1
|
Liu C, Hu X, Zhao Y, Huang A, Chen J, Lu T, Wu M, Lu H. High-Glucose-Induced Injury to Proximal Tubules of the Renal System Is Alleviated by Netrin-1 Suppression of Akt/mTOR. J Diabetes Res 2023; 2023:4193309. [PMID: 38033740 PMCID: PMC10684325 DOI: 10.1155/2023/4193309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
The kidneys have a high level of Netrin-1 expression, which protects against some acute and chronic kidney disorders. However, it is yet unknown how Netrin-1 affects renal proximal tubule cells in diabetic nephropathy (DN) under pathological circumstances. Research has shown that autophagy protects the kidneys in animal models of renal disease. In this study, we looked at the probable autophagy regulation mechanism of Netrin-1 and its function in the pathogenesis of DN. We proved that in HK-2 cell, high blood sugar levels caused Netrin-1 to be downregulated, which then triggered the Akt/mTOR signaling pathway and enhanced cell death and actin cytoskeleton disruption. By adding Netrin-1 or an autophagy activator in vitro, these pathogenic alterations were reverted. Our results indicate that Netrin-1 stimulates autophagy by blocking the Akt/mTOR signaling pathway, which underlies high-glucose-induced malfunction of the renal proximal tubules. After HK-2 cells were incubated with Netrin-1 recombination protein and rapamycin under HG conditions for 24 h, the apoptosis was significantly reduced, as shown by the higher levels of Bcl-2, as well as lower levels of Bax and cleaved caspase-3 (P = 0.012, Cohen's d = 0.489, Glass's delta = 0.23, Hedges' g = 0.641). This study reveals that targeting Netrin-1-related signaling has therapeutic potential for DN and advances our knowledge of the processes operating in renal proximal tubules in DN.
Collapse
Affiliation(s)
- Chenxiao Liu
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Jiangsu 215008, China
| | - Xingna Hu
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Jiangsu 215008, China
| | - Yun Zhao
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Jiangsu 215008, China
| | - Aijie Huang
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Jiangsu 215008, China
| | - Jiaqi Chen
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Jiangsu 215008, China
| | - Ting Lu
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Jiangsu 215008, China
| | - Mian Wu
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Jiangsu 215008, China
| | - Honghong Lu
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Jiangsu 215008, China
| |
Collapse
|
2
|
Li J, Cao Y, Li LN, Chu X, Wang YS, Cai JJ, Zhao J, Ma S, Li G, Fan ZK. Neuroprotective Effects of Oxymatrine via Triggering Autophagy and Inhibiting Apoptosis Following Spinal Cord Injury in Rats. Mol Neurobiol 2023; 60:4450-4471. [PMID: 37115405 DOI: 10.1007/s12035-023-03364-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder characterized by high morbidity and disability. However, there is still a lack of effective treatments for it. The identification of drugs that promote autophagy and inhibit apoptosis in neurons is critical for improving patient outcomes following SCI. Previous studies have shown that increasing the activity of silent information regulator 1 (SIRT1) and downstream protein AMP-activated protein kinase (AMPK) in rat models of SCI is highly neuroprotective. Oxymatrine (OMT), a quinolizidine alkaloid, has exhibited neuroprotective effects in various central nervous system (CNS) diseases. However, its explicit effect and molecular mechanism in SCI are still unclear. Herein, we aimed to investigate the therapeutic effects of OMT and explore the potential role of autophagy regulation following SCI in rats. A modified compressive device (weight 35 g, time 5 min) was applied to induce moderate SCI in all groups except the sham group. After treatment with drugs or vehicle (saline), our results indicated that OMT treatment significantly reduced the lesion size, promoted survival of motor neurons, and subsequently attenuated motor dysfunction following SCI in rats. OMT significantly enhanced autophagy activity, inhibited apoptosis in neurons, and increased SIRT1 and p-AMPK expression levels. Interestingly, these effects of OMT on SCI were partially prevented by co-treatment with SIRT1 inhibitor EX527. Furthermore, combining OMT with the potent autophagy inhibitor chloroquine (CQ) could effectively abolish its promotion of autophagic flux. Taken together, these data revealed that OMT exerts a neuroprotective role in functional recovery against SCI in rats, and these effects are potentially associated with OMT-induced activation of autophagy via the SIRT1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yang Cao
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Lin-Na Li
- Departments of Endocrinology, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xin Chu
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yan-Song Wang
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Jia-Jun Cai
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Jin Zhao
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Song Ma
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Gang Li
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
| | - Zhong-Kai Fan
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
3
|
Zhu M, Sun Y, Bai H, Wang Y, Yang B, Wang Q, Kuang H. Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review. Front Pharmacol 2023; 14:1159985. [PMID: 37063281 PMCID: PMC10090286 DOI: 10.3389/fphar.2023.1159985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer poses a serious threat to human health, and the search for safe and effective drugs for its treatment has aroused interest and become a long-term goal. Traditional Chinese herbal medicine (TCM), an ancient science with unique anti-cancer advantages, has achieved outstanding results in long-term clinical practice. Accumulating evidence shows that saponins are key bioactive components in TCM and have great research and development applications for their significant role in the treatment of cancer. Saponins are a class of glycosides comprising nonpolar triterpenes or sterols attached to hydrophilic oligosaccharide groups that exert antitumor effects by targeting the NF-κB, PI3Ks-Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and EGFR signaling pathways. Presently, few advances have been made in physiological and pathological studies on the effect of saponins on signal transduction pathways involved in cancer treatment. This paper reviews the phytochemistry and extraction methods of saponins of TCM and their effects on signal transduction pathways in cancer. It aims to provide theoretical support for in-depth studies on the anticancer effects of saponins.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| |
Collapse
|
4
|
Zhang H, Wang D, Tong J, Fang J, Lin Z. MiR-30b-5p attenuates the inflammatory response and facilitates the functional recovery of spinal cord injury by targeting the NEFL/mTOR pathway. Brain Behav 2022; 12:e2788. [PMID: 36282532 PMCID: PMC9759133 DOI: 10.1002/brb3.2788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neurofilament light chain (NEFL) has been identified as a biomarker for spinal cord injury (SCI), but its effect and underlying mechanism in SCI remain unclear. METHODS SCI rat models were established for in vivo studies. Lipopolysaccharide (LPS)-induced cell models were used for in vitro studies. The protein and mRNA expression levels of genes were evaluated by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The pathological changes in rats after SCI were subjected to histological examinations. The interaction of NEFL and upstream miRNAs was explored using dual-luciferase reporter gene assays. RESULTS NEFL was highly expressed in SCI rat spinal cord tissues and LPS-stimulated PC12 cells. NEFL silencing showed an inhibitory effect on the morphological changes of SCI rats and the secretion of inflammatory factors and facilitated functional recovery of SCI rats. MiR-30b-5p was demonstrated to target NEFL and negatively regulate NEFL mRNA and protein levels. Downregulation of miR-30b-5p in SCI cell and rat models was demonstrated. MiR-30b-5p alleviated the inflammatory response in SCI rat models and LPS-stimulated PC12 cells and promoted functional recovery in rats by targeting NEFL. NEFL activated mTOR signaling. MiR-30b-5p inactivated mTOR signaling by negatively regulating NEFL. CONCLUSION MiR-30b-5p alleviated the inflammatory response and facilitated the functional recovery of SCI rats by targeting NEFL to inactivate the mTOR pathway.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Spine Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Yangpu District, Shanghai, China
| | - Duojun Wang
- Department of Spine Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Yangpu District, Shanghai, China
| | - Jinyu Tong
- Department of Spine Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Yangpu District, Shanghai, China
| | - Jianguo Fang
- Department of Spine Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Yangpu District, Shanghai, China
| | - Zaijun Lin
- Department of Spine Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Yangpu District, Shanghai, China
| |
Collapse
|
5
|
mTOR Complex 1 Content and Regulation Is Adapted to Animal Longevity. Int J Mol Sci 2022; 23:ijms23158747. [PMID: 35955882 PMCID: PMC9369240 DOI: 10.3390/ijms23158747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Decreased content and activity of the mechanistic target of rapamycin (mTOR) signalling pathway, as well as the mTOR complex 1 (mTORC1) itself, are key traits for animal species and human longevity. Since mTORC1 acts as a master regulator of intracellular metabolism, it is responsible, at least in part, for the longevous phenotype. Conversely, increased content and activity of mTOR signalling and mTORC1 are hallmarks of ageing. Additionally, constitutive and aberrant activity of mTORC1 is also found in age-related diseases such as Alzheimer’s disease (AD) and cancer. The downstream processes regulated through this network are diverse, and depend upon nutrient availability. Hence, multiple nutritional strategies capable of regulating mTORC1 activity and, consequently, delaying the ageing process and the development of age-related diseases, are under continuous study. Among these, the restriction of calories is still the most studied and robust intervention capable of downregulating mTOR signalling and feasible for application in the human population.
