1
|
Yoshihara T, Morimoto T, Hirata H, Murayama M, Nonaka T, Tsukamoto M, Toda Y, Kobayashi T, Izuhara K, Mawatari M. Mechanisms of tissue degeneration mediated by periostin in spinal degenerative diseases and their implications for pathology and diagnosis: a review. Front Med (Lausanne) 2023; 10:1276900. [PMID: 38020106 PMCID: PMC10645150 DOI: 10.3389/fmed.2023.1276900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
Periostin (POSTN) serves a dual role as both a matricellular protein and an extracellular matrix (ECM) protein and is widely expressed in various tissues and cells. As an ECM protein, POSTN binds to integrin receptors, transduces signals to cells, enabling cell activation. POSTN has been linked with various diseases, including atopic dermatitis, asthma, and the progression of multiple cancers. Recently, its association with orthopedic diseases, such as osteoporosis, osteoarthritis resulting from cartilage destruction, degenerative diseases of the intervertebral disks, and ligament degenerative diseases, has also become apparent. Furthermore, POSTN has been shown to be a valuable biomarker for understanding the pathophysiology of orthopedic diseases. In addition to serum POSTN, synovial fluid POSTN in joints has been reported to be useful as a biomarker. Risk factors for spinal degenerative diseases include aging, mechanical stress, trauma, genetic predisposition, obesity, and metabolic syndrome, but the cause of spinal degenerative diseases (SDDs) remains unclear. Studies on the pathophysiological effects of POSTN may significantly contribute toward the diagnosis and treatment of spinal degenerative diseases. Therefore, in this review, we aim to examine the mechanisms of tissue degeneration caused by mechanical and inflammatory stresses in the bones, cartilage, intervertebral disks, and ligaments, which are crucial components of the spine, with a focus on POSTN.
Collapse
Affiliation(s)
- Tomohito Yoshihara
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiro Nonaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Toda
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
2
|
Tong YW, Chen ACY, Lei KF. Analysis of Cellular Crosstalk and Molecular Signal between Periosteum-Derived Precursor Cells and Peripheral Cells During Bone Healing Process Using a Paper-Based Osteogenesis-On-A-Chip Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49051-49059. [PMID: 37846857 DOI: 10.1021/acsami.3c12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Periosteum-derived progenitor cells (PDPCs) are highly promising cell sources that are indispensable in the bone healing process. Adipose-derived stem cells (ADSCs) are physiologically close to periosteum tissue and release multiple growth factors to promote the bone healing process. Co-culturing PDPCs and ADSCs can construct periosteum-bone tissue microenvironments for the study of cellular crosstalk and molecular signal in the bone healing process. In the current work, a paper-based osteogenesis-on-a-chip platform was successfully developed to provide an in vitro three-dimensional coculture model. The platform was a paper substrate sandwiched between PDPC-hydrogel and ADSC-hydrogel suspensions. Cell secretion could be transferred through the paper substrate from one side to another side. Growth factors including BMP2, TGF-β, POSTN, Wnt proteins, PDGFA, and VEGFA were directly analyzed by a paper-based immunoassay. Cellular crosstalk was studied by protein expression on the paper substrate. Moreover, osteogenesis of PDPCs was investigated by examining the mRNA expressions of PDPCs after culture. Neutralizing and competitive assays were conducted to understand the correlation between growth factors secreted from ADSCs and the osteogenesis of PDPCs. In vitro periosteum-bone tissue microenvironment was established by the paper-based osteogenesis-on-a-chip platform. The proposed approach provides a promising assay of cellular crosstalk and molecular signal in 3D coculture microenvironment that may potentially lead to the development of effective bone regeneration therapy.
Collapse
Affiliation(s)
- Yun-Wen Tong
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Alvin Chao-Yu Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Bone and Joint Research Center and Comprehensive Sports Medicine Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
3
|
Palatianou ME, Karamanolis G, Tsentidis C, Gourgiotis D, Papaconstantinou I, Vezakis A, Tzouvala M. Signaling pathways associated with bone loss in inflammatory bowel disease. Ann Gastroenterol 2023; 36:132-140. [PMID: 36864939 PMCID: PMC9932862 DOI: 10.20524/aog.2023.0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract characterized in many patients by extraintestinal manifestations. One of the most common comorbidities seen in IBD patients is a significant reduction in their bone mass. The pathogenesis of IBD is mainly attributed to the disrupted immune responses in the gastrointestinal mucosa and putative disruptions in the gut microbiomes. The excessive inflammation of the gastrointestinal tract activates different systems, such as the RANKL/RANK/OPG and the Wnt pathways linked with bone alterations in IBD patients, thereby suggesting a multifactorial etiology. The mechanism responsible for the reduced bone mineral density in IBD patients is thought to be multifactorial, and, so far, the principal pathophysiological pathway has not been well established. However, in recent years, many investigations have increased our understanding of the effect of gut inflammation on the systemic immune response and bone metabolism. Here, we review the main signaling pathways associated with altered bone metabolism in IBD.
Collapse
Affiliation(s)
- Maria E. Palatianou
- Department of Gastroenterology, “Agios Panteleimon” General Hospital of Nikaia-Piraeus, “Agia Varvara” General Hospital of Western Attica, Nikaia (Maria E. Palatianou, Maria Tzouvala)
| | - George Karamanolis
- Gastroenterology Unit, Second Department of Surgery, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens (George Karamanolis)
| | - Charalambos Tsentidis
- Department of Endocrinology, Metabolism & Diabetes Mellitus, “Agios Panteleimon”General Hospital of Nikaia-Piraeus, Piraeus (Charalambos Tsentidis)
| | - Dimitrios Gourgiotis
- Laboratory of Clinical Biochemistry-Molecular Diagnostic, 2 Department of Pediatrics, Medical School, NKUA, “P. & A. Kyriakou” Children’s Hospital, Athens (Dimitrios Gourgiotis)
| | - Ioannis Papaconstantinou
- Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens (Ioannis Papaconstantinou, Antonios Vezakis), Greece
| | - Antonios Vezakis
- Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens (Ioannis Papaconstantinou, Antonios Vezakis), Greece
| | - Maria Tzouvala
- Department of Gastroenterology, “Agios Panteleimon” General Hospital of Nikaia-Piraeus, “Agia Varvara” General Hospital of Western Attica, Nikaia (Maria E. Palatianou, Maria Tzouvala)
| |
Collapse
|
4
|
Wang Z, An J, Zhu D, Chen H, Lin A, Kang J, Liu W, Kang X. Periostin: an emerging activator of multiple signaling pathways. J Cell Commun Signal 2022; 16:515-530. [PMID: 35412260 PMCID: PMC9733775 DOI: 10.1007/s12079-022-00674-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Matricellular proteins are responsible for regulating the microenvironment, the behaviors of surrounding cells, and the homeostasis of tissues. Periostin (POSTN), a non-structural matricellular protein, can bind to many extracellular matrix proteins through its different domains. POSTN usually presents at low levels in most adult tissues but is highly expressed in pathological sites such as in tumors and inflamed organs. POSTN can bind to diverse integrins to interact with multiple signaling pathways within cells, which is one of its core biological functions. Increasing evidence shows that POSTN can activate the TGF-β, the PI3K/Akt, the Wnt, the RhoA/ROCK, the NF-κB, the MAPK and the JAK pathways to promote the occurrence and development of many diseases, especially cancer and inflammatory diseases. Furthermore, POSTN can interact with some pathways in an upstream and downstream relationship, forming complicated crosstalk. This article focuses on the interactions between POSTN and different signaling pathways in diverse diseases, attempting to explain the mechanisms of interaction and provide novel guidelines for the development of targeted therapies.
