1
|
Septyaningtrias DE, Muliyantoro NSS, Sumiwi YAA, Susilowati R. Anti-inflammatory and glial response maintain normal colon function in trimethyltin-treated rats. Histochem Cell Biol 2024; 162:477-486. [PMID: 39172242 DOI: 10.1007/s00418-024-02320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
Studies on the contribution of enteric neuropathy and intestinal homeostasis to central nervous system degeneration using animal models have reported varying results. Recently, colonic myenteric plexus degeneration was observed in trimethyltin-treated rats. Further characterization of this animal model is necessary to determine its potential for investigating the relationship between the enteric nervous system and central nervous system degeneration. In this study, trimethyltin-treated rats (8 mg/kg body weight, i.p.) were used to measure colonic function, structure, and possible colon abnormalities. The colonic function was assessed by measuring fecal pellet output and transit time. Hematoxylin and eosin staining and immunohistochemistry were performed to evaluate inflammatory profiles and intestinal epithelial cell homeostasis. The expression of mRNA encoding tight junction proteins was quantified with quantitative PCR to determine colon permeability. Histological examination of the colon revealed mucosal immune cell infiltration, crypt damage, and high iNOS and arginase-1 expression in the mucosal layer of trimethyltin-treated rats. At the same time, trimethyltin induced high expression of iNOS, arginase-1, and GFAP and increased cell death in the colonic myenteric plexus. The low cell proliferation and low goblet cell distribution suggested altered intestinal epithelial cell homeostasis in trimethyltin-treated rats. Trimethyltin also upregulated claudin 1 expression. However, normal colon function was preserved. In conclusion, the results show that trimethyltin induces colon inflammation and cell death in the colonic myenteric plexus, and disrupts intestinal epithelial cell homeostasis. However, the balance between anti-inflammatory and pro-inflammatory responses maintains normal colon function in trimethyltin-treated rats.
Collapse
Affiliation(s)
- Dian Eurike Septyaningtrias
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Nur Salisa Siddik Muliyantoro
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Yustina Andwi Ari Sumiwi
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
2
|
Sholikah TA, Septyaningtrias DE, Sumiwi YAA, Muthmainah M, Susilowati R. Prevention of colon enlargement by TNF-α antagonist in a streptozotocin-induced diabetic rat model. Histol Histopathol 2024; 39:1443-1455. [PMID: 38572731 DOI: 10.14670/hh-18-735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE We investigated the effect of tumor necrosis factor (TNF)-α antagonist on the structure and function of the streptozotocin-nicotinamide (STZ-NA)-induced diabetic rat colon. METHODS Thirty rats were divided into normal control (NC), diabetic control (DC), and diabetic etanercept (DE) groups. The DE group was injected with etanercept twice a week. Blood glucose, body weight, fecal pellet, colonic transit time, and plasma TNF-α were measured. The colon was dissected out, followed by weight and length measurements. Toluidine blue and Verhoeff's staining, immunohistochemistry for TNF-α, RAGE, iNOS, arginase, and western blot for RAGE were performed on the colonic tissue. RESULTS Administration of TNF-α antagonist had no significant effect on the body weight and blood glucose level of the diabetic groups. However, the DE group had a shorter and lighter colon and less coarse and less dense collagen fibers in the submucosal layer than the DC group. Weaker immunoreactivity of TNF-α, RAGE, iNOS, and arginase I was observed in colon tissue sections of the DE groups compared with the DC group. Although the etanercept effect on colonic function was not significantly different, the preventive effect size of etanercept on colon remodeling was considerably large, as shown by calculated-Cohen's d>0.8. CONCLUSIONS TNF-α signaling in the colonic tissue of diabetic rats has a strong effect on tissue remodeling, leading to colon enlargement. TNF-α antagonists may be beneficial in preventing diabetic-related pathology in the colon in combination with anti-diabetic drugs.