Collapse
|
6
|
UNC5B Overexpression Alleviates Peripheral Neuropathic Pain by Stimulating Netrin-1-Dependent Autophagic Flux in Schwann Cells. Mol Neurobiol 2022; 59:5041-5055. [PMID: 35668343 DOI: 10.1007/s12035-022-02861-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023]
Abstract
Lesions or diseases of the somatosensory system can cause neuropathic pain (NP). Schwann cell (SC) autophagy plays an important role in NP. Uncoordinated gene 5 homolog B (UNC5B), the canonical dependent receptor of netrin-1, is known to be exclusively expressed in SCs and involved in NP; however, the underlying mechanisms were unclear. A rat model of sciatic nerve chronic constriction injury (CCI) was used to induce peripheral neuropathic pain. Adeno-associated virus (AAV) overexpressing UNC5B was applied to the injured nerve, and an autophagy inhibitor, 3-mechyladenine (3-MA), was intraperitoneally injected in some animals. Behavioral tests were performed to evaluate NP, the morphology of the injured nerves was analyzed, and autophagy-related proteins were detected. A rat SC line (RSC96) undergoing oxygen and glucose deprivation (OGD) was used to mimic an ischemic setting to examine the role of UNC5B in autophagy. Local UNC5B overexpression alleviated CCI-induced NP and rescued myelin degeneration. Meanwhile, UNC5B overexpression improved CCI-induced impairment of autophagic flux, while the autophagy inhibitor 3-MA reversed the analgesic effect of UNC5B. In cultured SCs, UNC5B helped recruit netrin-1 to the cell membrane. UNC5B overexpression promoted autophagic flux while inhibiting apoptosis, which was further augmented with exogenous netrin-1 and reversed by netrin-1 knockdown. The enhanced phosphorylation of AMP-activated protein kinase (AMPK) and Unc51-like autophagy activating kinase 1 (ULK1) by UNC5B overexpression was also correlated with netrin-1. Our results suggest that UNC5B facilitates autophagic flux in SCs via phosphorylation of AMPK and ULK1, dependent on its ligand netrin-1, protecting myelin and partly preventing injury-induced NP.
Collapse
|
7
|
Netrin-1: A Serum Marker Predicting Cognitive Impairment after Spinal Cord Injury. DISEASE MARKERS 2022; 2022:1033197. [PMID: 35493300 PMCID: PMC9050267 DOI: 10.1155/2022/1033197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Objective Although cognitive impairment has received more attention in recent years as a result of spinal cord injury (SCI), the pathogenic process that causes it is still unknown. The neuroprotective effects of Netrin as a family of laminin-related secreted proteins were discovered. The purpose of this study was to determine the changes of serum Netrin-1 after SCI and its relationship with cognitive impairment. Methods 96 SCI patients and 60 controls were included in our study. We collected baseline data from all participants, measured their serum Netrin-1 levels, and followed up their cognitive levels 3 months later. Results The clinical baseline values between the control and SCI groups were not significantly different (p > 0.05). However, the serum Netrin-1 level in the SCI group was significantly lower than that in the control group (528.4 ± 88.3 pg/ml vs. 673.5 ± 97.2 pg/ml, p < 0.05). According to the quartile level of serum Netrin-1 level in the SCI group, we found that with the increase of serum Netrin-1 level, the MoCA score also increased significantly (p < 0.001), indicating that the serum Netrin-1 level was positively correlated with the MoCA score after SCI. After controlling for baseline data, multiple regression analysis revealed that Netrin-1 remained an independent risk factor for cognitive impairment after SCI (=0.274, p = 0.036). Conclusions Netrin-1 may be a neuroprotective factor for cognitive impairment, which may serve as a serum marker to predict cognitive impairment after SCI.
Collapse
|
8
|
Nie BX, Zhao G, Yuan XF, Yu LX, Zhang J, Yuan Y, Liu Y, Hu J, Song E, Zhou YC, Shu J. Inhibition of CDK1 attenuates neuronal apoptosis and autophagy and confers neuroprotection after chronic spinal cord injury in vivo. J Chem Neuroanat 2021; 119:102053. [PMID: 34839004 DOI: 10.1016/j.jchemneu.2021.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
Chronic spinal cord injury (CSCI) results from progressive compression of the spinal cord over time. A variety of factors cause CSCI, and its exact pathogenesis is unknown. Cyclin-dependent kinase 1 (CDK1) is closely related to the apoptosis pathway, but no CSCI-related studies on CDK1 have been conducted. In this study, the role of CDK1 in CSCI was explored in a rat model. The CSCI model was established by screw compression using the cervical anterior approach for twelve weeks. The neurological function of the rats was evaluated using the neurological severity scores (NSS) and motor evoked potentials (MEPs). Pathological changes in spinal cord tissue were observed by hematoxylin-eosin (HE) staining, and Nissl staining was performed to assess the survival of motor neurons in the anterior horn of the spinal cord. Changes in autophagy and apoptosis in anterior horn of spinal cord tissue were detected using transmission electron microscopy and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, respectively. The expression levels of glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor (IBA) and choline acetyltransferase (CHAT) in the anterior horn were determined using immunohistochemistry assays to investigate astrocytes, microglia and motor neurons, respectively, in the anterior horn. Western blot assays were used to detect the expression levels of CDK1, Bcl-2, Bax, Caspase 3, LC3 and Beclin1. Changes in the expression of CDK1, LC3 and Beclin1 were also observed using immunohistochemistry. The results indicated that CSCI resulted in neuronal injury and a decrease in the NSS. In the CSCI model group, anterior horn astrocytes and microglia were activated, and motor neurons were decreased. Neuronal apoptosis was promoted, and the number of autophagic vacuoles was elevated. Rats treated with the CDK1 shRNA lentivirus exhibited better NSS, more surviving motor neurons, and fewer apoptotic neurons than the model rats. The occurrence of autophagy and the expression of proapoptotic and autophagy-related proteins were lower in the CDK1 shRNA group than the model group. In conclusion, CDK1 downregulation suppressed the activation of anterior horn astrocytes and microglia, promoted motor neuron repair, and inhibited neurons apoptosis and autophagy to promote the recovery of motor function after spinal cord injury.
Collapse
Affiliation(s)
- Bang-Xu Nie
- Traumatology Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650106, Yunnan, China
| | - Gang Zhao
- Traumatology Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650106, Yunnan, China
| | - Xiao-Feng Yuan
- Department of Orthopedics, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650224, Yunnan, China
| | - Lin-Xin Yu
- Department of Orthopedics, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650224, Yunnan, China
| | - Jin Zhang
- Department of Orthopedics, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650224, Yunnan, China
| | - Yong Yuan
- Traumatology Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650106, Yunnan, China
| | - Yao Liu
- College of Rehabilitation, Kunming Medical University, Kunming 650504, Yunnan, China
| | - Jun Hu
- Department of Orthopedics, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650224, Yunnan, China
| | - En Song
- Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yu-Cheng Zhou
- Department of Orthopedics, Yunnan Provincial Rehabilitation Center for the Disabled Persons, Kunming 650034, Yunnan, China
| | - Jun Shu
- Traumatology Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650106, Yunnan, China.
| |
Collapse
|
9
|
Firat T, Kukner A, Ayturk N, Gezici AR, Serin E, Ozogul C, Tore F. The Potential Therapeutic Effects of Agmatine, Methylprednisolone, and Rapamycin on Experimental Spinal Cord Injury. CELL JOURNAL 2021; 23:701-707. [PMID: 34939764 PMCID: PMC8665976 DOI: 10.22074/cellj.2021.7198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE In spinal cord injury (SCI), the primary mechanical damage leads to a neuroinflammatory response and the secondary neuronal injury occurs in response to the release of reactive oxygen species (ROS). In addition to the suppression of inflammation, autophagy plays a significant role in the survival of neurons during secondary SCI. The present study aimed to examine the anti-inflammatory and autophagic effects of agmatine and rapamycin in SCI and to compare the results with methylprednisolone (MP) used in the clinic. MATERIALS AND METHODS In this animal-based experimental study, thirty adult male Sprague-Dawley rats were randomly divided into five groups as sham-control, injury, injury+MP, injury+rapamycin, injury+agmatine groups. SCI was induced by compressing the T7-8-9 segments of the spinal cord, using an aneurysm clip for one minute, and then rats were treated daily for 7 days. Seven days post-treatment, damaged spinal cord tissues of sacrificed rats were collected for microscopic and biochemical examinations using histopathologic and transmission electron microscope (TEM) scores. Malondialdehyde (MDA) and glutathione peroxidase (GPx) levels were spectrophotometrically measured. RESULTS The results of this study showed that the damaged area was smaller in the rapamycin group when compared to the MP group. Many autophagic vacuoles and macrophages were observed in the rapamycin group. Degeneration of axon, myelin, and wide edema was observed in SCI by electron microscopic observations. Fragmented myelin lamellae and contracted axons were also noted. While MDA and GPx levels were increased in the injury group, MDA levels were significantly decreased in the agmatine and MP groups, and GPx levels were decreased in the rapamycin group. CONCLUSION The results of our study confirmed that rapamycin and agmatine can be an effective treatment for secondary injury of SCI.