Collapse
Affiliation(s)
- Zhaoheng Wang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jiangdong An
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China
| | - Daxue Zhu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Haiwei Chen
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Aixin Lin
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jihe Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Wenzhao Liu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Xuewen Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| |
Collapse
|
5
|
Periostin Augments Vascular Smooth Muscle Cell Calcification via β-Catenin Signaling. Biomolecules 2022; 12:biom12081157. [PMID: 36009051 PMCID: PMC9405747 DOI: 10.3390/biom12081157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Medial vascular calcification is common in chronic kidney disease (CKD) and is closely linked to hyperphosphatemia. Vascular smooth muscle cells (VSMCs) can take up pro-calcific properties and actively augment vascular calcification. Various pro-inflammatory mediators are able to promote VSMC calcification. In this study, we investigated the effects and mechanisms of periostin, a matricellular signaling protein, in calcifying human VSMCs and human serum samples. As a result, periostin induced the mRNA expression of pro-calcific markers in VSMCs. Furthermore, periostin augmented the effects of β-glycerophosphate on the expression of pro-calcific markers and aggravated the calcification of VSMCs. A periostin treatment was associated with an increased β-catenin abundance as well as the expression of target genes. The pro-calcific effects of periostin were ameliorated by WNT/β-catenin pathway inhibitors. Moreover, a co-treatment with an integrin αvβ3-blocking antibody blunted the pro-calcific effects of periostin. The silencing of periostin reduced the effects of β-glycerophosphate on the expression of pro-calcific markers and the calcification of VSMCs. Elevated serum periostin levels were observed in hemodialysis patients compared with healthy controls. These observations identified periostin as an augmentative factor in VSMC calcification. The pro-calcific effects of periostin involve integrin αvβ3 and the activation of the WNT/β-catenin pathway. Thus, the inhibition of periostin may be beneficial to reduce the burden of vascular calcification in CKD patients.
Collapse
|
6
|
Zhang J, Tong Y, Liu Y, Lin M, Xiao Y, Liu C. Mechanical loading attenuated negative effects of nucleotide analogue reverse-transcriptase inhibitor TDF on bone repair via Wnt/β-catenin pathway. Bone 2022; 161:116449. [PMID: 35605959 DOI: 10.1016/j.bone.2022.116449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022]
Abstract
The nucleotide analog reverse-transcriptase inhibitor, tenofovir disoproxil fumarate (TDF), is widely used to treat hepatitis B virus (HBV) and human immunodeficiency virus infection (HIV). However, long-term TDF usage is associated with an increased incidence of bone loss, osteoporosis, fractures, and other adverse reactions. We investigated the effect of chronic TDF use on bone homeostasis and defect repair in mice. In vitro, TDF inhibited osteogenic differentiation and mineralization in MC3T3-E1 cells. In vivo, 8-week-old C57BL/6 female mice were treated with TDF for 38 days to simulate chronic medication. Four-point bending test and μCT showed reduced bone biomechanical properties and microarchitecture in long bones. To investigate the effects of TDF on bone defect repair, we utilized a bilateral tibial monocortical defect model. μCT showed that TDF reduced new bone mineral tissue and bone mineral density (BMD) in the defect. To verify whether mechanical stimulation may be a useful treatment to counteract the negative bone effects of TDF, controlled dynamic mechanical loading was applied to the whole tibia during the matrix deposition phase on post-surgery days (PSDs) 5 to 8. Second harmonic generation (SHG) of collagen fibers and μCT showed that the reduction of new bone volume and bone mineral density caused by TDF was reversed by mechanical loading in the defect. Immunofluorescent deep tissue imaging showed that chronic TDF treatment reduced the number of osteogenic cells and the volume of new vessels. In addition, chronic TDF treatment inhibited the expressions of periostin and β-catenin, but increased the expression of sclerostin. Both negative effects were reversed by mechanical loading. Our study provides strong evidence that chronic use of TDF exerts direct and inhibitory impacts on bone repair, but appropriate mechanical loading could reverse these adverse effects.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yanrong Tong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yao Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Jin J, Yu G. Hypoxic lung cancer cell-derived exosomal miR-21 mediates macrophage M2 polarization and promotes cancer cell proliferation through targeting IRF1. World J Surg Oncol 2022; 20:241. [PMID: 35897096 PMCID: PMC9327340 DOI: 10.1186/s12957-022-02706-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypoxia is the hallmark of the tumor microenvironment (TME) and plays a critical role during the progress of tumor development. A variety of microRNAs (miRNAs) transmitted by tumor-derived exosomes were involved in intercellular communication. We aimed to elucidate the precise mechanism by which tumor cell-derived exosomes promote lung cancer development by affecting macrophage polarization under hypoxic conditions. Methods CD163 signal in tumor tissue from lung cancer patients was detected by immunohistochemical (IHC). The M2 polarization-related markers were assessed by flow cytometry and western blot. Exosomes were isolated from normoxic and hypoxic lung cancer cell culture and characterized by transmission electron microscope (TEM), dynamic light scattering (DLS), and western blot. RNA sequencing was performed to show the abnormally expressed miRNAs in exosomes from normoxic and hypoxic lung cancer cell culture. In addition, CCK-8 and clone formation assays were used to assess cell proliferation. Dual luciferase reporter assay was used to evaluate the relationship between miR-21 and IRF1. For in vivo experiment, the male nude mice were injected with H1299 cells with exosomes and miR-21 mimic treatment. Results Firstly, we found a strong CD163 signal in tumor tissue from lung cancer patients by IHC. Subsequently, we co-cultured lung cancer cell line H1299 with M0 macrophage THP-1 and found that H1299 in a hypoxic environment promoted THP-1 M2 polarization. PKH67 fluorescence staining experiments confirmed that exosomes of H1299 origin were able to enter THP-1 and induced M2 polarization. RNA sequencing of exosomes showed that miR-21 level was significantly higher in the hypoxic culture group compared to the normoxic group. Subsequent cellular assays showed that miR-21 inhibited the expression of IRF1 by targeting it. In addition, the overexpression of IRF1 reversed the role of miR-21 on macrophage M2 polarization. Finally, we have confirmed through animal experiments that either hypoxic environment or high miR-21 level promoted tumor progression. Conclusions High miR-21 level in hypoxic environments promoted macrophage M2 polarization and induced lung cancer progression through targeting IRF1.
Collapse
Affiliation(s)
- Jianxu Jin
- Department of Oncology, Xi'an traditional Chinese Medicine Hospital, Xi'an, 710021, Shanxi, China
| | - Guiping Yu
- Department of Oncology, Xi'an Ninth Hospital, Xi'an, 710054, Shanxi, China.
| |
Collapse
|
8
|
Li J, Hou W, Yang Y, Deng Q, Fu H, Yin Y, Duan K, Feng B, Guo T, Weng J. Micro/nano-topography promotes osteogenic differentiation of bone marrow stem cells by regulating periostin expression. Colloids Surf B Biointerfaces 2022; 218:112700. [PMID: 35907353 DOI: 10.1016/j.colsurfb.2022.112700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022]
Abstract
Micro/nano-topography (MNT) is an important factor affecting cell response. Earlier studies using titania (TiO2) nanotube as a model of MNT found that they mediated the differentiation of BMSCs into osteoblasts, but the mechanisms are not fully understood. Surprisingly, Periostin (Postn), a secreted protein involved in extracellular matrix (ECM) construction and promoting osteogenic differentiation of bone marrow stem cells (BMSCs), was previously observed to significantly up-regulated on TiO2 nanotube. We proposed that Postn may act as a MNT signal transduction role. In this study, we investigated the effect of MNT on Postn, and the influence of Postn on osteogenic differentiation-related genes through focal adhesion and downstream signals. It was found that, titanium (Ti) plates carrying TiO2 nanotubes with diameters of ∼100 nm (TNT-100) significantly up-regulated the expression of Postn compared with flat Ti. Furthermore, Postn activated the downstream focal adhesion kinase (FAK) signal pathway and β-catenin into the nucleus by interacting with integrin αV. Surprisingly, TNT-100 up-regulated the transcription level of Wnt3a, which was independent of the up-regulation of Postn. This new Postn signaling pathway may provide more insights into the signal transduction mechanism of MNT and development of biomaterials with improved osteogenic properties.
