAMPs and the clinical outcomes in sepsis still lacks adequate understanding. Here, we focus on the impacts of DAMPs that cause inflammation as well as induce immunosuppression in sepsis. We further discuss the therapeutic potential by targeting DAMPs to attenuate inflammation and immunosuppression for mitigating sepsis. Future Directions: Uncovering pathways of the transition from inflammation to immunosuppression of DAMPs is a potential therapeutic avenue for mitigating sepsis.
Collapse
Affiliation(s)
- Mian Zhou
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| |
Collapse
|
28
|
Kim YM, Hong S. Controversial roles of cold‑inducible RNA‑binding protein in human cancer (Review). Int J Oncol 2021; 59:91. [PMID: 34558638 DOI: 10.3892/ijo.2021.5271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 11/05/2022] Open
Abstract
Cold‑inducible RNA‑binding protein (CIRBP) is a cold‑shock protein comprised of an RNA‑binding motif that is induced by several stressors, such as cold shock, UV radiation, nutrient deprivation, reactive oxygen species and hypoxia. CIRBP can modulate post‑transcriptional regulation of target mRNA, which is required to control DNA repair, circadian rhythms, cell growth, telomere integrity and cardiac physiology. In addition, the crucial function of CIRBP in various human diseases, including cancers and inflammatory disease, has been reported. Although CIRBP is primarily considered to be an oncogene, it may also serve a role in tumor suppression. In the present study, the controversial roles of CIRBP in various human cancers is summarized, with a focus on the interconnectivity between CIRBP and its target mRNAs involved in tumorigenesis. CIRBP may represent an important prognostic marker and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Suntaek Hong
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
29
|
Liu Y, Liu P, Hu Y, Cao Y, Lu J, Yang Y, Lv H, Lian S, Xu B, Li S. Cold-Induced RNA-Binding Protein Promotes Glucose Metabolism and Reduces Apoptosis by Increasing AKT Phosphorylation in Mouse Skeletal Muscle Under Acute Cold Exposure. Front Mol Biosci 2021; 8:685993. [PMID: 34395524 PMCID: PMC8358400 DOI: 10.3389/fmolb.2021.685993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The main danger of cold stress to animals in cold regions is systemic metabolic changes and protein synthesis inhibition. Cold-induced RNA-binding protein is a cold shock protein that is rapidly up-regulated under cold stimulation in contrast to the inhibition of most proteins and participates in multiple cellular physiological activities by regulating targets. Therefore, this study was carried out to investigate the possible mechanism of CIRP-mediated glucose metabolism regulation and survival promotion in skeletal muscle after acute cold exposure. Skeletal muscle and serum from mice were obtained after 0, 2, 4 and 8 h of acute hypothermia exposure. Subsequently, the changes of CIRP, metabolism and apoptosis were examined. Acute cold exposure increased energy consumption, enhanced glycolysis, increased apoptosis, and up-regulated CIRP and phosphorylation of AKT. In addition, CIRP overexpression in C2C12 mouse myoblasts at each time point under 37°C and 32°C mild hypothermia increased AKT phosphorylation, enhanced glucose metabolism, and reduced apoptosis. CIRP knockdown by siRNA interference significantly reduced the AKT phosphorylation of C2C12 cells. Wortmannin inhibited the AKT phosphorylation of skeletal muscle after acute cold exposure, thereby inhibiting glucose metabolism and aggravating apoptosis. Taken together, acute cold exposure up-regulates CIRP in mouse skeletal muscle, which regulates glucose metabolism and maintains energy balance in skeletal muscle cells through the AKT signaling pathway, thus slowing down the apoptosis of skeletal muscle cells.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Cao
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
30
|
Wang R, Xu Y, Fang Y, Wang C, Xue Y, Wang F, Cheng J, Ren H, Wang J, Guo W, Liu L, Zhang M. Pathogenetic mechanisms of septic cardiomyopathy. J Cell Physiol 2021; 237:49-58. [PMID: 34278573 DOI: 10.1002/jcp.30527] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022]
Abstract
Sepsis is a serious complication after infection, whose further development may lead to multiple organ dysfunction syndrome and so on. It is an important cause of death in critically ill patients who suffered an infection. Sepsis cardiomyopathy is a common complication that exacerbates the prognosis of patients. At present, though the pathogenesis of sepsis cardiomyopathy is not completely clear, in-depth study of the pathogenesis of sepsis cardiomyopathy and the discovery of its potential therapeutic targets may decrease the mortality of sepsis patients and bring clinical benefits. This article reviews mitochondrial dysfunction, mitophagy, oxidation stress, and other mechanisms in sepsis cardiomyopathy.