Collapse
Affiliation(s)
- Tri Agusti Sholikah
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Histology, Faculty of Medicine Universitas Sebelas Maret, Surakarta, Indonesia
| | - Dian Eurike Septyaningtrias
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yustina Andwi Ari Sumiwi
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muthmainah Muthmainah
- Department of Histology, Faculty of Medicine Universitas Sebelas Maret, Surakarta, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
3
|
Yeoman MS, Fidalgo S, Hobby I, Hafeez A, Ranson RN, Saffrey MJ, Patel BA. Decreases in mucosally-evoked tachykinin signaling pathways can explain age-related reductions in murine colonic motility patterns. Neurogastroenterol Motil 2024; 36:e14891. [PMID: 39155460 DOI: 10.1111/nmo.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Increasing age increases the incidence of chronic constipation and fecal impaction. The contribution of the natural aging process to this phenotype is unclear. This study explored the effects of age on key motility patterns in the murine colon and determined the contribution that altered neurokinin 2 (NK2) -mediated signaling made to the aging phenotype. METHODS Mucosal reflexes, colonic migrating motor complexes (CMMCs) and colonic motility assays were explored in isolated ex vivo colons from 3, 12-14, 18- and 24-months old mice and the NK2-mediated response determined. Electrical field stimulation (EFS) or exogenous drug application were used to explore the role of the mucosa in colonic segments. KEY RESULTS Aging reduced the force of contraction of the distal colon mucosal reflex, the frequency and force of contraction of CMMCs and the NK2-mediated component of both motility patterns. Ondansetron, a 5-HT3 receptor antagonist, blocked a component of both motility patterns in full thickness but not in mucosa-free segments of the distal colon. 5, hydroxytryptamine (5-HT) and EFS-evoked NK2-dependent contractions were reduced with increasing age. Smooth muscle sensitivity to 5-HT or neurokinin A (NKA) was not altered with age. In isolated colon motility assays application of NKA decreased transit time in 24-months colon and the NK2 antagonist GR159897 increased transit times in both 3- and 24-months old colons. CONCLUSIONS AND INFERENCES Aging impairs key motility patterns in the murine colon. These changes involve a decrease in mucosally-evoked NK2-mediated signaling. Targeting NK2-mediated signaling may provide a novel approach to treating age-related motility disorders in the lower bowel.
Collapse
Affiliation(s)
- Mark S Yeoman
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Sara Fidalgo
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - India Hobby
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ali Hafeez
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Rachel N Ranson
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - M Jill Saffrey
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Bhavik Anil Patel
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
4
|
Li W, Liu C, Zhang Z, Cai Z, Lv T, Zhang R, Zuo Y, Chen S. Exploring the top 30 drugs associated with drug-induced constipation based on the FDA adverse event reporting system. Front Pharmacol 2024; 15:1443555. [PMID: 39286628 PMCID: PMC11402663 DOI: 10.3389/fphar.2024.1443555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Objective This project aims to identify the top 30 drugs most commonly associated with constipation and their signal values within the FDA Adverse Event Reporting System database. Methods We extracted adverse drug events (ADEs) related to constipation from the FAERS database spanning from January 1, 2004, to September 30, 2023. We compiled the 30 most frequently reported drugs based on the frequency of constipation events. We employed signal detection methodologies to ascertain whether these drugs elicited significant signals, including reporting odds ratio, proportional reporting ratio, multi-item gamma Poisson shrinker, and information component given by the Bayesian confidence propagation neural network. Furthermore, we conducted a time-to-onset (TTO) analysis for drugs generating significant signals using the medians, quartiles, and the Weibull shape parameter test. Results We extracted a total of 50, 659, 288 ADEs, among which 169,897 (0.34%) were related to constipation. We selected and ranked the top 30 drugs. The drug with the highest ranking was lenalidomide (7,730 cases, 4.55%), with the most prevalent drug class being antineoplastic and immunomodulating agents. Signal detection was performed for the 30 drugs, with constipation risk signals identified for 26 of them. Among the 26 drugs, 22 exhibited constipation signals consistent with those listed on the FDA-approved drug labels. However, four drugs (orlistat, nintedanib, palbociclib, and dimethyl fumarate) presented an unexpected risk of constipation. Ranked by signal values, sevelamer carbonate emerged as the drug with the strongest risk signal [reporting odds ratio (95% CI): 115.51 (110.14, 121.15); PRR (χ2): 83.78 (191,709.73); EBGM (EB05): 82.63 (79.4); IC (IC025): 6.37 (4.70)]. A TTO analysis was conducted for the 26 drugs that generated risk signals, revealing that all drugs exhibited an early failure type. The median TTO for orlistat was 3 days, the shortest of all the drugs, while the median TTO for clozapine was 1,065 days, the longest of all the drugs. Conclusion Our study provides a list of drugs potentially associated with drug-induced constipation (DIC). This could potentially inform clinicians about some alternative medications to consider when managing secondary causes of constipation or caring for patients prone to DIC, thereby reducing the incidence and mortality associated with DIC.