Collapse
Affiliation(s)
- Jinsheng Li
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenqing Hou
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qing Deng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hong Fu
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yiran Yin
- Sichuan Provincial Lab of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ke Duan
- Sichuan Provincial Lab of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bo Feng
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Weng
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China; College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
9
|
Søndergaard RH, Højgaard LD, Reese-Petersen AL, Hoeeg C, Mathiasen AB, Haack-Sørensen M, Follin B, Genovese F, Kastrup J, Juhl M, Ekblond A. Adipose-derived stromal cells increase the formation of collagens through paracrine and juxtacrine mechanisms in a fibroblast co-culture model utilizing macromolecular crowding. Stem Cell Res Ther 2022; 13:250. [PMID: 35690799 PMCID: PMC9188050 DOI: 10.1186/s13287-022-02923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background Adipose-derived stromal cells (ASCs) possess a multitude of regenerative capabilities, which include immunomodulation, angiogenesis, and stimulation of extracellular matrix (ECM) remodeling. However, the underlying mechanisms leading to ECM remodeling remain largely elusive and highlight the need for functional in vitro models for mode of action studies. Therefore, the purpose of this study was to develop an in vitro co-culture model to investigate the capabilities of ASCs to modulate fibroblasts and ECM. Methods An ECM in vitro model with ASCs and normal human dermal fibroblasts (NHDFs) was established utilizing macromolecular crowding, ascorbic acid, and TGF-β stimulation. Paracrine and juxtacrine co-cultures were created using transwell inserts and cell cultures with direct cell–cell contacts. The cultures were screened using RT2 PCR Profiler Arrays; the protein levels of myofibroblast differentiation marker alpha smooth muscle actin (αSMA) and ECM remodeling enzymes were analyzed using western blot on cell lysates; the formation of collagen type I, III, VI, and fibronectin was investigated using ELISA on culture supernatants; and the deposition of collagens was analyzed using immunocytochemistry. Results TGF-β stimulation of NHDF monocultures increased the expression of 18 transcripts relevant for ECM formation and remodeling, the protein levels of αSMA and matrix metalloproteinase-2 (MMP-2), the formation of collagen type I, III, VI, and fibronectin, and the deposition of collagen type I and VI and decreased the protein levels of MMP-14. Inclusion of ASCs in the ECM co-culture model increased the formation of collagen type I and III through paracrine mechanisms and the formation of collagen type VI through juxtacrine mechanisms. Conclusions The co-culture model provides effective stimulation of NHDF monocultures by TGF-β for enhanced formation and deposition of ECM. In the model, ASCs induce changes in ECM by increasing formation of collagen type I, III and VI. The obtained results could guide further investigations of ASCs’ capabilities and underlying mechanisms related to ECM formation and remodeling. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02923-y.
Collapse
Affiliation(s)
- Rebekka Harary Søndergaard
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark.
| | - Lisbeth Drozd Højgaard
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | | | - Cecilie Hoeeg
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | - Bjarke Follin
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | - Federica Genovese
- Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| |
Collapse
|
10
|
Salehiamin M, Toolee H, Azami M, Tafti SHA, Mojaverrostami S, Halimi S, Barakzai S, Sobhani A, Abbasi Y. Chitosan Scaffold Containing Periostin Enhances Sternum Bone Healing and Decreases Serum Level of TNF-α and IL-6 after Sternotomy in Rat. Tissue Eng Regen Med 2022; 19:839-852. [PMID: 35199306 PMCID: PMC9294132 DOI: 10.1007/s13770-022-00434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In the aftermath of bone injuries, such as cranium and sternum, bone wax (BW) is used to control bleeding from the bone surfaces during surgery. Made up of artificial substances, however, it is associated with many complications such as inflammation, increased risk for infection, and bone repair delay. We, therefore, in this study set out to design and evaluate a novel BW without the above-mentioned side-effects reported for other therapies. METHODS The pastes (new BW(s)) were prepared in the laboratory and examined by MTT, MIC, MBC, and degradability tests. Then, 60 adult male Wistar rats, divided into six equal groups including chitosan (CT), CT-octacalcium phosphate (OCP), CT-periostin (Post), CT-OCP-Post, Control (Ctrl), and BW, underwent sternotomy surgery. Once the surgeries were completed, the bone repair was assessed radiologically and thereafter clinically in vivo and in vitro using CT-scan, H&E, ELISA, and qRT-PCR. RESULTS All pastes displayed antibacterial properties and the CT-Post group had the highest cell viability compared to the control group. In contrast to the BW, CT-Post group demonstrated weight changes in the degradability test. In the CT-Post group, more number of osteocyte cells, high trabeculae percentage, and the least fibrous connective tissue were observed compared to other groups. Additionally, in comparison to the CT and Ctrl groups, higher alkaline phosphatase activity, as well as decreased level of serum tumor necrosis factor-α, interleukin-6, and OCN in the CT-Post group was evident. Finally, Runx2, OPG, and RANKL genes' expression was significantly higher in the CT-Post group than in other groups. CONCLUSION Our results provide insights into the desirability of pastes in terms of cellular viability, degradability, antibacterial properties, and surgical site restoration compared to the BW group. Besides, Periostin could enhance the osteogenic properties of bone tissue defect site.
Collapse
Affiliation(s)
- Mehdi Salehiamin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Toolee
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shogoofa Barakzai
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yasaman Abbasi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Kawaguchi Y, Kitajima I, Yasuda T, Seki S, Suzuki K, Makino H, Ujihara Y, Ueno T, Canh Tung NT, Yahara Y. Serum Periostin Level Reflects Progression of Ossification of the Posterior Longitudinal Ligament. JB JS Open Access 2022; 7:JBJSOA-D-21-00111. [PMID: 35136852 PMCID: PMC8816374 DOI: 10.2106/jbjs.oa.21.00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: Ossification of the posterior longitudinal ligament (OPLL), characterized by ectopic new bone formation in the spinal ligament, causes neurological impairment due to narrowing of the spinal canal. However, the etiology has not been fully elucidated yet. Several biomarkers may be related to the pathogenesis of OPLL. The present study focused on the serum level of periostin, which is recognized as an important bone formation regulator. Methods: This study included 92 patients with OPLL and 54 control patients without OPLL. For the case-control analysis, 54 age and sex-matched patients were randomly included in the OPLL group. The serum fibroblast growth factor-23 (FGF-23), creatinine, inorganic phosphate, calcium, alkaline phosphatase, and periostin levels were assessed. Furthermore, the calcium, creatinine, and inorganic phosphate levels in urine and the percentage of tubular reabsorption of phosphate were also analyzed. Moreover, the relationship between the biomarkers and the extent of OPLL was analyzed. The data were compared between patients with OPLL progression (the progression group) and without OPLL progression (the non-progression group). Results: The mean serum FGF-23 and periostin levels in the OPLL group were higher than that in the control group. The serum inorganic phosphate level in the OPLL group was lower than that in the control group. No correlation was found between any of the biomarkers and the extent of ossification. The serum periostin level in the progression group was higher than that in the non-progression group. No significant difference in the serum FGF-23 level was noted between the progression and non-progression groups. Moreover, no correlation was found between serum periostin and FGF-23 levels. Conclusions: The serum periostin level is related to OPLL progression. Level of Evidence: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Yoshiharu Kawaguchi
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
- Email for corresponding author:
| | - Isao Kitajima
- Clinical Laboratory Center, Toyama University Hospital, Toyama, Japan
| | - Taketoshi Yasuda
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Shoji Seki
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Kayo Suzuki