Collapse
Affiliation(s)
- Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chiyao Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yugang Xue
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fangfang Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Cheng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - He Ren
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wangang Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Hozumi H, Kataoka K, Kondoh Y, Isayama T, Okada J, Sugiura K, Mori K, Kono M, Suzuki Y, Karayama M, Furuhashi K, Enomoto N, Fujisawa T, Inui N, Nakamura Y, Suda T. Clinical Significance of Cold-Inducible RNA-Binding Protein in Idiopathic Pulmonary Fibrosis. Chest 2021; 160:2149-2157. [PMID: 34252438 DOI: 10.1016/j.chest.2021.06.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/09/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is associated with a poor prognosis with variable clinical course. Early identification of patients at high risk for disease progression and death would lead to early therapeutic intervention and thereby improvement of outcomes. Cold-inducible RNA-binding protein (CIRBP) is produced in response to cellular stresses, which is implicated in multiple biological processes, including cell survival and proliferation. RESEARCH QUESTION Is CIRBP a useful biomarker for predicting the outcomes of patients with IPF? STUDY DESIGN AND METHODS This study included 95 and 93 patients with IPF from two independent hospitals (derivation and validation cohorts, respectively). The associations of serum CIRBP level on IPF diagnosis with disease progression within 1 year after diagnosis (ie, ≥10% relative decline in percent predicted FVC or death) and all-cause mortality were retrospectively analyzed. Discrimination performances for predicting these outcomes were evaluated using the c-index. RESULTS Serum and lung tissue CIRBP levels were higher in patients with IPF than in control subjects. In the derivation cohort, the CIRBPhigh subgroup had significantly higher 1-year disease progression rates and lower cumulative survival rates than the CIRBPlow subgroup, and the results were replicated in the validation cohort. In multivariate analyses, high serum CIRBP level was independently associated with higher 1-year disease progression and all-cause mortality rates in both cohorts. Combining the Gender-Age-Physiology (GAP) and serum CIRBP models improved the c-indexes for predicting 1-year disease progression and all-cause mortality compared with that of each model alone. The c-indexes of serum CIRBP were particularly high in patients with GAP stage I. INTERPRETATION This study successfully validated that serum CIRBP level was an independent predictor of 1-year disease progression and all-cause mortality in IPF. CIRBP is a promising biomarker that can help identify high-risk patients with IPF, especially in the early stage.
Collapse
Affiliation(s)
- Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Takuya Isayama
- Medical & Biological Laboratories Co., Ltd., Nagoya, Japan
| | - Jun Okada
- Medical & Biological Laboratories Co., Ltd., Nagoya, Japan
| | | | - Kazutaka Mori
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Kono
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
32
|
Royster W, Jin H, Wang P, Aziz M. Extracellular CIRP decreases Siglec-G expression on B-1a cells skewing them towards a pro-inflammatory phenotype in sepsis. Mol Med 2021; 27:55. [PMID: 34058975 PMCID: PMC8165807 DOI: 10.1186/s10020-021-00318-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sepsis is a life-threatening disease syndrome caused by a dysregulated host response to infection and injury. Extracellular cold-inducible RNA-binding protein (eCIRP) acts as a damage-associated molecular pattern. Peritoneal cavity (PerC) B-1a cells attenuate inflammation and tissue injury by spontaneous releasing natural IgM and IL-10. Sialic acid-binding immunoglobulin-type lectin-G (Siglec-G) is a CD33-related receptor highly expressed in B-1a cells to serve critical immunoregulatory functions. In sepsis, B-1a cell numbers in PerC are decreased. We hypothesized that eCIRP causes the reduction of PerC B-1a cells and alters their function during sepsis. METHODS Sepsis was induced in WT and CIRP-/- mice by cecal ligation and puncture (CLP). PerC washout cells were collected and B-1a cells and Siglec-G were assessed by flow cytometry. Mice were i.p. injected with recombinant murine (rm) CIRP and after 20 h, Siglec-G expression in PerC B-1a cells were assessed. PerC B-1a cells were treated with rmCIRP for 4 h and Siglec-G expression was assessed. PerC B-1a cells were pre-treated with anti-Siglec-G Ab and then after stimulated with rmCIRP for 24 h, IL-6 levels in the culture supernatants were assessed. RESULTS eCIRP levels in the PerC were elevated in septic mice. In WT mice, the frequencies and numbers of total and Siglec-G+ B-1a cells in the PerC were significantly decreased in the CLP group compared to sham group, whereas in CIRP-/- mice, their frequencies and numbers in sepsis were significantly rescued compared to WT septic mice. Mice injected with rmCIRP showed decreased frequencies and numbers of total and Siglec-G+ PerC B-1a cells compared to PBS-injected mice. In vitro treatment of PerC B-1a cells with rmCIRP demonstrated significant reduction in Siglec-G mRNA and protein compared to PBS group. PerC B-1a cells treated with anti-Siglec-G Ab had significantly higher production of IL-6 in response to rmCIRP compared to IgG control. Anti-Siglec-G Ab treated B-1a cells co-cultured with macrophages produced significantly higher levels of IL-6, and TNF-α, and lower levels of IL-10 compared to IgG-treated B-1a cells and macrophage co-cultures stimulated with rmCIRP. CONCLUSION eCIRP reduces PerC B-1a cell pool and skews them to a pro-inflammatory phenotype by downregulating Siglec-G expression. Targeting eCIRP will retain Siglec-G expressing B-1a cells in the PerC and preserve their anti-inflammatory function in sepsis.
Collapse
Affiliation(s)
- William Royster
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, 11030, USA
- Department of Surgery, Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Hui Jin
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, 11030, USA.
- Department of Surgery, Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Manhasset, NY, 11030, USA.
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, 11030, USA.
| |
Collapse
|
33
|
Wang W, Lei W, Jiang L, Gao S, Hu S, Zhao ZG, Niu CY, Zhao ZA. Therapeutic mechanisms of mesenchymal stem cells in acute respiratory distress syndrome reveal potentials for Covid-19 treatment. J Transl Med 2021; 19:198. [PMID: 33971907 PMCID: PMC8107778 DOI: 10.1186/s12967-021-02862-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
The mortality rate of critically ill patients with acute respiratory distress syndrome (ARDS) is 30.9% to 46.1%. The emergence of the coronavirus disease 2019 (Covid-19) has become a global issue with raising dire concerns. Patients with severe Covid-19 may progress toward ARDS. Mesenchymal stem cells (MSCs) can be derived from bone marrow, umbilical cord, adipose tissue and so on. The easy accessibility and low immunogenicity enable MSCs for allogeneic administration, and thus they were widely used in animal and clinical studies. Accumulating evidence suggests that mesenchymal stem cell infusion can ameliorate ARDS. However, the underlying mechanisms of MSCs need to be discussed. Recent studies showed MSCs can modulate immune/inflammatory cells, attenuate endoplasmic reticulum stress, and inhibit pulmonary fibrosis. The paracrine cytokines and exosomes may account for these beneficial effects. In this review, we summarize the therapeutic mechanisms of MSCs in ARDS, analyzed the most recent animal experiments and Covid-19 clinical trial results, discussed the adverse effects and prospects in the recent studies, and highlight the potential roles of MSC therapy for Covid-19 patients with ARDS.