Collapse
Affiliation(s)
- Wenwen Li
- Second School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cuncheng Liu
- Department of Neonatology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Zhongyi Zhang
- Second School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhikai Cai
- Second School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tailong Lv
- Second School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruiyuan Zhang
- Second School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaoyao Zuo
- Second School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shouqiang Chen
- Second School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Mironov S, Borysova O, Morgunov I, Zhou Z, Moskalev A. A Framework for an Effective Healthy Longevity Clinic. Aging Dis 2024:AD.2024.0328-1. [PMID: 38607731 DOI: 10.14336/ad.2024.0328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024] Open
Abstract
In the context of an aging global population and the imperative for innovative healthcare solutions, the concept of longevity clinics emerges as a timely and vital area of exploration. Unlike traditional medical facilities, longevity clinics offer a unique approach to preclinical prevention, focusing on "prevention of prevention" through the utilization of aging clocks and biomarkers from healthy individuals. This article presents a comprehensive overview of longevity clinics, encompassing descriptions of existing models, the development of a proposed framework, and insights into biomarkers, wearable devices, and therapeutic interventions. Additionally, economic justifications for investing in longevity clinics are examined, highlighting the significant growth potential of the global biotechnology market and its alignment with the goals of achieving active longevity. Anchored by an Analytical Center, the proposed framework underscores the importance of data-driven decision-making and innovation in promoting prolonged and enhanced human life. At present, there is no universally accepted standard model for longevity clinics. This absence highlights the need for additional research and ongoing improvements in this field. Through a synthesis of scientific research and practical considerations, this article aims to stimulate further discussion and innovation in the field of longevity clinics, ultimately contributing to the advancement of healthcare practices aimed at extending and enhancing human life.
Collapse
Affiliation(s)
- Sergey Mironov
- Longaevus Technologies LTD, London, United Kingdom
- Human and health division, DEKRA Automobil GmbH, Chemnitz, Germany
| | | | | | - Zhongjun Zhou
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Alexey Moskalev
- Longaevus Technologies LTD, London, United Kingdom
- Institute of biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Gerontological Research and Clinical Center, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Yeoman MS, Fidalgo S, Marcelli G, Patel BA. Amperometry approach curve profiling to understand the regulatory mechanisms governing the concentration of intestinal extracellular serotonin. Sci Rep 2024; 14:10479. [PMID: 38714793 PMCID: PMC11076564 DOI: 10.1038/s41598-024-61296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 05/10/2024] Open
Abstract
Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode-tissue (E-T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements.
Collapse
Affiliation(s)
- Mark S Yeoman
- School of Applied Sciences, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK
- Centre for Lifelong Health, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK
| | - Sara Fidalgo
- School of Applied Sciences, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK
- Centre for Lifelong Health, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK
| | - Gianluca Marcelli
- School of Engineering, University of Kent, Jennison Building, Canterbury, CT2 7NZ, UK
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK.
- Centre for Lifelong Health, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK.
| |
Collapse
|
7
|
Olecka M, van Bömmel A, Best L, Haase M, Foerste S, Riege K, Dost T, Flor S, Witte OW, Franzenburg S, Groth M, von Eyss B, Kaleta C, Frahm C, Hoffmann S. Nonlinear DNA methylation trajectories in aging male mice. Nat Commun 2024; 15:3074. [PMID: 38594255 PMCID: PMC11004021 DOI: 10.1038/s41467-024-47316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Although DNA methylation data yields highly accurate age predictors, little is known about the dynamics of this quintessential epigenomic biomarker during lifespan. To narrow the gap, we investigate the methylation trajectories of male mouse colon at five different time points of aging. Our study indicates the existence of sudden hypermethylation events at specific stages of life. Precisely, we identify two epigenomic switches during early-to-midlife (3-9 months) and mid-to-late-life (15-24 months) transitions, separating the rodents' life into three stages. These nonlinear methylation dynamics predominantly affect genes associated with the nervous system and enrich in bivalently marked chromatin regions. Based on groups of nonlinearly modified loci, we construct a clock-like classifier STageR (STage of aging estimatoR) that accurately predicts murine epigenetic stage. We demonstrate the universality of our clock in an independent mouse cohort and with publicly available datasets.