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Hiroto Makino
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| | - Yasuhiro Ujihara
- Clinical Laboratory Center, Toyama University Hospital, Toyama, Japan
| | - Tomohiro Ueno
- Clinical Laboratory Center, Toyama University Hospital, Toyama, Japan
| | | | - Yasuhito Yahara
- Department of Orthopedic Surgery, University of Toyama, Toyama, Japan
| |
Collapse
|
12
|
Wang Z, Liu Y, Zhang J, Lin M, Xiao C, Bai H, Liu C. Mechanical loading alleviated the inhibition of β2-adrenergic receptor agonist terbutaline on bone regeneration. FASEB J 2021; 35:e22033. [PMID: 34739146 DOI: 10.1096/fj.202101045rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022]
Abstract
The long-term use of adrenergic medication in treating various conditions, such as asthma, increases the chances of bone fracture. Dynamic mechanical loading at a specific time is a method for improving bone quality and promoting healing. Therefore, we hypothesized that precisely controlling the mechanical environment can contribute to the alleviation of the negative effects of chronic treatment with the common asthma drug terbutaline, which is a β2-adrenergic receptor agonist that facilitates bone homeostasis and defect repair through its anabolic effect on osteogenic cells. Our in vitro results showed that terbutaline can directly inhibit osteogenesis by impairing osteogenic differentiation and mineralization. Chronic treatment in vivo was simulated by administering terbutaline to C57BL/6J mice for 4 weeks before bone defect surgery and mechanical loading. We utilized a stabilized tibial defect model, which allowed the application of anabolic mechanical loading. During homeostasis, chronic terbutaline treatment reduced the bone formation rate, the fracture toughness of long bones, and the concentrations of bone formation markers in the sera. During defect repair, terbutaline decreased the bone volume, type H vessel, and total blood vessel volume. Terbutaline treatment reduced the number of osteogenic cells. Periostin, which was secreted mainly by Prrx1+ osteoprogenitors and F4/80+ macrophages, was inhibited by treating the bone defect with terbutaline. Interestingly, controlled mechanical loading facilitated the recovery of bone volume and periostin expression and the number of osteogenic cells within the defect. In conclusion, mechanical loading can rescue negative effects on new bone accrual and repair induced by chronic terbutaline treatment.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yang Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianing Zhang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Minmin Lin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chufan Xiao
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Haoying Bai
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Liu S, Jin Z, Cao M, Hao D, Li C, Li D, Zhou W. Periostin regulates osteogenesis of mesenchymal stem cells from ovariectomized rats through actions on the ILK/Akt/GSK-3β Axis. Genet Mol Biol 2021; 44:e20200461. [PMID: 34591063 PMCID: PMC8482812 DOI: 10.1590/1678-4685-gmb-2020-0461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is a condition of the skeleton that mainly results from estrogen deficiency. Periostin is a matricellular component in bone that is involved in osteoblast differentiation. However, how Periostin promotes osteogenesis remains largely unknown. Here, we isolated bone marrow skeletal stem cells (BMSCs) derived from an ovariectomy (OVX)-induced osteoporosis rat model and the effects of periostin on BMSCs derived from OVX rats (OVX-BMSCs) were assessed. Overexpression of periostin enhanced alkaline phosphatase (ALP) and alizarin red staining in OVX-BMSCs as well as the osteogenic genes OCN, BSP and Runx2. ILK is a downstream effector of signals from the extracellular matrix and participates in bone homeostasis. Overexpression of periostin also increased expression of protein levels for ILK, as well as the downstream targets pAkt and pGSK3β. Suppression of ILK or Akt partially suppressed the enhancement of osteogenic ability induced by periostin overexpression in OVX-BMSCs. Thus, periostin may promote the osteogenic ability of OVX-BMSCs through actions on the ILK/Akt/GSK3β axis.
Collapse
Affiliation(s)
- Silin Liu
- The Fourth Military Medical University, School of Stomatology, Department of Orthodontics, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Xi'an, China.,Affiliated Hospital of Chifeng University, Department of Orthodontics, Inner Mongolia, China
| | - Zuolin Jin
- The Fourth Military Medical University, School of Stomatology, Department of Orthodontics, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Xi'an, China
| | - Meng Cao
- The Fourth Military Medical University, School of Stomatology, Department of Orthodontics, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Xi'an, China
| | - Dandan Hao
- Chifeng University, Medical College, Department of Physiology, Inner Mongolia, China
| | - Chunrong Li
- The Fourth Military Medical University, School of Stomatology, Department of Orthodontics, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Xi'an, China
| | - Doudou Li
- The Fourth Military Medical University, School of Stomatology, Department of Orthodontics, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Xi'an, China
| | - Weiwei Zhou
- The Fourth Military Medical University, School of Stomatology, Department of Orthodontics, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Xi'an, China
| |
Collapse
|
14
|
Zhu D, Zhou W, Wang Z, Wang Y, Liu M, Zhang G, Guo X, Kang X. Periostin: An Emerging Molecule With a Potential Role in Spinal Degenerative Diseases. Front Med (Lausanne) 2021; 8:694800. [PMID: 34513869 PMCID: PMC8430223 DOI: 10.3389/fmed.2021.694800] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Periostin, an extracellular matrix protein, is widely expressed in a variety of tissues and cells. It has many biological functions and is related to many diseases: for example, it promotes cell proliferation and differentiation in osteoblasts, which are closely related to osteoporosis, and mediates cell senescence and apoptosis in chondrocytes, which are involved in osteoarthritis. Furthermore, it also plays an important role in mediating inflammation and reconstruction during bronchial asthma, as well as in promoting bone development, reconstruction, repair, and strength. Therefore, periostin has been explored as a potential biomarker for various diseases. Recently, periostin has also been found to be expressed in intervertebral disc cells as a component of the intervertebral extracellular matrix, and to play a crucial role in the maintenance and degeneration of intervertebral discs. This article reviews the biological role of periostin in bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, chondrocytes, and annulus fibrosus and nucleus pulposus cells, which are closely related to spinal degenerative diseases. The study of its pathophysiological effects is of great significance for the diagnosis and treatment of spinal degeneration, although additional studies are needed.
Collapse
Affiliation(s)
- Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Wupin Zhou
- The 947th Army Hospital of the Chinese PLA, Kashgar, China
| | - Zhen Wang
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yidian Wang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Mingqiang Liu
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Guangzhi Zhang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Xudong Guo
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
15
|
Proteomic and genomic analysis of acid dentin lysate with focus on TGF-β signaling. Sci Rep 2021; 11:12247. [PMID: 34112817 PMCID: PMC8192760 DOI: 10.1038/s41598-021-89996-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
Particulate autologous tooth roots are increasingly used for alveolar bone augmentation; however, the proteomic profile of acid dentin lysate and the respective cellular response have not been investigated. Here we show that TGF-β1 is among the 226 proteins of acid dentin lysate (ADL) prepared from porcine teeth. RNA sequencing identified 231 strongly regulated genes when gingival fibroblasts were exposed to ADL. Out of these genes, about one third required activation of the TGF-β receptor type I kinase including interleukin 11 (IL11) and NADPH oxidase 4 (NOX4). Reverse transcription-quantitative polymerase chain reaction and immunoassay confirmed the TGF-β-dependent expression of IL11 and NOX4. The activation of canonical TGF-β signaling by ADL was further confirmed by the phosphorylation of Smad3 and translocation of Smad2/3, using Western blot and immunofluorescence staining, respectively. Finally, we showed that TGF-β activity released from dentin by acid lysis adsorbs to titanium and collagen membranes. These findings suggest that dentin particles are a rich source of TGF-β causing a major response of gingival fibroblasts.