Collapse
Affiliation(s)
- Wendi Wang
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China.,Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Lina Jiang
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China
| | - Siqi Gao
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China.,Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China. .,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Chun-Yu Niu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China. .,Basic Medical College, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, 11 Diamond South-road, Keji Building, Room 213, Zhangjiakou, 075000, Hebei, China. .,Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, Hebei, China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, 075000, Hebei, China. .,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
34
|
Kong Q, Wu X, Qiu Z, Huang Q, Xia Z, Song X. Protective Effect of Dexmedetomidine on Acute Lung Injury via the Upregulation of Tumour Necrosis Factor-α-Induced Protein-8-like 2 in Septic Mice. Inflammation 2021; 43:833-846. [PMID: 31927655 PMCID: PMC7099173 DOI: 10.1007/s10753-019-01169-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to investigate whether TIPE2 participates in the protective actions of dexmedetomidine (DEX) in a mouse model of sepsis-induced acute lung injury (ALI). We administered TIPE2 adeno-associated virus (AAV-TIPE2) intratracheally into the lungs of mice. Control mice were infected with an adeno-associated virus expressing no transgene. Three weeks later, an animal model of caecal ligation-perforation (CLP)-induced sepsis was established. DEX was administered intravenously 30 min after CLP. Twenty-four hours after sepsis, lung injury was assayed by lung histology, the ratio of polymorphonuclear leukocytes (PMNs) to total cells in the bronchoalveolar lavage fluid (BALF), myeloperoxidase (MPO) activity, BALF protein content and the lung wet-to-dry (W/D) weight ratio. Proinflammatory factor levels in the BALF of mice were measured. The protein expression levels in lung tissues were analysed by Western blotting. The results showed that DEX treatment markedly mitigated sepsis-induced lung injury, which was characterized by the deterioration of histopathology, histologic scores, the W/D weight ratio and total protein levels in the BALF. Moreover, DEX markedly attenuated sepsis-induced lung inflammation, as evidenced by the decrease in the number of PMNs in the BALF, lung MPO activity and proinflammatory cytokines in the BALF. In addition, DEX dramatically prevented sepsis-induced pulmonary cell apoptosis in mice, as reflected by decreases in the number of TUNEL-positive cells, the protein expression of cleaved caspase-9 and cleaved caspase 3 and the Bax/Bcl-2 ratio. In addition, evaluation of protein expression showed that DEX blocked sepsis-activated JNK phosphorylation and NF-κB p65 nuclear translocation. Similar results were also observed in the TIPE2 overexpression group. Our study demonstrated that DEX inhibits acute inflammation and apoptosis in a murine model of sepsis-stimulated ALI via the upregulation of TIPE2 and the suppression of the activation of the NF-κB and JNK signalling pathways.
Collapse
Affiliation(s)
- Qian Kong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qin Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Xuemin Song
- Department of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
35
|
Wang Y, Wang Y, Cai N, Xu T, He F. Anti-inflammatory effects of curcumin in acute lung injury: In vivo and in vitro experimental model studies. Int Immunopharmacol 2021; 96:107600. [PMID: 33798807 DOI: 10.1016/j.intimp.2021.107600] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 11/29/2022]
Abstract
Inflammation plays a major role in the pathogenesis of acute lung injury (ALI), but the mechanism remains unclear. Current anti-inflammatory therapy has poor efficacy on ALI. The aim of this study was to investigate the protective mechanism of curcumin against ALI. In in vivo experiments, curcumin significantly alleviated lung inflammation, histopathological injury and MPO activity, serum concentrations of CCL7, IL-6 and TNF-α, and mortality in mice compared to the model group. RAW264.7 cells cultured in the presence of lipopolysaccharide and adenosine triphosphate showed significantly lower viability, higher pyroptotic percentage and inflammation, but supplement of curcumin increased the cell viability, reduced pyroptosis and inflammation. Additionally, the expressions of NF-κB and pyroptosis related proteins were notably increased, while Sirtuin 1 (SIRT1) was decreased in both in vivo and in vitro ALI models. The results suggested that curcumin remarkably inhibited the expression of NF-κB and pyroptosis related proteins and increased the expression of SIRT1. However, EX527, a SIRT1 inhibitor, blocked the protective effect of curcumin against ALI. In conclusion, curcumin has protective effect against ALI. It may inhibit inflammatory process by inhibiting the activation of NLRP3 inflammasome-dependent pyroptosis through the up-regulation of SIRT1.