Collapse
Affiliation(s)
- Maja Olecka
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Alena van Bömmel
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Lena Best
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Madlen Haase
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Silke Foerste
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Konstantin Riege
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Thomas Dost
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Stefano Flor
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Marco Groth
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Björn von Eyss
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Christiane Frahm
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Steve Hoffmann
- Hoffmann Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.
| |
Collapse
|
8
|
Lu Y, Liang X, Wu Y, Wang R, Liu T, Yi H, Yu Z, Zhang Z, Gong P, Zhang L. Bifidobacterium animalis sup F1-7 Acts as an Effective Activator to Regulate Immune Response Via Casepase-3 and Bak of FAS/CD95 Pathway. Probiotics Antimicrob Proteins 2023; 15:1234-1249. [PMID: 35995910 DOI: 10.1007/s12602-022-09975-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Intestinal microecology was closely related to immune regulation, but the related mechanism was still unclear. This study aimed to reveal how microorganisms improved immune response via casepase-3 and Bak of FAS/CD95 pathway. Bifidobacterium animalis F1-7 inhibited the melanoma B16-F10 cells in vitro effectively; had a potent anticancer effect of lung cancer mice; effectively improved the spleen immune index and CD3+ (75.8%) and CD8+ (19.8%) expression level; strengthened the phagocytosis of macrophages; inhibited the overexpression of inflammatory factors IL-6 (319.10 ± 2.46 pg/mL), IL-8 (383.05 ± 9.87 pg/mL), and TNF-α (2003.40 ± 11.42 pg/mL); and promoted the expression of anti-inflammatory factor IL-10 (406.00 ± 3.59 pg/mL). This process was achieved by promoting caspase-8/3 and BH3-interacting domain death agonist (Bid), Bak genes, and protein expression. This study confirmed the B. animalis F1-7 could act as an effective activator to regulate immune response by promoting the expression of caspase-8/3, Bid and Bak genes, and proteins and by activating the FAS/CD95 pathway. Our study provided a data support for the application of potentially beneficial microorganisms of B. animalis F1-7 as an effective activator to improve immunity.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Technology; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Ruiqi Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Zhuang Yu
- Affiliated Hospital of Qingdao University, Qingdao, 266042, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China.
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China.
| |
Collapse
|
9
|
Wang L, Wu F, Hong Y, Shen L, Zhao L, Lin X. Research progress in the treatment of slow transit constipation by traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115075. [PMID: 35134487 DOI: 10.1016/j.jep.2022.115075] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Slow transit constipation (STC) is a common gastrointestinal disorder seriously impacting patients' quality of life. At present, although conventional chemical drugs effectively control STC symptoms in the short term, the long-term effects are poor, and the side effects are significant. In this regard, traditional Chinese medicine (TCM) offers an opportunity for STC treatment. Many pharmacological and clinical studies have confirmed this efficacy of TCM with multiple targets and mechanisms. AIM OF THE STUDY This review attempted to summarize the characteristics of TCM (compound prescriptions, single Chinese herbs, and active ingredients) for STC treatment and discussed their efficacy based on analyzing the pathogenesis of STC. MATERIALS AND METHODS The information was acquired from different databases, including PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases. We then focused on the recent research progress in STC treatment by TCM. Finally, the future challenges and trends are proposed. RESULTS TCM has good clinical efficacy in the treatment of STC with multi-mechanisms. Based on the theory of syndrome differentiation, five kinds of dialectical treatment for STC by compound TCM prescriptions were introduced, namely: Nourishing Yin and moistening the intestines; Promoting blood circulation and removing blood stasis; Warming Yang and benefiting Qi; Soothing the liver and regulating Qi; and Benefiting Qi and strengthening the spleen. In addition, six single Chinese herbs and eight active ingredients also show good efficacy in STC treatment. CONCLUSIONS TCM, especially compound prescriptions, has bright prospects in treating STC attributed to its various holistic effects.