Collapse
|
16
|
Zhu Y, Ji JJ, Wang XD, Sun XJ, Li M, Wei Q, Ren LQ, Liu NF. Periostin promotes arterial calcification through PPARγ-related glucose metabolism reprogramming. Am J Physiol Heart Circ Physiol 2021; 320:H2222-H2239. [PMID: 33834866 DOI: 10.1152/ajpheart.01009.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular matrix (ECM) exerts a series of biological functions and contributes to almost 30% of the osteogenic process. Periostin is a secreted protein that can alter ECM remodeling in response to vascular injury. However, the role of periostin in vascular calcification has yet to be fully investigated. As found in this study, recombinant periostin accelerated the thoracic aortas calcification, increased the expression of glycolysis key enzymes, and disturbed the normal oxidative phosphorylation (OXPHOS) ex vivo, which could be alleviated by the peroxisome proliferation-activated receptor γ (PPARγ) agonist pioglitazone. In vascular smooth muscle cells (VSMCs), periostin promoted VSMC-osteoblastic phenotype transition and calcium deposition and suppressed PPARγ expression. Mechanistically, periostin caused overactivation of glycolysis and mitochondrial dysfunction in VSMCs as assessed by extracellular acidification rate, oxygen consumption rate, and mitochondrial respiratory chain complex activities. Targeted glycolysis inhibitors reduced mitochondrial calcium overload, apoptosis, and periostin-induced VSMCs calcification. PPARγ agonists preserved glycolysis and OXPHOS in the stimulated microenvironment and reversed periostin-promoted VSMC calcification. Furthermore, plasma periostin, lactate, and matrix Gla protein levels were measured in 274 patients undergoing computed tomography to determine coronary artery calcium score (Agatston score). Plasma periostin and lactate levels were both linked to an Agatston score in patients with coronary artery calcification (CAC). There was also a positive correlation between plasma periostin and lactate levels. This study suggests that downregulation of PPARγ is involved in the mechanism by which periostin accelerates arterial calcification partly through excessive glycolysis activation and unbalanced mitochondrial homeostasis.NEW & NOTEWORTHY Periostin caused arterial calcification, overactivated glycolysis, and damaged OXPHOS. PPARγ agonists alleviated periostin-promoted arterial calcification and corrected abnormal glycolysis and unbalanced mitochondrial homeostasis. There exists a relationship between periostin and lactate in patients with CAC.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Jing-Jing Ji
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Xiao-Dong Wang
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Xue-Jiao Sun
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Min Li
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Qin Wei
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Li-Qun Ren
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Yang CY, Lu RJH, Lee MK, Hsiao FSH, Yen YP, Cheng CC, Hsu PS, Tsai YT, Chen SK, Liu IH, Chen PY, Lin SP. Transcriptome Analysis of Dnmt3l Knock-Out Mice Derived Multipotent Mesenchymal Stem/Stromal Cells During Osteogenic Differentiation. Front Cell Dev Biol 2021; 9:615098. [PMID: 33718357 PMCID: PMC7947861 DOI: 10.3389/fcell.2021.615098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSCs) exhibit great potential for cell-based therapy. Proper epigenomic signatures in MSCs are important for the maintenance and the subsequent differentiation potential. The DNA methyltransferase 3-like (DNMT3L) that was mainly expressed in the embryonic stem (ES) cells and the developing germ cells plays an important role in shaping the epigenetic landscape. Here, we report the reduced colony forming ability and impaired in vitro osteogenesis in Dnmt3l-knockout-mice-derived MSCs (Dnmt3l KO MSCs). By comparing the transcriptome between undifferentiated Dnmt3l KO MSCs and the MSCs from the wild-type littermates, some of the differentially regulated genes (DEGs) were found to be associated with bone-morphology-related phenotypes. On the third day of osteogenic induction, differentiating Dnmt3l KO MSCs were enriched for genes associated with nucleosome structure, peptide binding and extracellular matrix modulation. Differentially expressed transposable elements in many subfamilies reflected the change of corresponding regional epigenomic signatures. Interestingly, DNMT3L protein is not expressed in cultured MSCs. Therefore, the observed defects in Dnmt3l KO MSCs are unlikely a direct effect from missing DNMT3L in this cell type; instead, we hypothesized them as an outcome of the pre-deposited epigenetic signatures from the DNMT3L-expressing progenitors. We observed that 24 out of the 107 upregulated DEGs in Dnmt3l KO MSCs were hypermethylated in their gene bodies of DNMT3L knock-down ES cells. Among these 24 genes, some were associated with skeletal development or homeostasis. However, we did not observe reduced bone development, or reduced bone density through aging in vivo. The stronger phenotype in vitro suggested the involvement of potential spreading and amplification of the pre-deposited epigenetic defects over passages, and the contribution of oxidative stress during in vitro culture. We demonstrated that transient deficiency of epigenetic co-factor in ES cells or progenitor cells caused compromised property in differentiating cells much later. In order to facilitate safer practice in cell-based therapy, we suggest more in-depth examination shall be implemented for cells before transplantation, even on the epigenetic level, to avoid long-term risk afterward.
Collapse
Affiliation(s)
- Chih-Yi Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Rita Jui-Hsien Lu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Ming-Kang Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Felix Shih-Hsian Hsiao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Ya-Ping Yen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Chun Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Pu-Sheng Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shih-Kuo Chen
- Department of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Wei X, Liu Q, Guo S, Wu Y. Role of Wnt5a in periodontal tissue development, maintenance, and periodontitis: Implications for periodontal regeneration (Review). Mol Med Rep 2021; 23:167. [PMID: 33398377 PMCID: PMC7821221 DOI: 10.3892/mmr.2020.11806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
The periodontium is a highly dynamic microenvironment constantly adapting to changing external conditions. In the processes of periodontal tissue formation and remodeling, certain molecules may serve an essential role in maintaining periodontal homeostasis. Wnt family member 5a (Wnt5a), as a member of the Wnt family, has been identified to have extensive biological roles in development and disease, predominantly through the non‑canonical Wnt signaling pathway or through interplay with the canonical Wnt signaling pathway. An increasing number of studies has also demonstrated that it serves crucial roles in periodontal tissues. Wnt5a participates in the development of periodontal tissues, maintains a non‑mineralized state of periodontal ligament, and regulates bone homeostasis. In addition, Wnt5a is involved in the pathogenesis of periodontitis. Recently, it has been shown to serve a positive role in the regeneration of integrated periodontal complex. The present review article focuses on recent research studies of Wnt5a and its functions in development, maintenance, and pathological disorders of periodontal tissues, as well as its potential effect on periodontal regeneration.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
19
|
Walker BS, Zarour LR, Wieghard N, Gallagher AC, Swain JR, Weinmann S, Lanciault C, Billingsley K, Tsikitis VL, Wong MH. Stem Cell Marker Expression in Early Stage Colorectal Cancer is Associated with Recurrent Intestinal Neoplasia. World J Surg 2020; 44:3501-3509. [PMID: 32647988 PMCID: PMC10659815 DOI: 10.1007/s00268-020-05586-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) ranks second in cancer deaths worldwide and presents multiple management challenges, one of which is identifying high risk stage II disease that may benefit from adjuvant therapy. Molecular biomarkers, such as ones that identify stem cell activity, could better stratify high-risk cohorts for additional treatment. METHODS To identify possible biomarkers of high-risk disease in early-stage CRC, a discovery set (n = 66) of advanced-stage tumors were immunostained with antibodies to stemness proteins (CD166, CD44, CD26, and LGR5) and then digitally analyzed. Using a second validation cohort (n = 54) of primary CRC tumors, we analyzed protein and gene expression of CD166 across disease stages, and extended our analyses to CD166-associated genes (LGR5, ASCL2, BMI1, POSTN, and VIM) by qRT-PCR. RESULTS Stage III and metastatic CRC tumors highly expressed stem cell-associated proteins, CD166, CD44, and LGR5. When evaluated across stages, CD166 protein expression was elevated in advanced-stage compared to early-stage tumors. Notably, a small subset of stage I and II cancers harbored elevated CD166 protein expression, which correlated with development of recurrent cancer or adenomatous polyps. Gene expression analyses of CD166-associated molecules revealed elevated ASCL2 in primary tumors from patients who recurred. CONCLUSIONS We identified a protein signature prognostic of aggressive disease in early stage CRC. Stem cell-associated protein and gene expression identified a subset of early-stage tumors associated with cancer recurrence and/or subsequent adenoma formation. Signatures for stemness offer promising fingerprints for stratifying early-stage patients at high risk of recurrence.
Collapse
Affiliation(s)
- Brett S Walker
- Department of Surgery, OHSU, 3181 SW Sam Jackson Park Rd, L619, Portland, OR, 97239, USA
| | - Luai R Zarour
- Department of Surgery, OHSU, 3181 SW Sam Jackson Park Rd, L619, Portland, OR, 97239, USA
| | - Nicole Wieghard
- Department of Surgery, OHSU, 3181 SW Sam Jackson Park Rd, L619, Portland, OR, 97239, USA
| | - Alexandra C Gallagher
- Department of Cell, Developmental, and Cancer Biology, OHSU, 2720 S Moody Ave., KR-CDCB, Portland, OR, 97201, USA
| | - John R Swain
- Department of Cell, Developmental, and Cancer Biology, OHSU, 2720 S Moody Ave., KR-CDCB, Portland, OR, 97201, USA
| | - Sheila Weinmann
- Kaiser Permanente Northwest Center for Health Research, 3800 N. Interstate Ave., Portland, OR, 97227, USA
| | - Christian Lanciault
- Department of Pathology, OHSU, 3181 SW Sam Jackson Park Rd, L-113, Portland, OR, 97239, USA
| | - Kevin Billingsley
- Department of Surgery, OHSU, 3181 SW Sam Jackson Park Rd, L619, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR, 97201, USA
| | - V Liana Tsikitis
- Department of Surgery, OHSU, 3181 SW Sam Jackson Park Rd, L619, Portland, OR, 97239, USA.
