1
|
Lee N, Kim S, Lee NY, Jo H, Jeong P, Pagire HS, Pagire SH, Ahn JH, Jin MS, Park CS. Activation mechanism and novel binding sites of the BK Ca channel activator CTIBD. Life Sci Alliance 2024; 7:e202402621. [PMID: 39089879 PMCID: PMC11294680 DOI: 10.26508/lsa.202402621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The large-conductance calcium-activated potassium (BKCa) channel, which is crucial for urinary bladder smooth muscle relaxation, is a potential target for overactive bladder treatment. Our prior work unveiled CTIBD as a promising BKCa channel activator, altering V 1/2 and G max This study investigates CTIBD's activation mechanism, revealing its independence from the Ca2+ and membrane voltage sensing of the BKCa channel. Cryo-electron microscopy disclosed that two CTIBD molecules bind to hydrophobic regions on the extracellular side of the lipid bilayer. Key residues (W22, W203, and F266) are important for CTIBD binding, and their replacement with alanine reduces CTIBD-mediated channel activation. The triple-mutant (W22A/W203A/F266A) channel showed the smallest V 1/2 shift with a minimal impact on activation and deactivation kinetics by CTIBD. At the single-channel level, CTIBD treatment was much less effective at increasing P o in the triple mutant, mainly because of a drastically increased dissociation rate compared with the WT. These findings highlight CTIBD's mechanism, offering crucial insights for developing small-molecule treatments for BKCa-related pathophysiological conditions.
Collapse
Affiliation(s)
- Narasaem Lee
- https://ror.org/024kbgz78 School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Subin Kim
- https://ror.org/024kbgz78 School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Na Young Lee
- https://ror.org/024kbgz78 School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heeji Jo
- https://ror.org/024kbgz78 School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | | | - Haushabhau S Pagire
- https://ror.org/024kbgz78 Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Suvarna H Pagire
- https://ror.org/024kbgz78 Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jin Hee Ahn
- https://ror.org/024kbgz78 Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Mi Sun Jin
- https://ror.org/024kbgz78 School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chul-Seung Park
- https://ror.org/024kbgz78 School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
2
|
Li Q, Chen G, Yan J. Transmembrane determinants of voltage-gating differences between BK (Slo1) and Slo3 channels. Biophys J 2024; 123:2154-2166. [PMID: 38637987 PMCID: PMC11309983 DOI: 10.1016/j.bpj.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Voltage-gated potassium channels are critical in modulating cellular excitability, with Slo (slowpoke) channels forming a unique family characterized by their large conductance and dual regulation by electrical signals and intracellular messengers. Despite their structural and evolutionary similarities, Slo1 and Slo3 channels exhibit significant differences in their voltage-gating properties. This study investigates the molecular determinants that differentiate the voltage-gating properties of human Slo1 and mouse Slo3 channels. Utilizing Slo1/Slo3 chimeras, we pinpointed the selectivity filter region as a key factor in the Slo3 channel's reduced conductance at negative voltages. The S6 transmembrane (TM) segment was identified as pivotal for the Slo3 channel's biphasic deactivation kinetics at these voltages. Additionally, the S4 and S6 TM segments were found to be responsible for the gradual slope in the Slo3 channel's conductance-voltage relationship, while multiple TM regions appear to be involved in the Slo3 channel's requirement of strong depolarization for activation. Mutations in the Slo1's S5 and S6 TM segments revealed three residues (I233, L302, and M304) that likely play a crucial role in the allosteric coupling between the voltage sensors and the pore gate.
Collapse
Affiliation(s)
- Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
3
|
Kallure GS, Pal K, Zhou Y, Lingle CJ, Chowdhury S. High-resolution structures illuminate key principles underlying voltage and LRRC26 regulation of Slo1 channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572542. [PMID: 38187713 PMCID: PMC10769243 DOI: 10.1101/2023.12.20.572542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Multi-modal regulation of Slo1 channels by membrane voltage, intracellular calcium, and auxiliary subunits enables its pleiotropic physiological functions. Our understanding of how voltage impacts Slo1 conformational dynamics and the mechanisms by which auxiliary subunits, particularly of the LRRC (Leucine Rich Repeat containing) family of proteins, modulate its voltage gating remain unresolved. Here, we used single particle cryo-electron microscopy to determine structures of human Slo1 mutants which functionally stabilize the closed pore (F315A) or the activated voltage-sensor (R207A). Our structures, obtained under calcium-free conditions, reveal that a key step in voltage-sensing by Slo1 involves a rotameric flip of the voltage-sensing charges (R210 and R213) moving them by ∼6 Å across a hydrophobic gasket. Next we obtained reconstructions of a complex of human Slo1 with the human LRRC26 (γ1) subunit in absence of calcium. Together with extensive biochemical tests, we show that the extracellular domains of γ1 form a ring of interlocked dominos that stabilizes the quaternary assembly of the complex and biases Slo1:γ1 assembly towards high stoichiometric complexes. The transmembrane helix of γ1 is kinked and tightly packed against the Slo1 voltage-sensor. We hypothesize that γ1 subunits exert relatively small effects on early steps in voltage-gating but structurally stabilize non-S4 helices of Slo1 voltage-sensor which energetically facilitate conformational rearrangements that occur late in voltage stimulated transitions.