Collapse
Affiliation(s)
- LiangFeng Wang
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - YanLong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - LiJie Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
10
|
Bódi N, Chandrakumar L, al Doghmi A, Mezei D, Szalai Z, Barta BP, Balázs J, Bagyánszki M. Intestinal Region-Specific and Layer-Dependent Induction of TNFα in Rats with Streptozotocin-Induced Diabetes and after Insulin Replacement. Cells 2021; 10:cells10092410. [PMID: 34572059 PMCID: PMC8466257 DOI: 10.3390/cells10092410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Tumour necrosis factor alpha (TNFα) is essential in neuroinflammatory modulation. Therefore, the goal of this study is to reveal the effects of chronic hyperglycaemia and insulin treatment on TNFα expression in different gut segments and intestinal wall layers. TNFα expression was mapped by fluorescent immunohistochemistry and quantitative immunogold electron microscopy in myenteric ganglia of duodenum, ileum and colon. Tissue TNFα levels were measured by enzyme-linked immunosorbent assays in muscle/myenteric plexus-containing (MUSCLE-MP) and mucosa/submucosa/submucous plexus-containing (MUC-SUBMUC-SP) homogenates. Increasing density of TNFα-labelling gold particles is observed in myenteric ganglia from proximal to distal segments and TNFα tissue levels are much more elevated in MUSCLE-MP homogenates than in MUC-SUBMUC-SP samples in healthy controls. In the diabetics, the number of TNFα gold labels is significantly increased in the duodenum, decreased in the colon and remained unchanged in the ileal ganglia, while insulin does not prevent these diabetes-related TNFα changes. TNFα tissue concentration is also increased in MUSCLE-MP homogenates of diabetic duodenum, while decreased in MUC-SUBMUC-SP samples of diabetic ileum and colon. These findings support that type 1 diabetes has region-specific and intestinal layer-dependent effects on TNFα expression, contributing to the regional damage of myenteric neurons and their intestinal milieu.
Collapse
|
11
|
Lu Y, Zhang Z, Tong L, Zhou X, Liang X, Yi H, Gong P, Liu T, Zhang L, Yang L, Shi H. Mechanisms underlying the promotion of 5-hydroxytryptamine secretion in enterochromaffin cells of constipation mice by Bifidobacterium and Lactobacillus. Neurogastroenterol Motil 2021; 33:e14082. [PMID: 33448546 DOI: 10.1111/nmo.14082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND 5-Hydroxytryptamine (5-HT) could play a role in alleviating symptoms in constipation. However, the mechanism underlying the role of intestinal flora in the promotion of 5-HT secretion by enterochromaffin cells (ECs) and regulation of the gastrointestinal endocrine system remains unclear. METHODS A constipation mouse model was constructed, and the 5-HT, chromogranin A (CGA), substance P (SP), motilin (MTL), dopamine, and noradrenaline expression levels were measured using enzyme-linked immunosorbent assay(Elisa) and immunofluorescence, and key proteins, such as the transient receptor potential (TRP) ion channels/tryptophan hydroxylase (TPH) and olfactory receptor (OR), were determined using western blot. Flow cytometry and in vivo imaging were used to observe microbial colonization in the intestinal tracts of mice. KEY RESULTS Bifidobacterium animalis F1-7 (F1-7), Lactobacillus paraccasei F34-3 (F34-3), and Lactobacillus plantarum FWDG (FWDG) promoted 5-HT secretion. F1-7 and F34-3 induced CGA expression, increased catecholamine secretion, and activated the CGA/α2A adrenoreceptor (ADRα2A) cascade signal in ECs. FWDG increased noradrenaline levels and activated the ADRα2A signal in ECs. SP content increased in F1-7 and F34-3, and MTL expression increased in FWDG via the above signal. F1-7 and F34-3 downregulated TRPV4 and upregulated TPH, whereas FWDG upregulated OR2A4 for promoting 5-HT secretion by ECs. Finally, we observed that F1-7, F34-3, and FWDG were well colonized in the large intestine. CONCLUSIONS AND INFERENCES F1-7, F34-3, and FWDG promoted 5-HT secretion in ECs of constipation mice by activating the CGA/ADRα2A cascade signal and regulating the TRP/TPH-OR pathways.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lingjun Tong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Liuqing Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Lu Y, Yu Z, Zhang Z, Liang X, Gong P, Yi H, Yang L, Liu T, Shi H, Zhang L. Bifidobacterium animalis F1-7 in combination with konjac glucomannan improves constipation in mice via humoral transport. Food Funct 2021; 12:791-801. [PMID: 33393951 DOI: 10.1039/d0fo02227f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Probiotics and natural products can promote humoral transport and effectively relieve intestinal motility. This study investigated the effects of probiotics in combination with konjac glucomannan (KGM) and an aqueous extract of Prunus persica on constipation. The growth promotion effect of these natural products on probiotics was investigated using co-culture in vitro. The combined effect of probiotics and natural products on constipation was observed in mice. The tryptophan, tryptamine and short-chain fatty acid levels were