Collapse
Affiliation(s)
- Tulin Firat
- Department of Histology and Embryology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey.
| | - Aysel Kukner
- Department of Histology and Embryology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Nilufer Ayturk
- Department of Histology and Embryology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ali Rıza Gezici
- Department of Neurosurgery, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Erdinc Serin
- Department of Biochemistry, Prof. Dr. Cemil Tascioğlu City Hospital, Istanbul, Turkey
| | - Candan Ozogul
- Department of Histology and Embryology, Faculty of Medicine, University of Kyrenia, Kyrenia, Cyprus
| | - Fatma Tore
- Department of Physiology, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| |
Collapse
|
10
|
Zhang D, Yuan Y, Zhu J, Zhu D, Li C, Cui W, Wang L, Ma S, Duan S, Liu B. Insulin-like growth factor 1 promotes neurological functional recovery after spinal cord injury through inhibition of autophagy via the PI3K/Akt/mTOR signaling pathway. Exp Ther Med 2021; 22:1265. [PMID: 34594402 PMCID: PMC8456500 DOI: 10.3892/etm.2021.10700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a serious trauma; however, the mechanisms underlying the role of insulin-like growth factor 1 (IGF-1) in autophagy following SCI remain to be elucidated. The present study aimed to investigate the therapeutic effect of IGF-1 on SCI and to determine whether IGF-1 regulates autophagy via the PI3K/Akt/mTOR signaling pathway. SH-SY5Y neuroblastoma cells were assigned to the H2O2, IGF-1 and control groups to investigate subsequent neuron injury in vitro. An MTT assay was performed to evaluate cell survival. In addition, Sprague-Dawley rats were randomly assigned to SCI, SCI + IGF-1 and sham groups, and Basso-Beatlie-Bresnahan scores were assessed to determine rat neurological function. Western blotting was used to analyze the autophagy level and the activation of the PI3K/Akt/mTOR signaling pathway. Cell survival was increased significantly in the IGF-1 group compared with the control group in vitro (P<0.05). Furthermore, neurological function was improved in the SCI + IGF-1 group compared with the control group in vivo (P<0.05). The western blotting results further demonstrated that LC3II/LC3I expression was increased in the IGF-1 group compared with the sham group in vivo and compared with the control group in vitro (both P<0.05). In the SCI + IGF-1 group, the expression levels of PI3K, phosphorylated (p)-Akt and p-mTOR were higher compared with those in the sham and SCI groups in vivo (P<0.05). Moreover, in the IGF-1 group, the expression levels of p-Akt and p-mTOR were higher compared with the control and the H2O2 groups in vitro (P<0.05). Collectively, the results of the present study suggested that IGF-1 promoted functional recovery in rats following SCI through neuroprotective effects. Furthermore, the underlying mechanism may involve activation of the PI3K/Akt/mTOR signaling pathway, followed by inhibition of autophagy. However, further investigation into the association between IGF-1-regulated autophagy and the activation of different subtypes of PI3K is required.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Yuan Yuan
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing 100068, P.R. China
| | - Jichao Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Di Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Chenxi Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Wei Cui
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Lei Wang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Song Ma
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Shuo Duan
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Baoge Liu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
11
|
Pei C, Wang F, Huang D, Shi S, Wang X, Wang Y, Li S, Wu Y, Wang Z. Astragaloside IV Protects from PM2.5-Induced Lung Injury by Regulating Autophagy via Inhibition of PI3K/Akt/mTOR Signaling in vivo and in vitro. J Inflamm Res 2021; 14:4707-4721. [PMID: 34557015 PMCID: PMC8453246 DOI: 10.2147/jir.s312167] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction Prolonged exposure to air polluted with airborne fine particulate matter (PM2.5) can increase respiratory disease risk. Astragaloside IV (AS-IV) is one of the main bioactive substances in the traditional Chinese medicinal herb, Astragalus membranaceus Bunge. AS-IV has numerous pharmacological properties; whereas there are few reports on the prevention of PM2.5-induced lung injury by AS-IV through modulation of the autophagic pathway. This study aimed to investigate the protective effects and the underlying mechanisms of AS-IV in PM2.5-induced lung injury rats and rat alveolar macrophages (NR8383 cells). Methods The pneumotoxicity model was established by intratracheal injection of PM2.5 in rats, and PM2.5 challenge in NR8383 cells. The severity of lung injury was evaluated by wet weight to dry weight ratio and McGuigan pathology scoring. Inflammatory factors and oxidative stress were detected through ELISA. The expressions of p-PI3K, p-Akt, and p-mTOR proteins were analyzed by immunohistochemistry. Immunofluorescence and transmission electron microscopy were used to detect autophagosomes. The expressions of autophagy marker protein (LC3B and p62), PI3K/Akt/mTOR signaling and NF-κB translocation were detected by Western blot in lung tissue and NR8383 cells. Results After PM2.5 stimulation, rats showed severe inflammation and oxidative stress, along with inhibition of autophagy in lung tissue. AS-IV not only decreased pulmonary inflammation and oxidative stress by inhibiting nuclear factor kappa B translocation, but also regulated autophagy by inhibiting PI3K/Akt/mTOR signaling. After treatment with 3-methyladenine (a classic PI3K inhibitor, blocking the formation of autophagosomes), the protective effect of AS-IV on PM2.5-induced lung injury was further strengthened. In parallel, using Western blot, immunohistochemistry, and transmission electron microscopy, we demonstrated that AS-IV restore autophagic flux mainly through regulating the degradation of autophagosomes rather than suppressing the formation in vivo and in vitro. Conclusion Our data indicated that AS-IV protects from PM2.5-induced lung injury in vivo and in vitro by inhibiting the PI3K/Akt/mTOR pathway to regulate autophagy and inflammation.
Collapse
Affiliation(s)
- Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
12
|
Peng Peng, Yu H, Yongjin Li, Huang J, Yao S, Xing C, Liu W, Zhang B, Feng S. The emerging role of circular RNAs in spinal cord injury. J Orthop Translat 2021; 30:1-5. [PMID: 34401327 PMCID: PMC8326601 DOI: 10.1016/j.jot.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/02/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) is one kind of severe diseases with high mortality and morbidity worldwide, and lacks effective therapeutic interventions currently, which leads to not only permanent neurological impairments but also heavy social and economic burden. Recent studies have proved that circRNAs are highly expressed in neural tissues, regulating the neuronal and synaptic functions. What's more, significantly altered circRNAs expression profiles are closely associated with the pathophysiology of SCI. In this review, we summarize the current advance on the role of circRNAs in SCI, which may provide a better understanding of pathogenesis and therapeutic strategies of SCI. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE The Translational potential of this article is that A further understanding of circRNAs in the pathogenesis of SCI will promote the circRNA-based clinical applications.
Collapse
Affiliation(s)
- Peng Peng
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Yu
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongjin Li
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingyuan Huang
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengyu Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Weixiao Liu
- Department of Orthopedics, Kuancheng Manzu Autonomous Country Hospital, Chengde, China
| | - Bin Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov 2021; 7:212. [PMID: 34381025 PMCID: PMC8357833 DOI: 10.1038/s41420-021-00572-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) is a salient traumatic disease that often leads to permanent disability, and motor and sensory impairments. Human umbilical cord mesenchymal stem cells (HucMSCs) have a wide application prospect in the treatment of SCI. This study explored the repair effect of HucMSCs-derived extracellular vesicles (HucMSCs-EVs) on SCI. HucMSCs and HucMSCs-EVs were cultured and identified. The rat model of SCI was established, and SCI rats were treated with HucMSCs-EVs. The motor function of SCI rats and morphology of spinal cord tissues were evaluated. Levels of NeuN, GFAP, and NF200 in spinal cord tissues were detected and cell apoptosis was measured. SCI rats were treated with EVs extracted from miR-29b-3p inhibitor-transfected HucMSCs. The downstream gene and pathway of miR-29b-3p were examined. HucMSCs-EVs-treated rats showed obvious motor function recovery and reduced necrosis, nuclear pyknosis, and cavity. HucMSCs-EVs alleviated spinal cord neuronal injury. miR-29b-3p was poorly expressed in SCI tissues, but highly expressed in EVs and SCI rats treated with EVs. miR-29b-3p targeted PTEN. Inhibition of miR-29b-3p or overexpression of PTEN reversed the repair effect of EVs on SCI. EVs activated the AKT/mTOR pathway via the miR-29b-3p/PTEN. In conclusion, HucMSCs-EVs reduced pathological changes, improved motor function, and promoted nerve function repair in SCI rats via the miR-29b-3p/PTEN/Akt/mTOR axis.