Collapse
|
4
|
Chen G, Li Q, Webb TI, Hollywood MA, Yan J. BK channel modulation by positively charged peptides and auxiliary γ subunits mediated by the Ca2+-bowl site. J Gen Physiol 2023; 155:e202213237. [PMID: 37130264 PMCID: PMC10163825 DOI: 10.1085/jgp.202213237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
The large-conductance, Ca2+-, and voltage-activated K+ (BK) channel consists of the pore-forming α (BKα) subunit and regulatory β and γ subunits. The γ1-3 subunits facilitate BK channel activation by shifting the voltage-dependence of channel activation toward the hyperpolarization direction by about 50-150 mV in the absence of Ca2+. We previously found that the intracellular C-terminal positively charged regions of the γ subunits play important roles in BK channel modulation. In this study, we found that the intracellular C-terminal region of BKα is indispensable in BK channel modulation by the γ1 subunit. Notably, synthetic peptide mimics of the γ1-3 subunits' C-terminal positively charged regions caused 30-50 mV shifts in BKα channel voltage-gating toward the hyperpolarization direction. The cationic cell-penetrating HIV-1 Tat peptide exerted a similar BK channel-activating effect. The BK channel-activating effects of the synthetic peptides were reduced in the presence of Ca2+ and markedly ablated by both charge neutralization of the Ca2+-bowl site and high ionic strength, suggesting the involvement of electrostatic interactions. The efficacy of the γ subunits in BK channel modulation was reduced by charge neutralization of the Ca2+-bowl site. However, BK channel modulation by the γ1 subunit was little affected by high ionic strength and the positively charged peptide remained effective in BK channel modulation in the presence of the γ1 subunit. These findings identify positively charged peptides as BK channel modulators and reveal a role for the Ca2+-bowl site in BK channel modulation by positively charged peptides and the C-terminal positively charged regions of auxiliary γ subunits.
Collapse
Affiliation(s)
- Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy I. Webb
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A. Hollywood
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience and Biochemistry and Cell Biology Graduate Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
5
|
Jiang L, Li J, Reilly S, Xin H, Guo N, Zhang X. Role of organellar Ca2+-activated K+ channels in disease development. Life Sci 2023; 316:121433. [PMID: 36708987 DOI: 10.1016/j.lfs.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The organellar Ca2+-activated K+ channels share a similar ability to transfer the alteration of Ca2+ concentration to membrane conductance of potassium. Multiple effects of Ca2+-activated K+ channels on cell metabolism and complex signaling pathways during organ development have been explored. The organellar Ca2+-activated K+ channels are able to control the ionic equilibrium and are always associated with oxidative stress in different organelles and the whole cells. Some drugs targeting Ca2+-activated K+ channels have been tested for various diseases in clinical trials. In this review, the known roles of organellar Ca2+-activated K+ channels were described, and their effects on different diseases, particularly on diabetes, cardiovascular diseases, and neurological diseases were discussed. It was attempted to summarize the currently known operational modes with the involvement of organellar Ca2+-activated K+ channels. This review may assist scholars to more comprehensively understand organellar Ca2+-activated K+ channels and related diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang hospital, Fudan University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Gonzalez-Perez V, Zhou Y, Ciorba MA, Lingle CJ. The LRRC family of BK channel regulatory subunits: potential roles in health and disease. J Physiol 2022; 600:1357-1371. [PMID: 35014034 PMCID: PMC8930516 DOI: 10.1113/jp281952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Large conductance K+ channels, termed BK channels, regulate a variety of cellular and physiological functions. Although universally activated by changes in voltage or [Ca2+ ]i , the threshold for BK channel activation varies among loci of expression, often arising from cell-specific regulatory subunits including a family of leucine rich repeat-containing (LRRC) γ subunits (LRRC26, LRRC52, LRRC55 and LRRC38). The 'founding' member of this family, LRRC26, was originally identified as a tumour suppressor in various cancers. An LRRC26 knockout (KO) mouse model recently revealed that LRRC26 is also highly expressed in secretory epithelial cells and partners with BK channels in the salivary gland and colonic goblet cells to promote sustained K+ fluxes likely essential for normal secretory function. To accomplish this, LRRC26 negatively shifts