determined using enzyme-linked immunosorbent assay, reverse-phase high-performance liquid chromatography, and gas chromatography. The key genes and proteins involved in humoral transport were identified using real-time polymerase chain reaction, western blotting and fluorescence immunoassay. KGM promoted the growth of Bifidobacterium animalis F1-7 in vitro, and a mixture of KGM and B. animalis F1-7 effectively promoted defaecation in mice, increased the faecal water content, shortened the defaecation time and improved the gastrointestinal transit rate. In mice, the KGM + F1-7 mixture reduced the tryptophan level and increased the levels of tryptamine, acetic acid, propionic acid, butyric acid and valeric acid. In addition, the KGM + F1-7 mixture effectively increased the mRNA level of 5-HT4-G-protein-coupled receptors (5-HT4GPCR)/mucins-2 (MUC-2) and reduced the level of aquaporins (AQP3); furthermore, it upregulated the protein level of 5-HT4GPCR/MUC-2 and downregulated the protein level of AQP3. These findings indicated that the KGM + F1-7 mixture effectively improved intestinal motility and alleviated constipation through humoral transport-related pathways.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The role of stem cell niche in intestinal aging. Mech Ageing Dev 2020; 191:111330. [DOI: 10.1016/j.mad.2020.111330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
|
14
|
Effects of age and social isolation on murine hippocampal biochemistry and behavior. Mech Ageing Dev 2020; 191:111337. [PMID: 32866520 DOI: 10.1016/j.mad.2020.111337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Social isolation (SI) is a major health risk in older people leading to cognitive decline. This study examined how SI and age influence performance in the novel object recognition (NOR) and elevated plus maze (EPM) tasks in C57BL/6 mice aged 3 or 24 months. Mice were group-housed (groups of 2-3) or isolated for 2 weeks prior to experimentation. Following NOR and EPM testing hippocampal norepinephrine (NE), 5, hydroxytryptamine (5-HT), 5, hydroxyindole acetic acid (5-HIAA), corticosterone (CORT) and interleukin-6 (IL-6) were determined and serum collected for basal CORT analysis. A separate set of mice were exposed to the forced swim test (FST), sacrificed immediately and serum CORT determined. SI impaired performance in the NOR and the FST, reduced hippocampal 5-HT, increased hippocampal IL-6 and increased serum CORT post-FST in young mice. Aged mice either failed to respond significantly to SI (NOR, FST, hippocampal 5-HT, serum CORT post FST) or SI had synergistic effects with age (hippocampal NE, 5-HIAA:5-HT). In conclusion, the lack of response to SI in the aged mice may affect health by preventing them adapting to new stressors, while the synergistic effects of SI with age would increase allostatic load and enhance the deleterious effects of the ageing process.
Collapse
|
15
|
Hamzah HH, Keattch O, Yeoman MS, Covill D, Patel BA. Three-Dimensional-Printed Electrochemical Sensor for Simultaneous Dual Monitoring of Serotonin Overflow and Circular Muscle Contraction. Anal Chem 2019; 91:12014-12020. [DOI: 10.1021/acs.analchem.9b02958] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Seifi M, Swinny JD. Developmental and age-dependent plasticity of GABA A receptors in the mouse colon: Implications in colonic motility and inflammation. Auton Neurosci 2019; 221:102579. [PMID: 31445405 DOI: 10.1016/j.autneu.2019.102579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022]
Abstract
Lifelong functional plasticity of the gastrointestinal (GI) tract is essential for health, yet the underlying molecular mechanisms are poorly understood. The enteric nervous system (ENS) regulates all aspects of the gut function, via a range of neurotransmitter pathways, one of which is the GABA-GABAA receptor (GABAAR) system. We have previously shown that GABAA receptor subunits are differentially expressed within the ENS and are involved in regulating various GI functions. We have also shown that these receptors are involved in mediating stress-induced colonic inflammation. However, the expression and function of intestinal GABAARs, at different ages, is largely unexplored and was the focus of this study. Here we show that the impact of GABAAR activation on colonic contractility changes from early postnatal period through to late adulthood, in an age-dependant manner. We also show that the highest levels of expression for all GABAAR subunits is evident at postnatal day (P) 10 apart from the α3 subunit which increased with age. This increase in the α3 subunit expression in late adulthood (18 months old) is accompanied by an increase in the expression of inflammatory markers within the mouse colon. Finally, we demonstrate that the deletion of the α3 subunit prevents the increase in the expression of colonic inflammatory markers associated with healthy ageing. Collectively, the data provide the first demonstration of the molecular and functional plasticity of the GI GABAAR system over the course of a lifetime, and its possible role in mediating the age-induced colonic inflammation associated with healthy ageing.