Collapse
|
14
|
Wang L, Gao Z, Zhang J, Huo Y, Xu Q, Qiu Y. Netrin-1 regulates ERK1/2 signaling pathway and autophagy activation in wear particle-induced osteoclastogenesis. Cell Biol Int 2021; 45:612-622. [PMID: 33386763 PMCID: PMC8048890 DOI: 10.1002/cbin.11544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
Background Artificial joint replacement surgery is often accompanied by osteolysis induced aseptic loosening around the prosthesis. Wear particles from joint replacement are thought to be one of the main factors leading to local inflammation and osteolysis at the prosthesis site. The aim of this study was to investigate the molecular mechanism of osteoclast formation and dissolution induced by wear particles and the potential roles of Netrin‐1, the ERK1/2 pathway and autophagy activation in this process. Methods The messenger RNA levels in cells and tissues were detected with real‐time quantitative PCR. The western blotting was used to detect the expression of proteins. A CCK‐8 kit was used to detect the viability of RAW 264.7 cells. Moreover, an air pouch model of bone resorption was established. Immunohistochemistry was used to detect the expression of TRAP and Netrin‐1 in rat bone tissue. Cell culture supernatants were collected in the rat air pouch model of bone resorption, and the levels of RANKL and OPG were detected with enzyme‐linked immunosorbent assay. The protein levels of TRAP and Netrin‐1 in bone tissue were examined by immunohistochemistry. Results Titanium wear particles induced osteoclast formation and autophagy activation. Moreover, blocking autophagy suppressed the osteoclastogenesis after exposure to wear particles in vitro. The activation of the ERK1/2 pathway and the overexpression of Netrin‐1 were both found to play important roles in osteoclastogenesis mediated by autophagy. Moreover, 3‐MA effectively decreased the secretion of proinflammatory cytokines mediated by wear particles. Conclusion Blockade of autophagy inhibits the osteoclastogenesis and inflammation induced by wear particles, thus potentially providing novel treatment strategies for abnormal osteoclastogenesis and aseptic prosthesis loosening induced by wear particles.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Orthopedics, Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| | - Zhibiao Gao
- Department of Orthopedics, Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| | - Jie Zhang
- Department of Orthopedics, Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| | - Yulong Huo
- Department of Orthopedics, Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| | - Qiang Xu
- Department of Orthopedics, Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, China
| | - Yusheng Qiu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Wojnacki J, Nola S, Bun P, Cholley B, Filippini F, Pressé MT, Lipecka J, Man Lam S, N’guyen J, Simon A, Ouslimani A, Shui G, Fader CM, Colombo MI, Guerrera IC, Galli T. Role of VAMP7-Dependent Secretion of Reticulon 3 in Neurite Growth. Cell Rep 2020; 33:108536. [DOI: 10.1016/j.celrep.2020.108536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
|
16
|
Yuan W, He X, Morin D, Barrière G, Liu X, Li J, Zhu Y. Autophagy Induction Contributes to the Neuroprotective Impact of Intermittent Fasting on the Acutely Injured Spinal Cord. J Neurotrauma 2020; 38:373-384. [PMID: 33076741 DOI: 10.1089/neu.2020.7166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is one of the leading causes of neurological disability and death. So far, there is no satisfactory treatment for SCI, because of its complex and ill-defined pathophysiology. Recently, autophagy has been implicated as protective in acute SCI rat models. Here, we investigated the therapeutic value of a dietary intervention, namely, intermittent fasting (IF), on neuronal survival after acute SCI in rats, and its underlying mechanism related to autophagy regulation. We found remarkable improvement in both behavioral performance and neuronal survival at the injured segment of the spinal cord of animals previously subjected to IF. Western blotting revealed a marked decrease in apoptosis-related markers such as cleaved caspase 3 levels and the bax/bcl-2 ratio in the IF group, which suggested an inhibition of the intrinsic apoptosis pathway. In addition, the expression of the autophagy markers LC3-II and beclin 1 was also increased in the IF group compared with ad libitum fed animals. In parallel, IF decreased the levels of the substrate protein of autophagy, p62, indicative of an upregulation of the autophagic processes. Treatment with 3-methyladenine (3-MA), a selective inhibitor of autophagy, reversed the downregulated apoptosis-related markers by IF. Finally, IF could activate the adenosine monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway and enhance lysosome function by upregulating transcription factor (TF)EB expression. Altogether, the present findings suggest that IF exerts a neuroprotective effect after acute SCI via the upregulation of autophagy, and further points to dietary interventions as a promising combinatorial treatment for SCI.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Didier Morin
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Grégory Barrière
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Xuan Liu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
- Department of Orthopedics, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Jiatong Li
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Dong F, Liu D, Jiang F, Liu Y, Wu X, Qu X, Liu J, Chen Y, Fan H, Yao R. Conditional Deletion of Foxg1 Alleviates Demyelination and Facilitates Remyelination via the Wnt Signaling Pathway in Cuprizone-Induced Demyelinated Mice. Neurosci Bull 2020; 37:15-30. [PMID: 33015737 PMCID: PMC7811968 DOI: 10.1007/s12264-020-00583-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022] Open
Abstract
The massive loss of oligodendrocytes caused by various pathological factors is a basic feature of many demyelinating diseases of the central nervous system (CNS). Based on a variety of studies, it is now well established that impairment of oligodendrocyte precursor cells (OPCs) to differentiate and remyelinate axons is a vital event in the failed treatment of demyelinating diseases. Recent evidence suggests that Foxg1 is essential for the proliferation of certain precursors and inhibits premature neurogenesis during brain development. To date, very little attention has been paid to the role of Foxg1 in the proliferation and differentiation of OPCs in demyelinating diseases of the CNS. Here, for the first time, we examined the effects of Foxg1 on demyelination and remyelination in the brain using a cuprizone (CPZ)-induced mouse model. In this work, 7-week-old Foxg1 conditional knockout and wild-type (WT) mice were fed a diet containing 0.2% CPZ w/w for 5 weeks, after which CPZ was withdrawn to enable remyelination. Our results demonstrated that, compared with WT mice, Foxg1-knockout mice exhibited not only alleviated demyelination but also accelerated remyelination of the demyelinated corpus callosum. Furthermore, we found that Foxg1 knockout decreased the proliferation of OPCs and accelerated their differentiation into mature oligodendrocytes both in vivo and in vitro. Wnt signaling plays a critical role in development and in a variety of diseases. GSK-3β, a key regulatory kinase in the Wnt pathway, regulates the ability of β-catenin to enter nuclei, where it activates the expression of Wnt target genes. We then used SB216763, a selective inhibitor of GSK-3β activity, to further demonstrate the regulatory mechanism by which Foxg1 affects OPCs in vitro. The results showed that SB216763 clearly inhibited the expression of GSK-3β, which abolished the effect of the proliferation and differentiation of OPCs caused by the knockdown of Foxg1. These results suggest that Foxg1 is involved in the proliferation and differentiation of OPCs through the Wnt signaling pathway. The present experimental results are some of the first to suggest that Foxg1 is a new therapeutic target for the treatment of demyelinating diseases of the CNS.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dajin Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Feiyu Jiang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaping Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiuxiang Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
18
|
Valproic Acid: A Potential Therapeutic for Spinal Cord Injury. Cell Mol Neurobiol 2020; 41:1441-1452. [DOI: 10.1007/s10571-020-00929-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
19
|