Collapse
Affiliation(s)
- Yang Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yujuan Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Nan Cai
- Department of Infectious Disease, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China.
| | - Fei He
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
36
|
Denning NL, Aziz M, Diao L, Prince JM, Wang P. Targeting the eCIRP/TREM-1 interaction with a small molecule inhibitor improves cardiac dysfunction in neonatal sepsis. Mol Med 2020; 26:121. [PMID: 33276725 PMCID: PMC7716442 DOI: 10.1186/s10020-020-00243-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Neonatal sepsis and the associated myocardial dysfunction remain a leading cause of infant mortality. Extracellular cold-inducible RNA-binding protein (eCIRP) acts as a ligand of triggering receptor expressed on myeloid cells-1 (TREM-1). M3 is a small CIRP-derived peptide that inhibits the eCIRP/TREM-1 interaction. We hypothesize that the eCIRP/TREM-1 interaction in cardiomyocytes contributes to sepsis-induced cardiac dysfunction in neonatal sepsis, while M3 is cardioprotective. Methods Serum was collected from neonates in the Neonatal Intensive Care Unit (NICU). 5–7-day old C57BL/6 mouse pups were used in this study. Primary murine neonatal cardiomyocytes were stimulated with recombinant murine (rm) CIRP with M3. TREM-1 mRNA and supernatant cytokine levels were assayed. Mitochondrial oxidative stress, ROS, and membrane potential were assayed. Neonatal mice were injected with rmCIRP and speckle-tracking echocardiography was conducted to measure cardiac strain. Sepsis was induced by i.p. cecal slurry. Mouse pups were treated with M3 or vehicle. After 16 h, echocardiography was performed followed by euthanasia for tissue analysis. A 7-day survival study was conducted. Results Serum eCIRP levels were elevated in septic human neonates. rmCIRP stimulation of cardiomyocytes increased TREM-1 gene expression. Stimulation of cardiomyocytes with rmCIRP upregulated TNF-α and IL-6 in the supernatants, while this upregulation was inhibited by M3. Stimulation of cardiomyocytes with rmCIRP resulted in a reduction in mitochondrial membrane potential (MMP) while M3 treatment returned MMP to near baseline. rmCIRP caused mitochondrial calcium overload; this was inhibited by M3. rmCIRP injection impaired longitudinal and radial cardiac strain. Sepsis resulted in cardiac dysfunction with a reduction in cardiac output and left ventricular end diastolic diameter. Both were improved by M3 treatment. Treatment with M3 attenuated serum, cardiac, and pulmonary levels of pro-inflammatory cytokines compared to vehicle-treated septic neonates. M3 dramatically increased sepsis survival. Conclusions Inhibition of eCIRP/TREM-1 interaction with M3 is cardioprotective, decreases inflammation, and improves survival in neonatal sepsis. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Naomi-Liza Denning
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.,Department of Surgery, Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Li Diao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Jose M Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.,Department of Surgery, Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA.,Division of Pediatric Surgery, Cohen Children's Medical Center At Hofstra/Northwell, New Hyde Park, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA. .,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA. .,Department of Surgery, Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
37
|
An extracellular cold-inducible RNA-binding protein-derived small peptide targeting triggering receptor expressed on myeloid cells-1 attenuates hemorrhagic shock. J Trauma Acute Care Surg 2020; 88:809-815. [PMID: 32453257 DOI: 10.1097/ta.0000000000002664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern, which is released into the circulation after hemorrhagic shock (HS). Recently, we discovered that triggering receptor expressed on myeloid cells-1 (TREM-1) serves as a new receptor of eCIRP to exaggerate inflammation. Here, we hypothesize that by inhibiting the interaction between eCIRP and TREM-1 with the use of a novel short peptide derived from human eCIRP known as M3, we can inhibit the inflammatory response and acute lung injury in HS. METHODS Hemorrhagic shock was induced using C57BL/6 mice by cannulating both femoral arteries. One femoral artery was used for removal of blood while the other was used for continuous monitoring of mean arterial blood pressure. The mean arterial pressure of 25 mm Hg to 30 mm Hg was maintained for 90 minutes, followed by a resuscitation phase of 30 minutes with 1 mL of normal saline. The treatment group was given 10 mg/kg of M3 during the resuscitation phase. Four hours after resuscitation, serum and lungs were collected and analyzed for various injury and inflammatory markers by using colorimetry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS There was an increase in the serum levels of tissue injury markers (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) as well as cytokines (TNF-α and IL-6) when comparing the vehicle group versus the sham group. This increase was significantly inhibited in the M3-treated group. The mRNA expression of proinflammatory cytokines TNF-α, IL-6, and IL-1β and the chemokines MIP-2 and KC in lungs was significantly increased in the vehicle-treated HS mice, while their expression was significantly decreased in M3-treated HS mice. Finally, M3 treatment significantly decreased the lung injury score compared with vehicle-treated HS mice. CONCLUSION The novel eCIRP-derived TREM-1 antagonist (M3) can be a potential therapeutic adjunct in the management of hemorrhagic shock.
Collapse
|
38
|
Tan C, Gurien SD, Royster W, Aziz M, Wang P. Extracellular CIRP Induces Inflammation in Alveolar Type II Cells via TREM-1. Front Cell Dev Biol 2020; 8:579157. [PMID: 32984356 PMCID: PMC7484489 DOI: 10.3389/fcell.2020.579157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/12/2020] [Indexed: 01/27/2023] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) induces acute lung injury (ALI) in sepsis. Triggering receptor expressed on myeloid cells-1 (TREM-1) serves as a receptor for eCIRP to induce inflammation in macrophages and neutrophils. The effect of eCIRP on alveolar epithelial cells (AECs) remains unknown. We hypothesize that eCIRP induces inflammation in AECs through TREM-1. AECs were isolated from C57BL/6 mice and freshly isolated AECs were characterized as alveolar type II (ATII) cells by staining AECs with EpCAM, surfactant protein-C (SP-C), and T1 alpha (T1α) antibodies. AECs were stimulated with recombinant murine (rm) CIRP and assessed for TREM-1 by flow cytometry. ATII cells from WT and TREM-1-/- mice were stimulated with rmCIRP and assessed for interleukin-6 (IL-6) and chemokine (C-X-C motif) ligand 2 (CXCL2) in the culture supernatants. ATII cells from WT mice were pretreated with vehicle (PBS), M3 (TREM-1 antagonist), and LP17 (TREM-1 antagonist) and then after stimulating the cells with rmCIRP, IL-6 and CXCL2 levels in the culture supernatants were assessed. All of the freshly isolated AECs were ATII cells as they expressed EpCAM and SP-C, but not T1α (ATI cells marker). Treatment of ATII cells with rmCIRP significantly increased TREM-1 expression by 56% compared to PBS-treated ATII cells. Stimulation of WT ATII cells with rmCIRP increased IL-6 and CXCL2 expression, while the expression of IL-6 and CXCL2 in TREM-1-/- ATII cells were reduced by 14 and 23%, respectively. Pretreatment of ATII cells with M3 and LP17 significantly decreased the expression of IL-6 by 30 and 47%, respectively, and CXCL2 by 27 and 34%, respectively, compared to vehicle treated ATII cells after stimulation with rmCIRP. Thus, eCIRP induces inflammation in ATII cells via TREM-1 which implicates a novel pathophysiology of eCIRP-induced ALI and directs a possible therapeutic approach targeting eCIRP-TREM-1 interaction to attenuate ALI.