Collapse
Affiliation(s)
- Mohsen Seifi
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, UK; School of Sport, Health and Social Scinces, Solent University, SO14 0YN, UK.
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, UK
| |
Collapse
|
17
|
Liu X, Chen S, Yan Q, Li Y, Jiang Z. Effect of Konjac mannan oligosaccharides on diphenoxylate-induced constipation in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
18
|
Fidalgo S, Patel BA, Ranson RN, Saffrey MJ, Yeoman MS. Changes in murine anorectum signaling across the life course. Neurogastroenterol Motil 2018; 30:e13426. [PMID: 30062757 PMCID: PMC6175477 DOI: 10.1111/nmo.13426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Increasing age is associated with an increase in the incidence of chronic constipation and fecal impaction. The contribution of the natural aging process to these conditions is not fully understood. This study examined the effects of increasing age on the function of the murine anorectum. METHODS The effects of increasing age on cholinergic, nitrergic, and purinergic signaling pathways in the murine anorectum were examined using classical organ bath assays to examine tissue function and electrochemical sensing to determine age-related changes in nitric oxide and acetylcholine release. KEY RESULTS Nitrergic relaxation increased between 3 and 6 months, peaked at 12 months and declined in the 18 and 24 months groups. These changes were in part explained by an age-related decrease in nitric oxide (NO) release. Cholinergic signaling was maintained with age by an increase in acetylcholine (ACh) release and a compensatory decrease in cholinesterase activity. Age-related changes in purinergic relaxation were qualitatively similar to nitrergic relaxation although the relaxations were much smaller. Increasing age did not alter the response of the anorectum smooth muscle to exogenously applied ACh, ATP, sodium nitroprusside or KCl. Similarly, there was no change in basal tension developed by the anorectum. CONCLUSIONS AND INFERENCES The decrease in nitrergic signaling with increasing age may contribute to the age-related fecal impaction and constipation previously described in this model by partially obstructing defecation.
Collapse
Affiliation(s)
- S. Fidalgo
- School of Pharmacy and Biomolecular ScienceCentre for Stress and Age‐Related DiseaseUniversity of BrightonBrightonUK
| | - B. A. Patel
- School of Pharmacy and Biomolecular ScienceCentre for Stress and Age‐Related DiseaseUniversity of BrightonBrightonUK
| | - R. N. Ranson
- Department of Applied SciencesFaculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - M. J. Saffrey
- School of Life, Health and Chemical SciencesThe Open UniversityMilton KeynesUK
| | - M. S. Yeoman
- School of Pharmacy and Biomolecular ScienceCentre for Stress and Age‐Related DiseaseUniversity of BrightonBrightonUK
| |
Collapse
|
19
|
Gamage PPKM, Patel BA, Yeoman MS, Ranson RN, Saffrey MJ. Interstitial cell network volume is reduced in the terminal bowel of ageing mice. J Cell Mol Med 2018; 22:5160-5164. [PMID: 30047236 PMCID: PMC6156346 DOI: 10.1111/jcmm.13794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
Ageing is associated with impaired neuromuscular function of the terminal gastrointestinal (GI) tract, which can result in chronic constipation, faecal impaction and incontinence. Interstitial cells of cajal (ICC) play an important role in regulation of intestinal smooth muscle contraction. However, changes in ICC volume with age in the terminal GI tract (the anal canal including the anal sphincter region and rectum) have not been studied. Here, the distribution, morphology and network volume of ICC in the terminal GI tract of 3‐ to 4‐month‐old and 26‐ to 28‐month‐old C57BL/6 mice were investigated. ICC were identified by immunofluorescence labelling of wholemount preparations with an antibody against c‐Kit. ICC network volume was measured by software‐based 3D volume rendering of confocal Z stacks. A significant reduction in ICC network volume per unit volume of muscle was measured in aged animals. No age‐associated change in ICC morphology was detected. The thickness of the circular muscle layer of the anal sphincter region and rectum increased with age, while that in the distal colon decreased. These results suggest that ageing is associated with a reduction in the network volume of ICC in the terminal GI tract, which may influence the normal function of these regions.