Zhang D, Zhu D, Wang F, Zhu JC, Zhai X, Yuan Y, Li CX. Therapeutic effect of regulating autophagy in spinal cord injury: a network meta-analysis of direct and indirect comparisons. Neural Regen Res 2020; 15:1120-1132. [PMID: 31823893 PMCID: PMC7034290 DOI: 10.4103/1673-5374.270419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/11/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE An increasing number of studies indicate that autophagy plays an important role in the pathogenesis of spinal cord injury, and that regulating autophagy can enhance recovery from spinal cord injury. However, the effect of regulating autophagy and whether autophagy is detrimental or beneficial after spinal cord injury remain unclear. Therefore, in this study we evaluated the effects of autophagy regulation on spinal cord injury in rats by direct and indirect comparison, in an effort to provide a basis for further research. DATA SOURCE Relevant literature published from inception to February 1, 2018 were included by searching Wanfang, CNKI, Web of Science, MEDLINE (OvidSP), PubMed and Google Scholar in English and Chinese. The keywords included "autophagy", "spinal cord injury", and "rat". DATA SELECTION The literature included in vivo experimental studies on autophagy regulation in the treatment of spinal cord injury (including intervention pre- and post-spinal cord injury). Meta-analyses were conducted at different time points to compare the therapeutic effects of promoting or inhibiting autophagy, and subgroup analyses were also conducted. OUTCOME MEASURE Basso, Beattie, and Bresnahan scores. RESULTS Of the 622 studies, 33 studies of median quality were included in the analyses. Basso, Beattie, and Bresnahan scores were higher at 1 day (MD = 1.80, 95% CI: 0.81-2.79, P = 0.0004), 3 days (MD = 0.92, 95% CI: 0.72-1.13, P < 0.00001), 1 week (MD = 2.39, 95% CI: 1.85-2.92, P < 0.00001), 2 weeks (MD = 3.26, 95% CI: 2.40-4.13, P < 0.00001), 3 weeks (MD = 3.13, 95% CI: 2.51-3.75, P < 0.00001) and 4 weeks (MD = 3.18, 95% CI: 2.43-3.92, P < 0.00001) after spinal cord injury with upregulation of autophagy compared with the control group (drug solvent control, such as saline group). Basso, Beattie, and Bresnahan scores were higher at 1 day (MD = 6.48, 95% CI: 5.83-7.13, P < 0.00001), 2 weeks (MD = 2.43, 95% CI: 0.79-4.07, P = 0.004), 3 weeks (MD = 2.96, 95% CI: 0.09-5.84, P = 0.04) and 4 weeks (MD = 4.41, 95% CI: 1.08-7.75, P = 0.01) after spinal cord injury with downregulation of autophagy compared with the control group. Indirect comparison of upregulation and downregulation of autophagy showed no differences in Basso, Beattie, and Bresnahan scores at 1 day (MD = -4.68, 95% CI: -5.840 to -3.496, P = 0.94644), 3 days (MD = -0.28, 95% CI: -2.231-1.671, P = 0.99448), 1 week (MD = 1.83, 95% CI: 0.0076-3.584, P = 0.94588), 2 weeks (MD = 0.81, 95% CI: -0.850-2.470, P = 0.93055), 3 weeks (MD = 0.17, 95% CI: -2.771-3.111, P = 0.99546) or 4 weeks (MD = -1.23, 95% CI: -4.647-2.187, P = 0.98264) compared with the control group. CONCLUSION Regulation of autophagy improves neurological function, whether it is upregulated or downregulated. There was no difference between upregulation and downregulation of autophagy in the treatment of spinal cord injury. The variability in results among the studies may be associated with differences in research methods, the lack of clearly defined autophagy characteristics after spinal cord injury, and the limited autophagy monitoring techniques. Thus, methods should be standardized, and the dynamic regulation of autophagy should be examined in future studies.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Di Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ji-Chao Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xu Zhai
- Department of Emergency, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yuan Yuan
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Chen-Xi Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Neuroprotection of netrin-1 on neurological recovery via Wnt/β-catenin signaling pathway after spinal cord injury. Neuroreport 2020; 31:537-543. [PMID: 32251100 PMCID: PMC7161720 DOI: 10.1097/wnr.0000000000001441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neuroprotective effects of netrin-1 after spinal cord injury and its specific molecular mechanisms have not been elucidated. In our study, Western blot, transferase UTP nick end labeling staining and immunofluorescence staining first showed that netrin-1 significantly decreased the expression levels of caspase-3, caspase-9, transferase UTP nick end labeling-positive neurons, nuclear factor kappa-B, and tumor necrosis factor-α after spinal cord injury, which inhibited neuronal apoptosis and inflammatory response. Using Nissl and HE staining, we also found that netrin-1 significantly increased the number of Nissl bodies in the anterior horn of spinal cord and promoted the recovery of injured tissue after spinal cord injury, consequently providing a good microenvironment for recovery of motor function. Finally, the results of Basso, Beattie, and Bresnahan score further confirmed that netrin-1 promoted the recovery of neurological function after spinal cord injury. Furthermore, netrin-1 significantly promoted the expression of β-catenin and inhibited the expression of glycogen synthase kinase-3β, which activated Wnt/β-catenin signaling pathway after spinal cord injury. However, XAV939 inhibited Wnt/β-catenin signaling pathway, which significantly inhibited the regulatory effect of netrin-1 on apoptosis, inflammation, Nissl bodies, damaged tissues, and neuroprotection. These results demonstrate for the first time the correlation between netrin-1 and Wnt/β-catenin signaling pathway after spinal cord injury and show that netrin-1 exerts its neuroprotective effect by activating this signaling pathway after spinal cord injury.
Collapse
|
21
|
Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:2702-2726. [PMID: 32328876 DOI: 10.1007/s12035-020-01916-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Degradomics is a proteomics sub-discipline whose goal is to identify and characterize protease-substrate repertoires. With the aim of deciphering and characterizing key signature breakdown products, degradomics emerged to define encryptic biomarker neoproteins specific to certain disease processes. Remarkable improvements in structural and analytical experimental methodologies as evident in research investigating cellular behavior in neuroscience and cancer have allowed the identification of specific degradomes, increasing our knowledge about proteases and their regulators and substrates along with their implications in health and disease. A physiologic balance between protein synthesis and degradation is sought with the activation of proteolytic enzymes such as calpains, caspases, cathepsins, and matrix metalloproteinases. Proteolysis is essential for development, growth, and regeneration; however, inappropriate and uncontrolled activation of the proteolytic system renders the diseased tissue susceptible to further neurotoxic processes. In this article, we aim to review the protease-substrate repertoires as well as emerging therapeutic interventions in spinal cord injury at the degradomic level. Several protease substrates and their breakdown products, essential for the neuronal structural integrity and functional capacity, have been characterized in neurotrauma including cytoskeletal proteins, neuronal extracellular matrix glycoproteins, cell junction proteins, and ion channels. Therefore, targeting exaggerated protease activity provides a potentially effective therapeutic approach in the management of protease-mediated neurotoxicity in reducing the extent of damage secondary to spinal cord injury.
Collapse
|
22
|
Alpha7 Nicotinic Acetylcholine Receptor Alleviates Inflammatory Bowel Disease Through Induction of AMPK-mTOR-p70S6K-Mediated Autophagy. Inflammation 2020; 42:1666-1679. [PMID: 31236857 DOI: 10.1007/s10753-019-01027-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) has been reported to be protective in several kinds of disorders through inflammatory suppression. Here, we investigated the role of α7nAChR in inflammatory bowel disease (IBD) on α7nAChR deficient mice (α7nAChR-/-) and the wild-type mice (α7nAChR+/+). Three percent dextran sulfate sodium (DSS) was used for the creation of IBD mice model and lipopolysaccharides (LPS)/DSS as an inflammatory stressor in murine bone marrow-derived macrophages (BMDMs). The severity of IBD was determined and HE staining as well as enzyme-linked immunosorbent assay (ELISA) and real-time PCR were used to detect the level of inflammatory activation. Western blot was used to determine the levels of autophagy-related proteins. Transmission electron microscopy and mRFP-GFP-LC3 plasmid were applied to determine the levels of autophagy. We demonstrated that deficiency in α7nAChR produced a detrimental effect on IBD severity and inflammatory reaction in DSS-induced colitis models. Those effects were led to via autophagy dysfunction. α7nAChR deficiency attenuated the protective and anti-inflammatory effect of autophagy inducer in IBD mice and BMDMs challenged with LPS/DSS. The alleviative effect of activating α7nAChR was attenuated through inhibiting adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-mediated signaling. In conclusion, α7nAChR contributes to alleviate IBD through the induction of AMPK-mammalian target of rapamycin rabbit (mTOR)-p70 ribosomal protein S6 kinase (p70S6K)-mediated autophagy, thus providing a novel target for the treatment of IBD.
Collapse
|
23
|
Zhang JA, Luan C, Huang D, Ju M, Chen K, Gu H. Induction of Autophagy by Baicalin Through the AMPK-mTOR Pathway Protects Human Skin Fibroblasts from Ultraviolet B Radiation-Induced Apoptosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:417-428. [PMID: 32099326 PMCID: PMC6996114 DOI: 10.2147/dddt.s228047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/10/2020] [Indexed: 01/07/2023]
Abstract
Background Baicalin, a natural product isolated from Scutellaria radix, has been reported to exert anti-oxidant and anti-apoptotic effects on skin, but the underlying mechanism remains poorly understood. This study aimed to investigate the possible mechanism of anti-UVB effect of baicalin in human skin fibroblasts. Methods Cell proliferation was estimated by CCK-8 Kit. Apoptotic incidence was detected by flow cytometry with Annexin V-PE/PI apoptosis detection kit. Autophagy was determined by the evaluation of fluorescent LC3 puncta and Western blotting. Cell signalling was analysed by Western blotting. Results Baicalin exerted cytoprotective effects in UVB-induced HSFs. Moreover, baicalin increased autophagy and suppressed UVB-induced apoptosis of HSFs. Pretreatment with 3-MA, an autophagy inhibitor, attenuated baicalin-induced HSFs autophagy and promoted apoptosis. Baicalin activated AMPK, which leads to suppression of basal mTOR activity in cultured HSFs. Administration of compound C, an AMPK inhibitor, abrogated AMPK phosphorylation and increased mTOR phosphorylation and apoptosis compared with baicalin alone. Conclusion Taken together, these results indicate the important role of mTOR inhibition in UVB protection by baicalin and provide a new target and strategy for better prevention of UV-induced skin disorders.