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR, 97201, USA.
| | - Melissa H Wong
- Department of Cell, Developmental, and Cancer Biology, OHSU, 2720 S Moody Ave., KR-CDCB, Portland, OR, 97201, USA.
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR, 97201, USA.
| |
Collapse
|
20
|
Marinkovic M, Tran ON, Block TJ, Rakian R, Gonzalez AO, Dean DD, Yeh CK, Chen XD. Native extracellular matrix, synthesized ex vivo by bone marrow or adipose stromal cells, faithfully directs mesenchymal stem cell differentiation. Matrix Biol Plus 2020; 8:100044. [PMID: 33543037 PMCID: PMC7852316 DOI: 10.1016/j.mbplus.2020.100044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are highly responsive to cues in the microenvironment (niche) that must be recapitulated ex vivo to study their authentic behavior. In this study, we hypothesized that native bone marrow (BM)- and adipose (AD)-derived extracellular matrices (ECM) were unique in their ability to control MSC behavior. To test this, we compared proliferation and differentiation of bone marrow (BM)-derived MSCs when maintained on native decellularized ECM produced by BM versus AD stromal cells (i.e. BM- versus AD-ECM). We found that both ECMs contained similar types of collagens but differed in the relative abundance of each. Type VI collagen was the most abundant (≈60% of the total collagen present), while type I was the next most abundant at ≈30%. These two types of collagen were found in nearly equal proportions in both ECMs. In contrast, type XII collagen was almost exclusively found in AD-ECM, while types IV and V were only found in BM-ECM. Physically and mechanically, BM-ECM was rougher and stiffer, but less adhesive, than AD-ECM. During 14 days in culture, both ECMs supported BM-MSC proliferation better than tissue culture plastic (TCP), although MSC-related surface marker expression remained relatively high on all three culture surfaces. BM-MSCs cultured in osteogenic (OS) differentiation media on BM-ECM displayed a significant increase in calcium deposition in the matrix, indicative of osteogenesis, while BM-MSCs cultured on AD-ECM in the presence of adipogenic (AP) differentiation media showed a significant increase in Oil Red O staining, indicative of adipogenesis. Further, culture on BM-ECM significantly increased BM-MSC-responsiveness to rhBMP-2 (an osteogenic inducer), while culture on AD-ECM enhanced responsiveness to rosiglitazone (an adipogenic inducer). These findings support our hypothesis and indicate that BM- and AD-ECMs retain unique elements, characteristic of their tissue-specific microenvironment (niche), which promote retention of MSC differentiation state (i.e. "stemness") during expansion and direct cell response to lineage-specific inducers. This study provides a new paradigm for precisely controlling MSC fate to a desired cell lineage for tissue-specific cell-based therapies.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Rubie Rakian
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Audie Murphy VA Medical Center, San Antonio, TX 78229, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.,Audie Murphy VA Medical Center, San Antonio, TX 78229, USA
| |
Collapse
|
21
|
Tang Y, Chen Y, Huang L, Gao F, Sun H, Huang C. Intramembranous Ossification Imitation Scaffold with the Function of Macrophage Polarization for Promoting Critical Bone Defect Repair. ACS APPLIED BIO MATERIALS 2020; 3:3569-3581. [PMID: 35025227 DOI: 10.1021/acsabm.0c00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The regeneration of craniofacial bone defects remains a crucial clinical challenge. To date, numerous biomaterials are applied in this field. However, current strategies have ignored the importance of intramembranous ossification and the vital role of macrophages in regulating osteogenesis. Here, an osteoblast (OB)-targeting peptide (SDSSD)-modified chitosan scaffold (CS-SDSSD) is developed for imitating the physiological process of bone development from the fibrous membrane. The addition of free peptide (fSDSSD) can recruit host OBs, and the peptide grafted on the scaffold (CS-SDSSD) can well organize the migrated OBs by binding with their surface periostin. Besides, macrophage polarization is found in the bone defects. CS-SDSSD + fSDSSD displays advantages in prioritizing M2 macrophage polarization and promoting the intramembranous ossification bone repair process. In summary, our strategy provides an economical and effective path for craniofacial bone repair and holds great potential for biomedical applications.
Collapse
Affiliation(s)
- Ying Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Liyuan Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Fan Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430079, China
| | - Hualing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| |
Collapse
|
22
|
Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of human bone marrow mesenchymal stem cells via H19/miR-675/APC axis. Aging (Albany NY) 2020; 12:10527-10543. [PMID: 32434960 PMCID: PMC7346082 DOI: 10.18632/aging.103277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
Bone volume inadequacy is an emerging clinical problem impairing the feasibility and longevity of dental implants. Human bone marrow mesenchymal stem cells (HBMSCs) have been widely used in bone remodeling and regeneration. This study examined the effect of long noncoding RNAs (lncRNAs)-H19 on the human amnion-derived mesenchymal stem cells (HAMSCs)-droved osteogenesis in HBMSCs. HAMSCs and HBMSCs were isolated from abandoned amniotic membrane samples and bone marrow. The coculture system was conducted using transwells, and H19 level was measured by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR). The mechanism was further verified. We here discovered that osteogenesis of HBMSCs was induced by HAMSCs, while H19 level in HAMSCs was increased during coculturing. H19 had no significant effect on the proliferative behaviors of HBMSCs, while its overexpression of H19 in HAMSCs led to the upregulated osteogenesis of HBMSCs in vivo and in vitro; whereas its knockdown reversed these effects. Mechanistically, H19 promoted miR-675 expression and contributed to the competitively bounding of miR-675 and Adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway. The results suggested that HAMSCs promote osteogenic differentiation of HBMSCs via H19/miR-675/APC pathway, and supply a potential target for the therapeutic treatment of bone-destructive diseases.
Collapse
|
23
|
Xiong X, Yang X, Dai H, Feng G, Zhang Y, Zhou J, Zhou W. Extracellular matrix derived from human urine-derived stem cells enhances the expansion, adhesion, spreading, and differentiation of human periodontal ligament stem cells. Stem Cell Res Ther 2019; 10:396. [PMID: 31852539 PMCID: PMC6921428 DOI: 10.1186/s13287-019-1483-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
Background Human periodontal ligament stem cells (hPDLSCs) are one of the most promising types of seed cells in periodontal tissue regeneration. Suitable biomaterials are additional essential components that must cooperate with seed cells for in vivo expansion or in vitro implantation. Extracellular matrix (ECM) derived from mesenchymal stem cells (MSCs) was recently reported to be a promising substrate with which to culture MSCs that could be applied in biomaterial scaffolds or bioink. Human urine-derived stem cells (hUSCs) have several advantages; their collection is non-invasive and easy, and hUSCs are low in cost, potentially making them a suitable and efficient source of ECM. The purpose of this study was to characterize the biological properties of ECM derived from hUSCs (UECM) and evaluate the effects of UECM on hPDLSCs. Methods hPDLSCs grown on ECM derived from hPDLSCs (PECM) and fibronectin-coated tissue culture plastic (TCP) served as control groups. Both hUSCs and hPDLSCs were seeded on TCP and stimulated to produce ECM. After 8 days of stimulation, the samples were decellularized, leaving only ECM. Then, hPDLSCs were seeded onto UECM-, PECM-, and fibronectin-coated TCP and untreated TCP. Results UECM consists of dense bundles of fibers which contain abundant fibronectin. Both UECM and PECM promoted hPDLSC proliferation, attachment, spreading, and differentiation. Between UECM and PECM, UECM enhanced proliferation, osteogenesis, and angiogenesis to a greater extent. Though fibronectin appeared to be the abundant component of UECM, its performance was inferior to that of UECM. Conclusions Our study provides an original perspective on different cell-specific ECMs and suggests UECM as a suitable biomaterial in which to culture hPDLSCs as UECM enhances their biological functions.