Collapse
Affiliation(s)
- Chuyi Tan
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Steven D Gurien
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - William Royster
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
39
|
Sharma A, Brenner M, Wang P. Potential Role of Extracellular CIRP in Alcohol-Induced Alzheimer's Disease. Mol Neurobiol 2020; 57:5000-5010. [PMID: 32827106 DOI: 10.1007/s12035-020-02075-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death in the USA and the most common form of neurodegenerative dementia. In AD, microtubule-associated protein tau becomes pathologically phosphorylated and aggregated, leading to neurodegeneration and the cognitive deficits that characterize the disease. Prospective studies have shown that frequent and heavy alcohol drinking is linked to early onset and increased severity of AD. The precise mechanisms of how alcohol leads to AD, however, remain poorly understood. We have shown that extracellular cold-inducible RNA-binding protein (eCIRP) is a critical mediator of memory impairment induced by exposure to binge-drinking levels of alcohol, leading us to reason that eCIRP may be a key player in the relationship between alcohol and AD. In this review, we first discuss the mechanisms by which alcohol promotes AD. We then review eCIRP's role as a critical mediator of acute alcohol intoxication-induced neuroinflammation and cognitive impairment. Next, we explore the potential contribution of eCIRP to the development of alcohol-induced AD by targeting tau phosphorylation. We also consider the effects of eCIRP on neuronal death and neurogenesis linking alcohol with AD. Finally, we highlight the importance of further studying eCIRP as a critical molecular mechanism connecting acute alcohol intoxication, neuroinflammation, and tau phosphorylation in AD along with the potential of therapeutically targeting eCIRP as a new strategy to attenuate alcohol-induced AD.
Collapse
Affiliation(s)
- Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA. .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA. .,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
40
|
Denning NL, Aziz M, Ochani M, Prince JM, Wang P. Inhibition of a triggering receptor expressed on myeloid cells-1 (TREM-1) with an extracellular cold-inducible RNA-binding protein (eCIRP)-derived peptide protects mice from intestinal ischemia-reperfusion injury. Surgery 2020; 168:478-485. [PMID: 32439208 DOI: 10.1016/j.surg.2020.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal ischemia-reperfusion injury results in morbidity and mortality from both local injury and systemic inflammation and acute lung injury. Extracellular cold-inducible RNA-binding protein is a damage associated molecular pattern that fuels systemic inflammation and potentiates acute lung injury. We recently discovered a triggering receptor expressed on myeloid cells-1 serves as a novel receptor for extracellular cold-inducible RNA-binding protein. We developed a 7-aa peptide, named M3, derived from the cold-inducible RNA-binding protein, which interferes with cold-inducible RNA-binding protein's binding to a triggering receptor expressed on myeloid cells-1. Here, we hypothesized that M3 protects mice against intestinal ischemia-reperfusion injury. METHODS Intestinal ischemia was induced in C57BL/6 mice via clamping of the superior mesenteric artery for 60 minutes. At reperfusion, mice were treated intraperitoneally with M3 (10 mg/kg body weight) or normal saline vehicle. Mice were killed 4 hours after reperfusion and blood and lungs were collected for various analysis. A 24-hours survival after intestinal ischemia-reperfusion was assessed. RESULTS Serum levels of organ injury markers aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and lactate were increased with intestinal ischemia-reperfusion, while treatment with M3 significantly decreased their levels. Serum, intestinal, and lung levels of proinflammatory cytokines and chemokines were also increased by intestinal ischemia-reperfusion, and treatment with M3 significantly reduced these values. Intestinal ischemia-reperfusion caused significant histological intestinal and lung injuries, which were mitigated by M3. Treatment with M3 improved the survival from 40% to 80% after intestinal ischemia-reperfusion. CONCLUSION Inhibition of triggering receptor expressed on myeloid cells-1 by an extracellular cold-inducible RNA-binding protein-derived small peptide (M3) decreased inflammation, reduced lung injury, and improved survival in intestinal ischemia-reperfusion injury. Thus, blocking the extracellular cold-inducible RNA-binding protein-triggering receptor expressed on myeloid cells-1 interaction is a promising therapeutic avenue for mitigating intestinal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Naomi-Liza Denning
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY
| | - Mahendar Ochani
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Jose M Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Cohen Children's Medical Center at Hofstra/Northwell Health, New Hyde Park, NY
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY.