the range of BK channel activation such that channels contribute to K+ flux near typical epithelial cell resting conditions. In colon, the absence of LRRC26 increases vulnerability to colitis. LRRC26-containing BK channels are also likely important regulators of epithelial function in other loci, including airways, female reproductive tract and mammary gland. Based on an LRRC52 KO mouse model, LRRC52 regulation of large conductance K+ channels plays a role both in sperm function and in cochlear inner hair cells. Although our understanding of LRRC-containing BK channels remains rudimentary, KO mouse models may help define other organs in which LRRC-containing channels support normal function. A key topic for future work concerns identification of endogenous mechanisms, whether post-translational or via gene regulation, that may impact LRRC-dependent pathologies.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yu Zhou
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew A Ciorba
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
7
|
Chen G, Li Q, Yan J. The leucine-rich repeat domains of BK channel auxiliary γ subunits regulate their expression, trafficking, and channel-modulation functions. J Biol Chem 2022; 298:101664. [PMID: 35104503 PMCID: PMC8892010 DOI: 10.1016/j.jbc.2022.101664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
As high-conductance calcium- and voltage-dependent potassium channels, BK channels consist of pore-forming, voltage-, and Ca2+-sensing α and auxiliary subunits. The leucine-rich repeat (LRR) domain-containing auxiliary γ subunits potently modulate the voltage dependence of BK channel activation. Despite their dominant size in whole protein masses, the function of the LRR domain in BK channel γ subunits is unknown. We here investigated the function of these LRR domains in BK channel modulation by the auxiliary γ1-3 (LRRC26, LRRC52, and LRRC55) subunits. Using cell surface protein immunoprecipitation, we validated the predicted extracellular localization of the LRR domains. We then refined the structural models of mature proteins on the membrane via molecular dynamic simulations. By replacement of the LRR domain with extracellular regions or domains of non-LRR proteins, we found that the LRR domain is nonessential for the maximal channel-gating modulatory effect but is necessary for the all-or-none phenomenon of BK channel modulation by the γ1 subunit. Mutational and enzymatic blockade of N-glycosylation in the γ1-3 subunits resulted in a reduction or loss of BK channel modulation by γ subunits. Finally, by analyzing their expression in whole cells and on the plasma membrane, we found that blockade of N-glycosylation drastically reduced total expression of the γ2 subunit and the cell surface expression of the γ1 and γ3 subunits. We conclude that the LRR domains play key roles in the regulation of the expression, cell surface trafficking, and channel-modulation functions of the BK channel γ subunits.
Collapse
Affiliation(s)
- Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Graduate Programs of Neuroscience and Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
8
|
Vouga AG, Rockman ME, Yan J, Jacobson MA, Rothberg BS. State-dependent inhibition of BK channels by the opioid agonist loperamide. J Gen Physiol 2021; 153:212539. [PMID: 34357374 PMCID: PMC8352719 DOI: 10.1085/jgp.202012834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Large-conductance Ca2+-activated K+ (BK) channels control a range of physiological functions, and their dysfunction is linked to human disease. We have found that the widely used drug loperamide (LOP) can inhibit activity of BK channels composed of either α-subunits (BKα channels) or α-subunits plus the auxiliary γ1-subunit (BKα/γ1 channels), and here we analyze the molecular mechanism of LOP action. LOP applied at the cytosolic side of the membrane rapidly and reversibly inhibited BK current, an effect that appeared as a decay in voltage-activated BK currents. The apparent affinity for LOP decreased with hyperpolarization in a manner consistent with LOP behaving as an inhibitor of open, activated channels. Increasing LOP concentration reduced the half-maximal activation voltage, consistent with relative stabilization of the LOP-inhibited open state. Single-channel recordings revealed that LOP did not reduce unitary BK channel current, but instead decreased BK channel open probability and mean open times. LOP elicited use-dependent inhibition, in which trains of brief depolarizing steps lead to accumulated reduction of BK current, whereas single brief depolarizing steps do not. The principal effects of LOP on BK channel gating are described by a mechanism in which LOP acts as a state-dependent pore blocker. Our results suggest that therapeutic doses of LOP may act in part by inhibiting K+ efflux through intestinal BK channels.