Collapse
Affiliation(s)
- Xue Xiong
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiao Yang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hongwei Dai
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Gang Feng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Zhang
- The Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jianping Zhou
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Wenwen Zhou
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
24
|
Kar S, Jasuja H, Katti DR, Katti KS. Wnt/β-Catenin Signaling Pathway Regulates Osteogenesis for Breast Cancer Bone Metastasis: Experiments in an In Vitro Nanoclay Scaffold Cancer Testbed. ACS Biomater Sci Eng 2019; 6:2600-2611. [PMID: 33463270 DOI: 10.1021/acsbiomaterials.9b00923] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer shows a high affinity toward bone, causing bone-related complications, leading to a poor clinical prognosis. The Wnt/β-catenin signaling pathway has been well-documented for the bone regenerative process; however, the regulation of the Wnt/β-catenin pathway in breast cancer bone metastasis is poorly explored. Here, we report that the Wnt/β-catenin signaling pathway has a significant effect on osteogenesis during breast cancer bone metastasis. In this study, we have created a 3D in vitro breast cancer bone metastatic microenvironment using nanoclay-based scaffolds along with osteogenically differentiated human mesenchymal stem cells (MSCs) and human breast cancer cells (MCF-7 and MDA-MB-231). The results showed upregulation in expressions of Wnt-related factors (Wnt-5a, β-catenin, AXIN2, and LRP5) in sequential cultures of MSCs with MCF-7 as compared to sequential cultures of MSCs with MDA-MB-231. Sequential cultures of MSCs with MCF-7 also showed higher β-catenin expression on the protein levels than sequential cultures of MSCs with MDA-MB-231. Stimulation of Wnt/β-catenin signaling in sequential cultures of MSCs with MCF-7 by ET-1 resulted in increased bone formation, whereas inactivation of Wnt/β-catenin signaling by DKK-1 displayed a significant decrease in bone formation, mimicking bone lesions in breast cancer patients. These data collectively demonstrate that Wnt/β-catenin signaling governs osteogenesis within the tumor-harboring bone microenvironment, leading to bone metastasis. The nanoclay scaffold provides a unique testbed approach for analysis of the pathways of cancer metastasis.
Collapse
Affiliation(s)
- Sumanta Kar
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Haneesh Jasuja
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dinesh R Katti
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kalpana S Katti
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
25
|
Periostin and Integrin Signaling in Stem Cell Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:163-176. [DOI: 10.1007/978-981-13-6657-4_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Duchamp de Lageneste O, Colnot C. Periostin in Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:49-61. [PMID: 31037624 DOI: 10.1007/978-981-13-6657-4_6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone regeneration is an efficient regenerative process depending on the recruitment and activation of skeletal stem cells that allow cartilage and bone formation leading to fracture consolidation. Periosteum, the tissue located at the outer surface of bone is now recognized as an essential player in the bone repair process and contains skeletal stem cells with high regenerative potential. The matrix composition of the periosteum defines its roles in bone growth, in cortical bone modeling and remodeling in response to mechanical strain, and in bone repair. Periostin is a key extracellular matrix component of the periosteum involved in periosteum functions. In this chapter, we summarize the current knowledge on the bone regeneration process, the role of the periosteum and skeletal stem cells, and Periostin functions in this context. The matricellular protein Periostin has several roles through all stages of bone repair: in the early days of repair during the initial activation of stem cells within periosteum, in the active phase of cartilage and bone deposition in the facture callus, and in the final phase of bone bridging and reconstitution of the stem cell pool within periosteum.
Collapse
Affiliation(s)
| | - Céline Colnot
- INSERM UMR1163, Imagine Institute, Paris Descartes University, Paris, France.
| |
Collapse
|
27
|
Alteration of mesenchymal stem cells polarity by laminar shear stimulation promoting β-catenin nuclear localization. Biomaterials 2019; 190-191:1-10. [DOI: 10.1016/j.biomaterials.2018.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022]
|
28
|
Liu M, Lv Y. Reconstructing Bone with Natural Bone Graft: A Review of In Vivo Studies in Bone Defect Animal Model. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E999. [PMID: 30513940 PMCID: PMC6315600 DOI: 10.3390/nano8120999] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022]
Abstract
Bone defects caused by fracture, disease or congenital defect remains a medically important problem to be solved. Bone tissue engineering (BTE) is a promising approach by providing scaffolds to guide and support the treatment of bone defects. However, the autologous bone graft has many defects such as limited sources and long surgical procedures. Therefore, xenograft bone graft is considered as one of the best substitutions and has been effectively used in clinical practice. Due to better preserved natural bone structure, suitable mechanical properties, low immunogenicity, good osteoinductivity and osteoconductivity in natural bone graft, decellularized and demineralized bone matrix (DBM) scaffolds were selected and discussed in the present review. In vivo animal models provide a complex physiological environment for understanding and evaluating material properties and provide important reference data for clinical trials. The purpose of this review is to outline the in vivo bone regeneration and remodeling capabilities of decellularized and DBM scaffolds in bone defect models to better evaluate the potential of these two types of scaffolds in BTE. Taking into account the limitations of the state-of-the-art technology, the results of the animal bone defect model also provide important information for future design of natural bone composite scaffolds.
Collapse
Affiliation(s)
- Mengying Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
29
|
Yu B, Wu K, Wang X, Zhang J, Wang L, Jiang Y, Zhu X, Chen W, Yan M. Periostin secreted by cancer-associated fibroblasts promotes cancer stemness in head and neck cancer by activating protein tyrosine kinase 7. Cell Death Dis 2018; 9:1082. [PMID: 30348980 PMCID: PMC6197282 DOI: 10.1038/s41419-018-1116-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Protein tyrosine kinase 7 (PTK7) and cancer-associated fibroblasts (CAFs) play important roles in cancer stemness, respectively. However, little is known about interaction between CAFs and PTK7 in cancers. In this study, we showed that PTK7 was significantly correlated with the Wnt/β-Catenin pathway and aggressive clinicopathologic features in human head and neck squamous cell carcinoma (HNSCC). Meanwhile, animal experiments showed that PTK7 enhanced chemoresistance and lung metastasis of HNSCC in vivo. In addition, co-immunoprecipitation (co-IP) assay demonstrated that POSTN secreted by CAFs was a potential upstream ligand of PTK7 which might act as a receptor. Further analysis revealed that POSTN promoted the cancer stem cell (CSC)-like phenotype via PTK7-Wnt/β-Catenin signaling, including the proliferation and invasion of HNSCC cells in vitro, as well as tumor initiation and progression in vivo. Collectively, our study proved that CAF-derived POSTN might promote cancer stemness via interacting with PTK7 in HNSCC, suggesting that the combination of POSTN and PTK7 might be a potential prognostic and diagnostic indicator and a promising therapeutic target.
Collapse
Affiliation(s)
- Binbin Yu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Kailiu Wu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lizhen Wang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yingying Jiang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xueqin Zhu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
30
|
Rong Z, Zhang F, Wang Z, He W, Dong S, Xu J, Dai F. Improved Osteogenesis by HVEM-Expressing Allogenic Bone Marrow-Derived Mesenchymal Stem Cells in an Immune Activation Condition and Mouse Femoral Defect Model. Tissue Eng Part A 2018; 24:1167-1178. [PMID: 29376477 DOI: 10.1089/ten.tea.2017.0354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Use of allogeneic mesenchymal stem cells (allo-MSCs) in bone tissue engineering strategies can overcome the limitations associated with autologous MSCs, but unfortunately, the immunogenicity of allo-MSCs leads to a high rate of rejection, unless immunosuppressive agents are used. B and T lymphocyte attenuator (BTLA) is a newly discovered immunoglobulin superfamily inhibitory receptor, and Herpesvirus-entry mediator (HVEM), a member of the tumor necrosis factor receptor family, is the only ligand of BTLA. Both BTLA and HVEM are widely expressed in B and T lymphocytes and other immune cells and play significant roles in the negative regulation of an immunoreaction. Therefore, we hypothesized that MSCs could be modified to maintain their bone differentiation ability through negative regulation of the immune response, and to test this hypothesis, we generated HVEM-expressing MSCs and tested their potential for osteogenic differentiation and bone repair in a simulated immune activation condition in vitro and in a mice femoral defect model. We found that osteogenic differentiation of allo-MSCs was decreased significantly in the activated immune microenvironment and that HVEM expression by allo-MSCs inhibited the immune response, resulting in improved osteogenic differentiation in vitro and new bone formation by allo-MSCs in a mouse femoral defect model. Our results also preliminarily suggested that the mechanism by which HVEM-expressing allo-MSCs overcome inflammation and enhance osteogenesis may be related to inhibition of interleukin-17. Overall, the data obtained in the present study provide support for the further development of HVEM-modified allo-MSCs as potentially ideal seed cells for bone tissue engineering applications.