| |
Collapse
|
41
|
Posttreatment With LYRM03 Protects Rats From Acute Lung Inflammation Induced by Lipopolysaccharide via Suppressing the NF-κB/MyD88/TLR4 Axis. J Surg Res 2019; 243:316-324. [DOI: 10.1016/j.jss.2019.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/13/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
|
42
|
Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in Sepsis. Front Immunol 2019; 10:2536. [PMID: 31736963 PMCID: PMC6831555 DOI: 10.3389/fimmu.2019.02536] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a deadly inflammatory syndrome caused by an exaggerated immune response to infection. Much has been focused on host response to pathogens mediated through the interaction of pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs). PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Some well described members of the DAMP family are extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), histones, and adenosine triphosphate (ATP). DAMPs are released from the cell through inflammasome activation or passively following cell death. Similarly, neutrophil extracellular traps (NETs) are released from neutrophils during inflammation. NETs are webs of extracellular DNA decorated with histones, myeloperoxidase, and elastase. Although NETs contribute to pathogen clearance, excessive NET formation promotes inflammation and tissue damage in sepsis. Here, we review DAMPs and NETs and their crosstalk in sepsis with respect to their sources, activation, release, and function. A clear grasp of DAMPs, NETs and their interaction is crucial for the understanding of the pathophysiology of sepsis and for the development of novel sepsis therapeutics.
Collapse
Affiliation(s)
- Naomi-Liza Denning
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Steven D Gurien
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
43
|
Kumar V. Sepsis roadmap: What we know, what we learned, and where we are going. Clin Immunol 2019; 210:108264. [PMID: 31655168 DOI: 10.1016/j.clim.2019.108264] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/02/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening condition originating as a result of systemic blood infection causing, one or more organ damage due to the dysregulation of the immune response. In 2017, the world health organization (WHO) declared sepsis as a disease of global health priority, needing special attention due to its high prevalence and mortality around the world. Most of the therapeutics targeting sepsis have failed in the clinics. The present review highlights the history of the sepsis, its immunopathogenesis, and lessons learned after the failure of previously used immune-based therapies. The subsequent section, where to go describes in details the importance of the complement system (CS), autophagy, inflammasomes, and microbiota along with their targeting to manage sepsis. These systems are interconnected to each other, thus targeting one may affect the other. We are in an urgent need for a multi-targeting therapeutic approach for sepsis.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
44
|
C23, an oligopeptide derived from cold-inducible RNA-binding protein, suppresses inflammation and reduces lung injury in neonatal sepsis. J Pediatr Surg 2019; 54:2053-2060. [PMID: 30691879 PMCID: PMC6609502 DOI: 10.1016/j.jpedsurg.2018.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/04/2018] [Accepted: 12/23/2018] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Neonatal sepsis remains a leading cause of infant mortality. Cold-inducible RNA binding protein (CIRP) is an inflammatory mediator that induces TNF-α production in macrophages. C23 is a CIRP-derived peptide that blocks CIRP from binding its receptor. We therefore hypothesized that treatment with C23 reduces systemic inflammation and protects the lungs in neonatal sepsis. METHODS Sepsis was induced in C56BL/6 mouse pups (5-7 days) by intraperitoneal injection of adult cecal slurry (0.525 mg/g body weight, LD100). One hour later pups received retroorbital injection of C23 (8 mg/kg) or vehicle (normal saline). Ten hours after sepsis induction, blood and tissues were collected for analysis. RESULTS C23 treatment resulted in a 58% and 69% reduction in serum levels of proinflammatory cytokines IL-6 and IL-1β, respectively, and a 40% and 45% reduction of AST and LDH, as compared to vehicle-treated septic pups. In the lungs, C23 treatment reduced expression of cytokines IL-6 and IL-1β by 78% and 74%. In addition, the mRNA level of neutrophil chemoattractants KC and MIP-2 was reduced by 84% and 74%, respectively. These results corresponded to a reduction in histologic lung injury score. Vehicle-treated pups scored 0.49 ± 0.19, while C23 treatment reduced scores to 0.29 ± 0.12 (p < 0.05; Max = 1). Apoptosis in the lungs, measured by TUNEL assay, was also decreased by 53% with C23 treatment (p < 0.05). CONCLUSIONS Inhibition of CIRP with C23 treatment is protective in septic neonatal mice as demonstrated by reduced inflammatory markers systemically and in the lung. Therefore, C23 has promising therapeutic potential in treatment of neonatal sepsis. LEVEL OF EVIDENCE Level I.
Collapse
|
45
|
Chen L, Tian Q, Wang W. Association between CIRP expression and hypoxic-ischemic brain injury in neonatal rats. Exp Ther Med 2019; 18:1515-1520. [PMID: 31410103 PMCID: PMC6676150 DOI: 10.3892/etm.2019.7767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/17/2019] [Indexed: 01/23/2023] Open
Abstract
The role of cold inducible RNA-binding protein (CIRP) in mediating ischemic brain injury in neonatal rats under chronic hypobaric hypoxia was investigated. The neonatal rat model of chronic hypobaric hypoxia and the cell culture model of SH-SY5Y cells exposed to hypoxia (1% O2) were constructed. The expression of CIRP and hypoxia-inducible factor-1α (HIF-1α) was detected after hypoxic exposure, and the apoptosis-related proteins were analyzed via terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) and western blot analysis to detect neuronal apoptosis. Moreover, the effects of CIRP overexpression on HIF-1α and neuronal apoptosis were identified. Chronic hypobaric hypoxia can lead to HIF-1α expression and neuronal apoptosis in the body. CIRP was induced at early exposure (3 d/7 d). However, the CIRP level in the hypoxic group was obviously lower than that in the control group with the prolongation of exposure time (21 d). In addition, the knockdown of HIF-1α significantly reduced the neuronal apoptosis under hypoxic conditions, indicating that HIF-1α may promote apoptosis during exposure. The overexpression of CIRP significantly inhibited the upregulation of HIF-1α during hypoxia and the HIF-1α-mediated neuronal apoptosis. Results of the current study showed that, CIRP is involved in the ischemic brain injury induced by chronic hypoxia through downregulation of HIF-1α expression.