Collapse
Affiliation(s)
- Jia-An Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, People's Republic of China
| | - Chao Luan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, People's Republic of China
| | - Dan Huang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, People's Republic of China
| | - Mei Ju
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, People's Republic of China
| | - Kun Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, People's Republic of China
| | - Heng Gu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, People's Republic of China
| |
Collapse
|
24
|
Perim RR, Fields DP, Mitchell GS. Spinal AMP kinase activity differentially regulates phrenic motor plasticity. J Appl Physiol (1985) 2020; 128:523-533. [PMID: 31971473 DOI: 10.1152/japplphysiol.00546.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Acute intermittent hypoxia (AIH) elicits phrenic motor plasticity via multiple distinct cellular mechanisms. With moderate AIH, phrenic motor facilitation (pMF) requires Gq protein-coupled serotonin type 2 receptor activation, ERK MAP kinase activity, and new synthesis of brain-derived neurotrophic factor. In contrast, severe AIH elicits pMF by an adenosine-dependent mechanism that requires exchange protein activated by cAMP, Akt, and mammalian target of rapamycin (mTOR) activity, followed by new tyrosine receptor kinase B protein synthesis; this same pathway is also initiated by Gs protein-coupled serotonin 7 receptors (5-HT7). Because the metabolic sensor AMP-activated protein kinase (AMPK) inhibits mTOR-dependent protein synthesis, and mTOR signaling is necessary for 5-HT7 but not 5-HT2 receptor-induced pMF, we hypothesized that spinal AMPK activity differentially regulates pMF elicited by these distinct receptor subtypes. Serotonin type 2A receptor [5-HT2A; (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride] or 5-HT7 (AS-19) receptor agonists were administered intrathecally at C4 (3 injections, 5-min intervals) while recording integrated phrenic nerve activity in anesthetized, vagotomized, paralyzed, and ventilated rats. Consistent with our hypothesis, spinal AMPK activation with 2-deoxyglucose or metformin blocked 5-HT7, but not 5-HT2A receptor-induced pMF; in both cases, pMF inhibition was reversed by spinal administration of the AMPK inhibitor compound C. Thus, AMPK differentially regulates cellular mechanisms of serotonin-induced phrenic motor plasticity.NEW & NOTEWORTHY Spinal AMP-activated protein kinase (AMPK) overactivity, induced by local 2-deoxyglucose or metformin administration, constrains serotonin 7 (5-HT7) receptor-induced (but not serotonin type 2A receptor-induced) respiratory motor facilitation, indicating that metabolic challenges might regulate specific forms of respiratory motor plasticity. Pharmacological blockade of spinal AMPK activity restores 5-HT7 receptor-induced respiratory motor facilitation in the presence of either 2-deoxyglucose or metformin, showing that AMPK is an important regulator of 5-HT7 receptor-induced respiratory motor plasticity.
Collapse
Affiliation(s)
- Raphael Rodrigues Perim
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Daryl P Fields
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
25
|
The Function and Mechanisms of Autophagy in Spinal Cord Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:649-654. [PMID: 32671782 DOI: 10.1007/978-981-15-4272-5_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is one of the major causes of death and long-term disability in the world. Numerous studies have reported that autophagy plays an important role in SCI. However, the understanding of underlying mechanisms of autophagy after SCI and autophagy mechanism-based preclinical pharmacological intervention needs to be updated. This part provides an overview of current knowledge about the mechanisms of autophagy and autophagy flux as well as its potential molecular mechanisms based on the pharmacological regulation of autophagy. Although autophagic activation and the disruption of autophagy flux exist in SCI, whether autophagy is beneficial and detrimental is still under debate. We also focus on the existing and developing therapeutic options based on the potential molecular mechanisms of autophagy.
Collapse
|
26
|
Pros and Cons: Autophagy in Acute Spinal Cord Injury. Neurosci Bull 2019; 35:941-945. [PMID: 30949855 DOI: 10.1007/s12264-019-00368-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
|
27
|
Construction and analysis of a spinal cord injury competitive endogenous RNA network based on the expression data of long noncoding, micro‑ and messenger RNAs. Mol Med Rep 2019; 19:3021-3034. [PMID: 30816457 PMCID: PMC6423625 DOI: 10.3892/mmr.2019.9979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/01/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) results from trauma and predominantly affects the young male population. SCI imposes major and permanent life changes, and is associated with high future mortality and disability rates. Long non-coding RNAs (lncRNAs) have recently been demonstrated to serve critical roles in a broad range of biological processes and to be expressed in various diseases, including in SCI. However, the precise mechanisms underlying the roles of lncRNAs in SCI pathogenesis remain unexplored. In the present study, the aim was to identify critical differentially expressed lncRNAs in SCI based on the competing endogenous RNA (ceRNA) hypothesis by mining data from the Gene Expression Omnibus database of the National Center for Biotechnology Information and to unveil the functions of these lncRNAs. Different approaches and tools were employed to establish a network consisting of 13 lncRNA, 93 messenger RNA and 9 microRNA nodes, with a total of 202 edges. Three node lncRNAs were identified based on the degree distribution of the nodes, and their corresponding subnetworks were subsequently constructed. Based on these subnetworks, the biological pathways and interactions of these 3 lncRNAs were detailed using FunRich software (version 3.0). The primary results of the 3 lncRNA enrichment analyses were that they were associated with autophagy, extracellular communication and transcription factor networks, respectively. The phosphoinositide 3‑kinase/protein kinase B/mammalian target of rapamycin signaling pathway of XR_350851 was the classic autophagy pathway, indicating that XR_350851 may regulate autophagy in SCI. The possible role of XR_350851 in SCI revealed in the current study based on the regulatory mechanism of ceRNAs has uncovered a new repertoire of molecular factors with potential as novel biomarkers and therapeutic targets in SCI.
Collapse
|
28
|
Tang T, Gao D, Yang X, Hua X, Li S, Sun H. Exogenous Netrin-1 Inhibits Autophagy of Ischemic Brain Tissues and Hypoxic Neurons via PI3K/mTOR Pathway in Ischemic Stroke. J Stroke Cerebrovasc Dis 2019; 28:1338-1345. [PMID: 30797642 DOI: 10.1016/j.jstrokecerebrovasdis.2019.01.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Ischemic stroke is a serious disease that endangers human health. How to reduce the damage of neurons in ischemic regions is an urgent problem to be explored. Autophagy is an important pathophysiological process in cerebral ischemia and Netrin-1 is an effective neuroprotective protein. This study aims to investigate the effect of Netrin-1 on autophagy of ischemic brain tissues and hypoxic neurons. METHODS We constructed rat persistent middle cerebral artery occlusion model in vivo and constructed the Oxygen Glucose-Deprivation model in vitro. Rats and cells were treated with or without Netrin-1. Western blot analysis was performed to detect autophagy related proteins LC3B, P62 and pathway related proteins PI3K, p-PI3K, mTOR, p-mTOR. CCK-8 assay was performed to detect the viability of hypoxic neurons. We also performed western-blot analysis and qRT-PCR test to detect levels of Netrin-1 protein and mRNA. RESULTS Autophagy enhanced both in ischemic brain tissues and hypoxic neurons. Netrin-1 inhibited autophagy through PI3K/mTOR pathway both in vivo and in vitro. At the same time, we found that exogenous Netrin-1 can promote the secretion of Netrin-1 protein by neurons themselves, which indicated that Netrin-1 can further amplify the neuroprotective effect through the positive feedback mechanism. CONCLUSIONS Exogenous Netrin-1 alleviates damage of ischemic brain tissues and enhances viability of hypoxic neurons by inhibiting autophagy via PI3K/mTOR pathway. This effect can be amplified by positive feedback mechanism.
Collapse
Affiliation(s)
- Tianchi Tang
- Department of Neurosurgery, Affiliated Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, PR China; School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, PR China
| | - Dekun Gao
- Department of Neurosurgery, Affiliated Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, PR China; School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, PR China
| | - Xiaosheng Yang
- Department of Neurosurgery, Affiliated Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, PR China
| | - Xuming Hua
- Department of Neurosurgery, Affiliated Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, PR China
| | - Shiting Li
- Department of Neurosurgery, Affiliated Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, PR China.
| | - Hui Sun
- Department of Neurosurgery, Affiliated Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, PR China.
| |
Collapse
|
29
|
Mei X, Wang H, Zhang H, Liu C, Guo Z, Wang Y, Yuan Y, Zhao Z, Li D, Tang P. Blockade of receptor for advanced glycation end products promotes oligodendrocyte autophagy in spinal cord injury. Neurosci Lett 2019; 698:198-203. [PMID: 30660637 DOI: 10.1016/j.neulet.2019.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Abstract
Receptor for advanced glycation end product (RAGE) is involved in neuronal inflammation, cell cycle and differentiation. However, the role of RAGE in autophagy in the process of spinal cord injury (SCI) is yet unknown. The present study investigated the effect of RAGE blockade on autophagy in SCI. A rat Allen SCI model was established and the animals were micro-injected with rabbit RAGE neutralizing antibody or rabbit polyclonal Ig G immediately after the injury. The oligodendrocytes(OLs) marker, 2', 3'-cyclic nucleotide 3'-phosphodiesterase(CNPase) and autophagy-related marker microtubule associated protein light chain 3B(LC3B) were evaluated by Western blot. Furthermore, myelin basic protein (MBP) and LC3B double staining were observed in the SCI via immunofluorescence. The results showed that RAGE blockade reduced the expression of CNPase, promoted LC3B-II/I and p62 expression after SCI. In addition, the MBP/LC3B double positive oligodendrocytes-expressing LC3B was up-regulated by RAGE blockade. Moreover, RAGE blockade attenuated the neuronal survival at ventral horn after SCI. The present study revealed the role of RAGE in maintaining oligodendrocyte autophagy to promote neuronal regeneration post-SCI.