Collapse
Affiliation(s)
- Alexandre G Vouga
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Michael E Rockman
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marlene A Jacobson
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia PA
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
9
|
Noda S, Suzuki Y, Yamamura H, Giles WR, Imaizumi Y. Roles of LRRC26 as an auxiliary γ1-subunit of large-conductance Ca 2+-activated K + channels in bronchial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L366-L375. [PMID: 31800260 DOI: 10.1152/ajplung.00331.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In visceral smooth muscle cells (SMCs), the large-conductance Ca2+-activated K+ (BK) channel is one of the key elements underlying a negative feedback mechanism that is essential for the regulation of intracellular Ca2+ concentration. Although leucine-rich repeat-containing (LRRC) proteins have been identified as novel auxiliary γ-subunits of the BK channel (BKγ) in several cell types, its physiological roles in SMCs are unclear. The BKγ expression patterns in selected SM tissues were examined using real-time PCR analyses and Western blotting. The functional contribution of BKγ1 to BK channel activity was examined by whole cell patch-clamp in SMCs and heterologous expression systems. BKγ1 expression in mouse bronchial SMCs (mBSMCs) was higher than in other several SMC types. Coimmunoprecipitation and total internal reflection fluorescence imaging analyses revealed molecular interaction between BKα and BKγ1 in mBSMCs. Under voltage-clamp, steady-state activation of BK channel currents at pCa 8.0 in mBSMCs occurred in a voltage range comparable to that of reconstituted BKα/BKγ1 complex. However, this range was much more negative than in mouse aortic SMCs (mASMCs) or in HEK293 cells expressing BKα alone and β-subunit (BKβ1). Mallotoxin, a selective activator of BK channel that lacks BKγ1, dose-dependently activated BK currents in mASMCs but not in mBSMCs. The abundant expression of BKγ1 in mBSMCs extensively facilitates BK channel activity to keep the resting membrane potential at negative values and prevents contraction under physiological conditions.
Collapse
Affiliation(s)
- Sayuri Noda
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Wayne R Giles
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
10
|
Gupta S, Manchanda R. A computational model of large conductance voltage and calcium activated potassium channels: implications for calcium dynamics and electrophysiology in detrusor smooth muscle cells. J Comput Neurosci 2019; 46:233-256. [PMID: 31025235 DOI: 10.1007/s10827-019-00713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
The large conductance voltage and calcium activated potassium (BK) channels play a crucial role in regulating the excitability of detrusor smooth muscle, which lines the wall of the urinary bladder. These channels have been widely characterized in terms of their molecular structure, pharmacology and electrophysiology. They control the repolarising and hyperpolarising phases of the action potential, thereby regulating the firing frequency and contraction profiles of the smooth muscle. Several groups have reported varied profiles of BK currents and I-V curves under similar experimental conditions. However, no single computational model has been able to reconcile these apparent discrepancies. In view of the channels' physiological importance, it is imperative to understand their mechanistic underpinnings so that a realistic model can be created. This paper presents a computational model of the BK channel, based on the Hodgkin-Huxley formalism, constructed by utilising three activation processes - membrane potential, calcium inflow from voltage-gated calcium channels on the membrane and calcium released from the ryanodine receptors present on the sarcoplasmic reticulum. In our model, we attribute the discrepant profiles to the underlying cytosolic calcium received by the channel during its activation. The model enables us to make heuristic predictions regarding the nature of the sub-membrane calcium dynamics underlying the BK channel's activation. We have employed the model to reproduce various physiological characteristics of the channel and found the simulated responses to be in accordance with the experimental findings. Additionally, we have used the model to investigate the role of this channel in electrophysiological signals, such as the action potential and spontaneous transient hyperpolarisations. Furthermore, the clinical effects of BK channel openers, mallotoxin and NS19504, were simulated for the detrusor smooth muscle cells. Our findings support the proposed application of these drugs for amelioration of the condition of overactive bladder. We thus propose a physiologically realistic BK channel model which can be integrated with other biophysical mechanisms such as ion channels, pumps and exchangers to further elucidate its micro-domain interaction with the intracellular calcium environment.
Collapse
Affiliation(s)
- Suranjana Gupta
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Rohit Manchanda
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|