Collapse
Affiliation(s)
- Lifang Chen
- Department of Paediatrics, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Qiaohuan Tian
- Department of Paediatrics, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Weihua Wang
- Department of Paediatrics, The First People's Hospital of Xianyang City, Xianyang, Shaanxi 712000, P.R. China
| |
Collapse
|
46
|
Aziz M, Brenner M, Wang P. Extracellular CIRP (eCIRP) and inflammation. J Leukoc Biol 2019; 106:133-146. [PMID: 30645013 PMCID: PMC6597266 DOI: 10.1002/jlb.3mir1118-443r] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 12/22/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) was discovered 2 decades ago while studying the mechanism of cold stress adaptation in mammals. Since then, the role of intracellular CIRP (iCIRP) as a stress-response protein has been extensively studied. Recently, extracellular CIRP (eCIRP) was discovered to also have an important role, acting as a damage-associated molecular pattern, raising critical implications for the pathobiology of inflammatory diseases. During hemorrhagic shock and sepsis, inflammation triggers the translocation of CIRP from the nucleus to the cytosol and its release to the extracellular space. eCIRP then induces inflammatory responses in macrophages, neutrophils, lymphocytes, and dendritic cells. eCIRP also induces endoplasmic reticulum stress and pyroptosis in endothelial cells by activating the NF-κB and inflammasome pathways, and necroptosis in macrophages via mitochondrial DNA damage. eCIRP works through the TLR4-MD2 receptors. Studies with CIRP-/- mice reveal protection against inflammation, implicating eCIRP to be a novel drug target. Anti-CIRP Ab or CIRP-derived small peptide may have effective therapeutic potentials in sepsis, acute lung injury, and organ ischemia/reperfusion injuries. The current review focuses on the pathobiology of eCIRP by emphasizing on signal transduction machineries, leading to discovering novel therapeutic interventions targeting eCIRP in various inflammatory diseases.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset,
NY
| |
Collapse
|
47
|
Chen X, Jiang J, Wu X, Li J, Li S. Plasma Cold-Inducible RNA-Binding Protein Predicts Lung Dysfunction After Cardiovascular Surgery Following Cardiopulmonary Bypass: A Prospective Observational Study. Med Sci Monit 2019; 25:3288-3297. [PMID: 31054221 PMCID: PMC6512755 DOI: 10.12659/msm.914318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Cold-inducible RNA-binding protein (CIRP) has been identified as an inflammatory mediator that exerts its function in inflammatory diseases. However, the roles of CIRP in patients who received cardiovascular surgery necessitating cardiopulmonary bypass (CPB) are still unknown. The aim of this study was to examine CIRP levels and attempt to evaluate whether CIRP could serve as a predictor for lung dysfunction after cardiovascular surgery. Material/Methods Plasma CIRP levels were detected by ELISA in 31 patients who received cardiovascular surgery at different time points. Selective inflammatory cytokines (TNF-α, IL-6, IL-10, and TLR4) and mediators (Ang II, PAI-1, and soluble E-selectin) were also detected. Selective laboratory and clinical parameters were recorded at scheduled time points. Results Compared with pre-operation levels, CIRP levels significantly increased 6 h after cardiovascular surgery with CPB. Multiple linear regression analysis showed that the length of CPB time contributed to CIRP production (P=0.013). Furthermore, CIRP was associated with Ang II (r=0.438, P=0.016), PAI-1 (r=0.485, P=0.006), and soluble E-selectin (r=0.470, P=0.008), which partly reflected lung injuries. Multiple linear regression analysis showed that CIRP levels were independently associated with PaO2/FiO2 ratios (P=0.021). Conclusions The length of CPB time contributed to the upregulation of CIRP in patients who received cardiovascular surgery with CPB. CIRP levels could serve as a biomarker to predict the onset of lung injury induced by cardiovascular surgery.
Collapse
Affiliation(s)
- Xia Chen
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China (mainland).,Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Jihong Jiang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Xinwan Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Shitong Li
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China (mainland).,Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
48
|
Ode Y, Aziz M, Jin H, Arif A, Nicastro JG, Wang P. Cold-inducible RNA-binding Protein Induces Neutrophil Extracellular Traps in the Lungs during Sepsis. Sci Rep 2019; 9:6252. [PMID: 31000768 PMCID: PMC6472421 DOI: 10.1038/s41598-019-42762-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular cold-inducible RNA-binding protein (CIRP) exaggerates inflammation and tissue injury in sepsis. Neutrophil extracellular traps (NETs) are released by activated neutrophils during sepsis. NETs contribute to pathogen clearance, but excessive NET formation (NETosis) causes inflammation and tissue damage. Peptidylarginine deiminase 4 (PAD4) is associated with NETosis by increasing histone citrullination and chromatin decondensation. We hypothesized that CIRP induces NETosis in the lungs during sepsis via upregulating PAD4 expression. Sepsis was induced in C57BL/6 wild-type (WT) and CIRP−/− mice by cecal ligation and puncture (CLP). After 20 h of CLP induction, NETs in the lungs of WT and CIRP−/− mice were quantified by flow cytometry by staining the single cell suspensions with MPO and CitH3 Abs. PAD4 expression in the lungs of WT and CIRP−/− mice after sepsis was assessed by Western blotting. In vitro effects of recombinant mouse (rm) CIRP for NETosis and PAD4 expression in the bone marrow-derived neutrophils (BMDN) were assessed by flow cytometry and Western blotting, respectively. After 20 h of CLP, NETosis in the lungs was significantly decreased in CIRP−/− mice compared to WT mice, which also correlated with the decreased PAD4 expression. Intratracheal administration of rmCIRP into WT mice significantly increased NETosis and PAD4 expression in the lungs compared to vehicle-injected mice. In vitro culture of BMDN with rmCIRP significantly increased NETosis and PAD4 expression compared to PBS-treated control. Fluorescence microscopy revealed typical web-like structures consistent with NETs in rmCIRP-treated BMDN. Thus, CIRP serves as a novel inducer of NETosis via PAD4 during sepsis.