Collapse
Affiliation(s)
- Xifan Mei
- Department of Orthopedic, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Hongyu Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Hua Zhang
- Jinzhou Medical University, Jinzhou City, 121000, PR China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Zhanpeng Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yansong Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yajiang Yuan
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Ziming Zhao
- Department of Stomatology, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Dingding Li
- Department of Orthopedic, the First People's Hospital of Longquanyi District, Chengdu City, PR China
| | - Peifu Tang
- Department of Orthopedic, Chinese PLA General Hospital, Beijing, 100853, PR China.
| |
Collapse
|
30
|
Schäffner I, Minakaki G, Khan MA, Balta EA, Schlötzer-Schrehardt U, Schwarz TJ, Beckervordersandforth R, Winner B, Webb AE, DePinho RA, Paik J, Wurst W, Klucken J, Lie DC. FoxO Function Is Essential for Maintenance of Autophagic Flux and Neuronal Morphogenesis in Adult Neurogenesis. Neuron 2018; 99:1188-1203.e6. [PMID: 30197237 PMCID: PMC6186958 DOI: 10.1016/j.neuron.2018.08.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/05/2018] [Accepted: 08/15/2018] [Indexed: 01/04/2023]
Abstract
Autophagy is a conserved catabolic pathway with emerging functions in mammalian neurodevelopment and human neurodevelopmental diseases. The mechanisms controlling autophagy in neuronal development are not fully understood. Here, we found that conditional deletion of the Forkhead Box O transcription factors FoxO1, FoxO3, and FoxO4 strongly impaired autophagic flux in developing neurons of the adult mouse hippocampus. Moreover, FoxO deficiency led to altered dendritic morphology, increased spine density, and aberrant spine positioning in adult-generated neurons. Strikingly, pharmacological induction of autophagy was sufficient to correct abnormal dendrite and spine development of FoxO-deficient neurons. Collectively, these findings reveal a novel link between FoxO transcription factors, autophagic flux, and maturation of developing neurons.
Collapse
Affiliation(s)
- Iris Schäffner
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Georgia Minakaki
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - M Amir Khan
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München-Weihenstephan, 85764 Neuherberg/Munich, Germany
| | - Elli-Anna Balta
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tobias J Schwarz
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München-Weihenstephan, 85764 Neuherberg/Munich, Germany
| | | | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München-Weihenstephan, 85764 Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - D Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
31
|
He X, Liu Y, Lin X, Yuan F, Long D, Zhang Z, Wang Y, Xuan A, Yang GY. Netrin-1 attenuates brain injury after middle cerebral artery occlusion via downregulation of astrocyte activation in mice. J Neuroinflammation 2018; 15:268. [PMID: 30227858 PMCID: PMC6145326 DOI: 10.1186/s12974-018-1291-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/26/2018] [Indexed: 12/21/2022] Open
Abstract
Background Netrin-1 functions largely via combined receptors and downstream effectors. Evidence has shown that astrocytes express netrin-1 receptors, including DCC and UNC5H2. However, whether netrin-1 influences the function of astrocytes was previously unknown. Methods Lipopolysaccharide was used to stimulate the primary cultured astrocytes; interleukin release was used to track astrocyte activation. In vivo, shRNA and netrin-1 protein were injected in the mouse brain. Infarct volume, astrocyte activation, and interleukin release were used to observe the function of netrin-1 in neuroinflammation and brain injury after middle cerebral artery occlusion. Results Our results demonstrated that netrin-1 reduced lipopolysaccharide-induced interleukin-1β and interleukin-12β release in cultured astrocytes, and blockade of the UNC5H2 receptor with an antibody reversed this effect. Additionally, netrin-1 increased p-AKT and PPAR-γ expression in primary cultured astrocytes. In vivo studies showed that knockdown of netrin-1 increased astrocyte activation in the mouse brain after middle cerebral artery occlusion (p < 0.05). Moreover, injection of netrin-1 attenuated GFAP expression (netrin-1 0.27 ± 0.06 vs. BSA 0.62 ± 0.04, p < 0.001) and the release of interleukins and reduced infarct volume after brain ischemia (netrin-1 0.27 ± 0.06 vs. BSA 0.62 ± 0.04 mm3, p < 0.05). Conclusion Our results indicate that netrin-1 is an important molecule in regulating astrocyte activation and neuroinflammation in cerebral ischemia and provides a potential target for ischemic stroke therapy. Electronic supplementary material The online version of this article (10.1186/s12974-018-1291-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaosong He
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China.,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yanqun Liu
- Department of Neurology, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiaohong Lin
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China.,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Falei Yuan
- Hailisheng Biomarine Research Institute, Zhoushan, China
| | - Dahong Long
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China.,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China. .,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China. .,Department of Anatomy, Guangzhou Medical college, Guangzhou, 511546, China.
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. .,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Med-X Research Institute and School of Biomedical Engineering, 1954 Hua-shan Road, Shanghai, 200030, China.
| |
Collapse
|
32
|
Chen XB, Wang ZL, Yang QY, Zhao FY, Qin XL, Tang XE, Du JL, Chen ZH, Zhang K, Huang FJ. Diosgenin Glucoside Protects against Spinal Cord Injury by Regulating Autophagy and Alleviating Apoptosis. Int J Mol Sci 2018; 19:ijms19082274. [PMID: 30072674 PMCID: PMC6121626 DOI: 10.3390/ijms19082274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic lesion of central nervous system (CNS) with only a limited number of restorative therapeutic options. Diosgenin glucoside (DG), a major bioactive ingredient of Trillium tschonoskii Max., possesses neuroprotective effects through its antioxidant and anti-apoptotic functions. In this study, we investigated the therapeutic benefit and underlying mechanisms of DG treatment in SCI. We found that in Sprague-Dawley rats with traumatic SCI, the expressions of autophagy marker Light Chain 3 (LC3) and Beclin1 were decreased with concomitant accumulation of autophagy substrate protein p62 and ubiquitinated proteins, indicating an impaired autophagic activity. DG treatment, however, significantly attenuated p62 expression and upregulated the Rheb/mTOR signaling pathway (evidenced as Ras homolog enriched in brain) due to the downregulation of miR-155-3p. We also observed significantly less tissue injury and edema in the DG-treated group, leading to appreciable functional recovery compared to that of the control group. Overall, the observed neuroprotection afforded by DG treatment warrants further investigation on its therapeutic potential in SCI.
Collapse
Affiliation(s)
- Xian-Bing Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Zi-Li Wang
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Qing-Yu Yang
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Fang-Yu Zhao
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Xiao-Li Qin
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Xian-E Tang
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Jun-Long Du
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Zong-Hai Chen
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Kui Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Fei-Jun Huang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
33
|
Yu D, Li M, Nie P, Ni B, Zhang Z, Zhou Y. Bcl-2/E1B-19KD-Interacting Protein 3/Light Chain 3 Interaction Induces Mitophagy in Spinal Cord Injury in Rats Both In Vivo and In Vitro. J Neurotrauma 2018; 35:2183-2194. [PMID: 29566574 DOI: 10.1089/neu.2017.5280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autophagy and mitophagy have been shown to occur in spinal cord injury (SCI). Bcl-2/E1B-19KD-interacting protein 3 (BNIP3) and its homologue, NIX, have been implicated in the regulation of mitophagy. The aim of this work was to characterize the mechanisms and role of BNIP3 in SCI-associated mitophagy. Our data showed that BNIP3, targeted to mitochondria, interacted with microtubule-associated protein 1A/1B-light chain 3 (LC3), which is targeted to autophagosomes, thus forming a mitochondria-BNIP3-LC3-autophagosome complex and resulting in mitophagy. Downregulation of BNIP3 by RNA interference strengthened the mitochondrial function and decreased cell death in spinal cord neurons under hypoxia. Particularly, BNIP3 knockdown significantly improved neurological recovery and the number of neuronal nuclei-positive cells post-SCI in rats. The present study demonstrated that BNIP3 interacts with LC3 to induce mitophagy, whereas its inhibition provided protective neuronal effects in SCI rat models both in vivo and in vitro.
Collapse
Affiliation(s)
- Datang Yu
- 1 Department of Orthopedics, Xinqiao Hospital, Third Military Medical University , Chongqing, China .,2 Department of Cardiothoracic Surgery, PLA 421 Hospital , Guangzhou, China
| | - Mingfang Li
- 3 Department of Dermatology, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Piming Nie
- 1 Department of Orthopedics, Xinqiao Hospital, Third Military Medical University , Chongqing, China
| | - Bing Ni
- 4 Institute of Pathophysiology, Third Military Medical University , Chongqing, China
| | - Zhengfeng Zhang
- 1 Department of Orthopedics, Xinqiao Hospital, Third Military Medical University , Chongqing, China
| | - Yue Zhou
- 1 Department of Orthopedics, Xinqiao Hospital, Third Military Medical University , Chongqing, China
| |
Collapse
|
34
|
Wang H, Zhao Z, Liu C, Guo Z, Yuan Y, Zhao H, Zhou Z, Mei X. Receptor for Advanced Glycation End-Products (RAGE) Blockade Do Damage to Neuronal Survival via Disrupting Wnt/β-Catenin Signaling in Spinal Cord Injury. Neurochem Res 2018; 43:1405-1412. [PMID: 29790067 DOI: 10.1007/s11064-018-2555-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Wnt signaling are recognized key factors in neuronal development, cell proliferation and axonal guidance. However, RAGE effect on wnt signaling after spinal cord injury (SCI) are poorly understood. Our study aims to explore RAGE blockade effect on wnt signaling after SCI. We constructed Allen SCI model and micro-injected with RAGE neutralizing antibody or IgG after injury. We determined β-catenin, wnt3a and its receptor frizzled-5 via Western blot. We determined β-catenin/NeuN expression at 2 weeks after SCI via immunofluorescence (IF). We found that β-catenin, wnt3a and wnt receptor frizzled5 expression were activated after SCI at 3 days after injury. However, RAGE blockade inhibit β-catenin, wnt3a and frizzled5 expression. We found that β-catenin accumulation in NeuN cells were activated after SCI via IF, however, RAGE blockade reduced β-catenin and NeuN positive cells. RAGE blockade attenuated number of survived neurons and decreased area of spared white matter around the epicenter. RAGE signaling may involved in disrupting wnt signaling to aids neuronal recovery after SCI.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Orthopedic, Liaoning University of Traditional Chinese Medicine, Shenyang, People's Republic of China
| | - Ziming Zhao
- Department of Stomatology, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Zhanpeng Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yajiang Yuan
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Haoshen Zhao
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Zipeng Zhou
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Xifan Mei
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China.