Collapse
Affiliation(s)
- Zhigang Rong
- 1 National & Regional United Engineering Laboratory, Department of Orthopaedics, Southwest Hospital, Army Medical University , Chongqing, China
| | - Fei Zhang
- 2 Department of Orthopaedics, General hospital of Xin Jiang military region , Xinjiang, China
| | - Zhengdong Wang
- 1 National & Regional United Engineering Laboratory, Department of Orthopaedics, Southwest Hospital, Army Medical University , Chongqing, China
| | - Weifeng He
- 3 State Key Laboratory of Trauma, Institute of Burn Research, Southwest Hospital, Army Medical University , Chongqing, China
| | - Shiwu Dong
- 1 National & Regional United Engineering Laboratory, Department of Orthopaedics, Southwest Hospital, Army Medical University , Chongqing, China .,4 Department of Biomedical Materials Science, School of Biomedical Engineering, Army Medical University , Chongqing, China
| | - Jianzhong Xu
- 1 National & Regional United Engineering Laboratory, Department of Orthopaedics, Southwest Hospital, Army Medical University , Chongqing, China
| | - Fei Dai
- 1 National & Regional United Engineering Laboratory, Department of Orthopaedics, Southwest Hospital, Army Medical University , Chongqing, China
| |
Collapse
|
31
|
Liu C, Feng X, Wang B, Wang X, Wang C, Yu M, Cao G, Wang H. Bone marrow mesenchymal stem cells promote head and neck cancer progression through Periostin-mediated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin. Cancer Sci 2018; 109:688-698. [PMID: 29284199 PMCID: PMC5834805 DOI: 10.1111/cas.13479] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMMSC) have been shown to be recruited to the tumor microenvironment and exert a tumor‐promoting effect in a variety of cancers. However, the molecular mechanisms related to the tumor‐promoting effect of BMMSC on head and neck cancer (HNC) are not clear. In this study, we investigated Periostin (POSTN) and its roles in the tumor‐promoting effect of BMMSC on HNC. In vitro analysis of HNC cells cultured in BMMSC‐conditioned media (MSC‐CM) showed that MSC‐CM significantly promoted cancer progression by enhancing cell proliferation, migration, epithelial‐mesenchymal transformation (EMT), and altering expression of cell cycle regulatory proteins and inhibition of apoptosis. Moreover, MSC‐CM promoted the expression of POSTN and POSTN promoted HNC progression through the activation of the phosphoinositide 3‐kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. In a murine model of HNC, we found that BMMSC promoted tumor growth, invasion, metastasis and enhanced the expression of POSTN and EMT in tumor tissues. Clinical sample analysis further confirmed that the expression of POSTN and N‐cadherin were correlated with pathological grade and lymph node metastasis of HNC. In conclusion, this study indicated that BMMSC promoted proliferation, invasion, survival, tumorigenicity and migration of head and neck cancer through POSTN‐mediated PI3K/Akt/mTOR activation.
Collapse
Affiliation(s)
- Chuanxia Liu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Xiaoxia Feng
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Baixiang Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Xinhua Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Chaowei Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Mengfei Yu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Guifen Cao
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Tang Q, Chen C, Zhang Y, Dai M, Jiang Y, Wang H, Yu M, Jing W, Tian W. Wnt5a regulates the cell proliferation and adipogenesis via MAPK-independent pathway in early stage of obesity. Cell Biol Int 2017; 42:63-74. [PMID: 28851071 DOI: 10.1002/cbin.10862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/26/2017] [Indexed: 02/05/2023]
Abstract
The early stage of obesity is an important stage in the development of obesity. However, there are few studies which explored the property or changes in obesity at early stage especially involving Wnt5a. The associated gene expression of Wnt5a on cell regeneration and the effect of Wnt5a on rat adipose-derived stem cell (rASC) proliferation and adipogenesis need additional study. Here, we investigated the changes in obesity at early stage and how Wnt5a regulates rASC regeneration, proliferation, and adipogenesis. Our data revealed that obesity at early stage measured by Lee index presented a state with impaired adipogenesis and more infiltrated inflammatory cells but without significant changes in adipocyte sizes and inflammatory factors. The process might be associated with anti-canonical Wnt pathway and a reciprocal Wnt5a/JNK pathway. Besides the gene expression of Wnt5a decreased from cell passage 1 to passage 3. The cell proliferation was regulated by increasing dose of Wnt5a with the maximal effect at 50 ng/mL and 50 ng/mL Wnt5a suppressed adipogenic differentiation at middle-late stage of adipogenesis via anti-β-catenin and a mitogen-activated protein kinase (MAPK) signaling-independent manner. Accordingly, the research helps to gain further insights into the early stage of obesity and its associated changes on a cellular and molecular level.
Collapse
Affiliation(s)
- Qi Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Chang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Minjia Dai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Yichen Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
33
|
Long H, Sun B, Cheng L, Zhao S, Zhu Y, Zhao R, Zhu J. miR-139-5p Represses BMSC Osteogenesis via Targeting Wnt/β-Catenin Signaling Pathway. DNA Cell Biol 2017. [PMID: 28622009 DOI: 10.1089/dna.2017.3657] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Osteogenesis of mesenchymal stem cells (MSCs) has played a necessary role in the repair of bone. According to some reports, microRNAs participate in different physiological activity of the cells, including cell differentiation. This study investigated the function that miR-139-5p plays in the osteogenic differentiation of human bone marrow MSCs (hBMSCs). In addition to miR-139-5p, the effects of alkaline phosphatase (ALP), a membrane-bound metalloenzyme that is considered an early osteogenic differentiation marker, have also been investigated. Calcium-rich deposit (mineralization) is also a typical osteogenic differentiation marker that could be visualized by alizarin red S (ARS) staining. Inhibiting miR-139-5p notably promotes the hBMSC osteoblast differentiation, which, however, will be reduced by overexpressed miR-139-5p. This result has been made based on the alternations of ALP activity, ARS staining, as well as expression of osteogenic genes, including runt-related gene-2 (Runx2), collagen I (Col-1), and osteocalcin (OCN). miR-139-5p exerts its role in BMSC osteogenesis most probably through the Wnt/β-catenin pathway, by direct targeting CTNNB1 and frizzled 4 (FZD4), essential factors of Wnt/β-catenin pathway. In conclusion, according to the present study, inhibiting miR-139-5p could be a promising strategy in hBMSC osteogenesis.
Collapse
Affiliation(s)
- Haitao Long
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Buhua Sun
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Liang Cheng
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Shushan Zhao
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Yong Zhu
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Ruibo Zhao
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| | - Jianxi Zhu
- Department of Orthopedics, Xiangya Hospital of Central South University , Changsha, Hunan, People's Republic of China
| |
Collapse
|
34
|
Shao XR, Lin SY, Peng Q, Shi SR, Li XL, Zhang T, Lin YF. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1809-1819. [PMID: 28259801 DOI: 10.1016/j.nano.2017.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 02/05/2023]
Abstract
Adipose-derived stem cells (ADSCs) are considered to be ideal stem cell sources for bone regeneration owing to their ability to differentiate into osteo-like cells. Therefore, they have attracted increasing attention in recent years. Tetrahedral DNA nanostructures (TDNs), a new type of DNA-based biomaterials, have shown great potential for biomedical applications. In the present work, we aimed to investigate the role played by TDNs in osteogenic differentiation and proliferation of ADSCs and tried to explore if the canonical Wnt signal pathway could be the vital biological mechanism driving these cellular responses. Upon exposure to TDNs, ADSCs proliferation and osteogenic differentiation were significantly enhanced, accompanied by the up-regulation of genes correlated with the Wnt/β-catenin pathway. In conclusion, our results indicate that TDNs are crucial regulators of the increase in osteogenic potential and ADSCs proliferation, and this noteworthy discovery could provide a promising novel approach toward ADSCs-based bone defect regeneration.
Collapse
Affiliation(s)
- Xiao-Ru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Yu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Si-Rong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao-Long Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Feng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|