Collapse
Affiliation(s)
- Yasumasa Ode
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Hui Jin
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Adnan Arif
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Jonathan G Nicastro
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, USA. .,Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
49
|
Luo CJ, Luo F, Bu QD, Jiang W, Zhang W, Liu XM, Che L, Luan H, Zhang H, Ma RX, Sun JP, Xu Y. Protective effects of resveratrol on acute kidney injury in rats with sepsis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 164:49-56. [PMID: 30994109 DOI: 10.5507/bp.2019.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/26/2019] [Indexed: 01/06/2023] Open
Abstract
AIM To evaluate the protective effects of resveratrol on acute kidney injury (AKI) in septic rats. METHODS A septic rat model was established by cecal ligation and puncture (CLP). A total of 108 male Sprague Dawley rats were randomly divided into an observation group, a 6 h resveratrol intervention group and a 12 h resveratrol intervention group. Then each group was subdivided into Sham, Sham + Res, CLP and CLP + Res groups. After surgery, the survival and morphological changes in kidney tissues were observed. Serum creatinine and urea nitrogen levels, expression of GRP78, BiP, IRE1 and p65 in kidney tissues, and serum levels of TNF-α, IL-1β, IL-6 and IL-10 were investigated. RESULTS The survival rate of CLP + Res group (75.00%) significantly exceeded that of the CLP group (41.67%) (P<0.05). At postoperative 12 h, resveratrol significantly decreased serum creatinine and urea nitrogen levels (P<0.05). Resveratrol evidently relieved renal tubular swelling and luminal narrowing in CLP rats, and significantly reduced the high expressions of GRP78, BiP, phosphorylated IRE1 and p65 proteins (P<0.05). P65 was mainly located in the cytoplasm of Sham, Sham + Res and CLP + Res groups, and in the nucleus of the CLP group. At postoperative 12 h, resveratrol significantly reduced serum levels TNF-α, IL-1β and IL-6 in CLP rats (P<0.05), whereas elevated that of IL-10 (P<0.05). CONCLUSION Resveratrol significantly decreased the mortality rate of septic rats and alleviated AKI, probably by attenuating endoplasmic reticulum stress, inhibiting activation of the NF-κB pathway and mitigating the inflammatory response.
Collapse
Affiliation(s)
- Cong-Juan Luo
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Feng Luo
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Quan-Dong Bu
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Wei Jiang
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Wei Zhang
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Xue-Mei Liu
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Lin Che
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Hong Luan
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Hui Zhang
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Rui-Xia Ma
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Jian-Ping Sun
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| | - Yan Xu
- The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, Shandong Province, China
| |
Collapse
|
50
|
McGinn JT, Aziz M, Zhang F, Yang WL, Nicastro JM, Coppa GF, Wang P. Cold-inducible RNA-binding protein-derived peptide C23 attenuates inflammation and tissue injury in a murine model of intestinal ischemia-reperfusion. Surgery 2018; 164:1191-1197. [PMID: 30154017 PMCID: PMC6261788 DOI: 10.1016/j.surg.2018.06.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cold-inducible RNA-binding protein is a novel damage-associated molecular pattern that causes inflammation. C23, a short peptide derived from cold-inducible RNA-binding protein, has been found to have efficacy in blocking cold-inducible RNA-binding protein's activity. We hypothesized that C23 reduces inflammation and tissue injury induced by intestinal ischemia-reperfusion. METHODS Male C57BL/6 mice were subjected to 60 minutes of intestinal ischemia by clamping the superior mesenteric artery. Immediately after reperfusion, either normal saline (vehicle) or C23 peptide (8 mg/kg body weight) was injected intraperitoneally. Four hours after reperfusion, blood, intestinal, and lung tissues were collected for analysis of inflammatory and tissue injury parameters. RESULTS Cold-inducible RNA-binding protein levels in the intestinal tissues were significantly increased following intestinal ischemia-reperfusion. Histologic examination of the intestine revealed a significant reduction in injury score in the C23 group by 48% as compared with the vehicles after intestinal ischemia-reperfusion. The serum levels of lactate dehydrogenase and aspartate aminotransferase were increased in animals that underwent vehicle-treated intestinal ischemia-reperfusion, whereas C23-treated animals exhibited significant reductions by 48% and 53%, respectively. The serum and intestinal tissue levels of tumor necrosis factor α were elevated in vehicle-treated intestinal ischemia-reperfusion mice but decreased by 72% and 69%, respectively, in C23-treated mice. Interleukin-6 mRNA levels in the lungs were reduced by 86% in the C23-treated group in comparison to the vehicle-treated group after intestinal ischemia-reperfusion. Expression of macrophage inflammatory protein 2 and level of myeloperoxidase activity in the lungs were dramatically increased after intestinal ischemia-reperfusion and significantly reduced by 91% and 25%, respectively, in the C23-treated group. CONCLUSION C23 has potential to be developed into a possible therapy for reperfusion injury after mesenteric ischemia and reperfusion.
Collapse
Affiliation(s)
- Joseph T McGinn
- Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Fangming Zhang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Weng-Lang Yang
- Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York; Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Jeffrey M Nicastro
- Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Gene F Coppa
- Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ping Wang
- Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York; Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York.
| |
Collapse
|