- Liaoning University of Traditional Chinese Medicine, Shenyang, People's Republic of China.
- Jinzhou Medical University, 3-40 Songpo Road, Jinzhou, 121000, People's Republic of China.
| |
Collapse
|
35
|
Wang P, Jiang L, Zhou N, Zhou H, Liu H, Zhao W, Zhang H, Zhang X, Hu Z. Resveratrol ameliorates autophagic flux to promote functional recovery in rats after spinal cord injury. Oncotarget 2018; 9:8427-8440. [PMID: 29492205 PMCID: PMC5823559 DOI: 10.18632/oncotarget.23877] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022] Open
Abstract
Resveratrol is known to improve functional recovery after spinal cord injury, but the exact mechanism involved is yet unclear. The aim of this study was to clarify whether resveratrol can exert neuroprotective effects via activating neuronal autophagic flux, in view of the underlying role of the autophagic flux mediated by resveratrol on neuronal apoptosis after spinal cord injury, and identify the role of the liver kinase B1(LKB1)/adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/ p70 ribosomal protein S6 kinase (p70s6k) signal pathway in the autophagic flux mediated by resveratrol. The results obtained strongly indicate that resveratrol improved functional recovery in Sprague–Dawley rats after acute spinal cord injury, preserved their motor neurons, alleviated the neuronal apoptosis, and ameliorated neuronal autophagic flux. After blocking the autophagic flux, the neuroprotective effects of resveratrol were eliminated. Furthermore, it was proved that resveratrol can activate the LKB1/AMPK/mTOR/p70s6k pathway in vivo and in vitro, and the LKB1/AMPK/mTOR/p70s6k pathway plays a vital role in activating the autophagic flux mediated by resveratrol in PC12 cells. Thus, resveratrol enables to ameliorate neuronal autophagic flux via the LKB1/AMPK/mTOR/p70s6k pathway to alleviate apoptosis, and finally ameliorating functional recovery after acute SCI in SD rats.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lizhu Jiang
- Department of Otorhinolaryngology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Nian Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hao Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huzhe Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenrui Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanxiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenming Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
36
|
Wei Z, Zhao W, Schachner M. Electroacupuncture Restores Locomotor Functions After Mouse Spinal Cord Injury in Correlation With Reduction of PTEN and p53 Expression. Front Mol Neurosci 2018; 11:411. [PMID: 30505267 PMCID: PMC6250832 DOI: 10.3389/fnmol.2018.00411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023] Open
Abstract
Background: We previously showed that electroacupuncture (EA) at Jiaji points promotes expression of adhesion molecule L1 in spinal cord tissue after mouse spinal cord injury (SCI) and contributes to recovery of neural functions. Objective: We investigated the effects of EA on downstream signaling molecules of L1 and molecules relevant to apoptosis with the aim to understand the underlying molecular mechanisms. Methods: Female C57BL/6 mice were divided into a sham group, injury group, injury+acupuncture (AP) group and injury+EA group. We investigated the changes in cognate L1-triggered signaling molecules after SCI by immunofluorescence staining and immunoblot analysis. Results: Protein levels of phosphatase and tensin homolog (PTEN) and p53 were decreased by EA at different time points after injury, whereas the levels of phosphorylated mammalian target of rapamycin (pmTOR), p-Akt and phosphorylated extracellular signal-regulatedkinase (p-Erk) were increased. Also, levels of myelin basic protein (MBP) were increased by EA. AP alone showed less pronounced changes in expression of the investigated molecules, when compared to EA. Conclusion: We propose that EA contributes to neuroprotection by inhibiting PTEN and p53 expression and by increasing the levels of pmTOR/Akt/Erk and of MBP after SCI. These observations allow novel insights into the beneficial effects of EA via L1-triggered signaling molecules after injury.
Collapse
Affiliation(s)
- Zhe Wei
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Faculty of Medicine and Health, Lishui University, Lishui, China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner
| |
Collapse
|
37
|
Bai L, Mei X, Wang Y, Yuan Y, Bi Y, Li G, Wang H, Yan P, Lv G. The Role of Netrin-1 in Improving Functional Recovery through Autophagy Stimulation Following Spinal Cord Injury in Rats. Front Cell Neurosci 2017; 11:350. [PMID: 29209172 PMCID: PMC5701630 DOI: 10.3389/fncel.2017.00350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022] Open
Abstract
Our previous findings indicated that treatment with Netrin-1 could improve functional recovery through the stimulation of autophagy, by activating the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway in rats following spinal cord injury (SCI). However, the underlying mechanisms were not elucidated. The purpose of this study was to investigate the underlying mechanisms by which Netrin-1 promotes autophagy and improves functional recovery after SCI. Following controlled SCI in Sprague-Dawley rats, we observed that the autophagic flux in neurons was impaired, as reflected by the accumulation of light chain 3-II (LC3-II)-positive and LC3-positive autophagosomes (APs), accompanied by the accumulation of the autophagic substrate, Sequestosome 1 (SQSTM1; also known as p62). Our results showed that treatment with Netrin-1 increases the levels of the lysosomal protease cathepsin D (CTSD) and lysosomal-associated membrane protein 1 (LAMP1), through the regulation of the nuclear localization of Transcription factor EB (TFEB) via the AMPK/mTOR signaling pathway. In addition, this enhancement of lysosomal biogenesis correlated strongly with the restoration of autophagic flux, inhibition of neural apoptosis and improved functional recovery. Suppression of lysosomal biogenesis via the inhibition of the nuclear translocation of TFEB by Compound C abolished this restoration of autophagic flux and the functional recovery effects of Netrin-1 following SCI. Taken together, these results indicate that Netrin-1 enhances lysosomal biogenesis by regulating the nuclear translocation of TFEB via the AMPK/mTOR signaling pathway. Furthermore, the enhancement of lysosomal biogenesis by Netrin-1 following SCI promotes autophagic flux and improves functional recovery in rats. Thus, the regulation of lysosomal biogenesis by modulating the nuclear localization of TFEB might be a novel approach for the treatment of SCI.
Collapse
Affiliation(s)
- Liangjie Bai
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanfeng Wang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yajiang Yuan
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yunlong Bi
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gang Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hongyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Peng Yan
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gang Lv
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Wang H, Liu C, Mei X, Cao Y, Guo Z, Yuan Y, Zhao Z, Song C, Guo Y, Shen Z. Berberine attenuated pro-inflammatory factors and protect against neuronal damage via triggering oligodendrocyte autophagy in spinal cord injury. Oncotarget 2017; 8:98312-98321. [PMID: 29228691 PMCID: PMC5716731 DOI: 10.18632/oncotarget.21203] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/27/2017] [Indexed: 11/25/2022] Open
Abstract
Berberine exerts neuroprotective effect in neuroinflammation and neurodegeneration disease. However, berberine effect in acute spinal cord injury is yet to be elucidated. Herein, we investigated the neuroprotective effect of berberine in spinal cord injury (SCI). Sprague-Dawley rats were subjected to SCI by an intraperitoneal injection of berberine post-injury. The neurobehavioral recovery, cytokines of pro-inflammatory factors (TNF-α and IL-1β), autophagy-related proteins (LC3B, ATG16L, ATG7), and apoptosis-related protein cleaved caspase-3 were determined. The expressions of 2', 3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), marker of oligodendrocyte, autophagy-related proteins ATG5 and neurons at the ventral horn were assessed. In vitro, the contents of the pro-inflammatory factors, TNF-α and IL-1β, were detected in the lipopolysaccharide (LPS)-treated primary spinal neuron. Berberine significantly improved the neurobehavior BBB score and attenuated the cytokines of pro-inflammatory factors in cerebrospinal fluid post-SCI. In addition, berberine upregulated CNPase positive oligodendrocyte expressing ATG5, promoted neuronal survival and reduced the cleaved caspase-3 expression after SCI. In primary spinal neuron, the LPS-induced inflammatory factors could be reduced by berberine, whereas the autophagy inhibitor, 3-Methyladenine reverses the effect. Berberine attenuated inflammation of the injured spinal cord and reduced the neuronal apoptosis via triggering oligodendrocyte autophagy in order to promote neuronal recovery.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yang Cao
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Zhanpeng Guo
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yajiang Yuan
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Ziming Zhao
- Department of Stomatology, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Changwei Song
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yue Guo
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Zhaoliang Shen
- Department of Orthopedics, Second Hospital of Jinzhou City, Jinzhou City, PR China
| |
Collapse
|