Collapse
Affiliation(s)
| | - Bhavik A Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.,Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
| | - Mark S Yeoman
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.,Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
| | - Rachel N Ranson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - M Jill Saffrey
- School of Life, Health and Chemical Sciences, Open University, Milton Keynes, UK.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Yang X, Liu Y, Liu B, He L, Liu Z, Yan Y, Liu J, Liu B. Factors related to acupuncture response in patients with chronic severe functional constipation: Secondary analysis of a randomized controlled trial. PLoS One 2017; 12:e0187723. [PMID: 29166673 PMCID: PMC5699843 DOI: 10.1371/journal.pone.0187723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Acupuncture has been demonstrated to be effective and safe for chronic severe functional constipation (CSFC). However, which patients with CSFC will have a better response to acupuncture remains unclear. Objective To explore factors related to acupuncture response in patients with CSFC. Methods We performed a secondary analysis of a previous multicenter randomized controlled trial consisting of a 2-week run-in period, 8-week treatment, and 12-week follow-up without treatment in which patients with CSFC were randomly allocated to an electroacupuncture group or a sham electroacupuncture group. Responders were defined as participants with an increase of at least one complete spontaneous bowel movement (CSBM) in week 20 compared with the baseline period. The CSBM responder rate in both groups was described, and the baseline characteristics of participants potentially related to acupuncture response were mainly analyzed using logistic regression analysis with bootstrapping techniques. Results A total of 1021 participants were analyzed in this study, of whom 516 (50.5%) were classified as responders. The CSBM responder rate in week 20 was significantly greater in the electroacupuncture group than in the sham electroacupuncture group (62.9% vs. 37.9%, respectively; P<0.001). Both age and comorbidity were negatively associated with clinical response: with every one-year increase in age, the likelihood of clinical response was reduced by 1.2% (OR 0.988, 95%CI 0.980 to 0.996; P = 0.005), and patients with comorbidities were approximately 42% less likely to respond to treatment (OR 0.581, 95%CI 0.248 to 0.914; P = 0.001). Conclusion CSFC patients with increasing age and comorbidity may be less likely to respond to acupuncture. These findings contribute to guiding clinical practice in terms of pretreatment patient selection. Further research is needed to confirm the association.
Collapse
Affiliation(s)
- Xingyue Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyun He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhishun Liu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanshi Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyan Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Patel N, Fagan-Murphy A, Covill D, Patel BA. 3D Printed Molds Encompassing Carbon Composite Electrodes To Conduct Multisite Monitoring in the Entire Colon. Anal Chem 2017; 89:11690-11696. [DOI: 10.1021/acs.analchem.7b03148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nirav Patel
- School
of Pharmacy and Biomolecular Sciences, ‡Centre for Stress and Age-Related
Diseases, and §School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4AT, U.K
| | - Aidan Fagan-Murphy
- School
of Pharmacy and Biomolecular Sciences, ‡Centre for Stress and Age-Related
Diseases, and §School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4AT, U.K
| | - Derek Covill
- School
of Pharmacy and Biomolecular Sciences, ‡Centre for Stress and Age-Related
Diseases, and §School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4AT, U.K
| | - Bhavik Anil Patel
- School
of Pharmacy and Biomolecular Sciences, ‡Centre for Stress and Age-Related
Diseases, and §School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4AT, U.K
| |
Collapse
|
22
|
Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep 2017; 7:10322. [PMID: 28871143 PMCID: PMC5583244 DOI: 10.1038/s41598-017-10835-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic constipation is a prevalent functional gastrointestinal disorder accompanied with intestinal dysbiosis. However, causal relationship between dysbiosis and constipation remains poorly understood. Serotonin transporter (SERT) is a transmembrane transport protein which re-uptakes excessive 5-hydroxytryptamine (5-HT) from effective location to terminate its physiological effects and involves in regulating gastrointestinal motility. In this study, fecal microbiota from patients with constipation and healthy controls were transplanted into the antibiotic depletion mice model. The mice which received fecal microbiota from patients with constipation presented a reducing in intestinal peristalsis and abnormal defecation parameters including the frequency of pellet expulsion, fecal weight and fecal water content. After fecal microbiota transplantation, the SERT expression in the colonic tissue was significantly upregulated, and the content of 5-HT was decreased which negatively correlated with the gastrointestinal transit time. Moverover, fecal microbiota from the mice which received fecal microbiota from patients with constipation also upregulated SERT in Caco-2 cells. Besides, this process accompanied with the decreased abundance of Clostridium, Lactobacillus, Desulfovibrio, and Methylobacterium and an increased tend of Bacteroides and Akkermansia, which also involved in the impairment of intestinal barrier after FMT. Taken together, intestinal dysbiosis may upregulate the SERT expression and contribute to the development of chronic constipation.
Collapse
|