1
|
McLaughlin JE, Rudolph MJ, Dutta A, Li XP, Tsymbal AM, Chen Y, Bhattacharya S, Algava B, Goger M, Roberge JY, Tumer NE. Binding of small molecules at the P-stalk site of ricin A subunit trigger conformational changes that extend into the active site. J Biol Chem 2025:108310. [PMID: 39955060 DOI: 10.1016/j.jbc.2025.108310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Ricin is a Category B agent for bioterrorism and Shiga toxins are the primary virulence factors of Shiga toxin (Stx) producing E. coli (STEC). Ricin and Stxs bind the ribosomal P-stalk proteins to depurinate the sarcin/ricin loop (SRL) on the eukaryotic ribosome and inhibit translation. Both toxins are prime targets for therapeutic intervention because no effective therapy exists for ricin intoxication or STEC infection. Binding of ricin toxin A subunit (RTA) to the ribosomal P-stalk stimulates depurination of the SRL by an unknown mechanism. We previously identified compounds that bind the P-stalk pocket of RTA and inhibit catalytic activity. Here we characterize a second-generation lead compound, which binds the P-stalk pocket of RTA with over 30-fold improved affinity relative to the original compound and inhibits the cytotoxicity of ricin holotoxin in Vero cells with no apparent cellular toxicity by itself. This compound also shows protection against Stx2A1. X-ray crystal structure of RTA-inhibitor complexes suggests that the orientation of the carboxylic acid influences the inhibitor contacts at the P-stalk site of RTA and contributes to inhibitor potency. The structural changes triggered at the P-stalk site of RTA were validated by solution NMR based chemical shift perturbation analysis. A key finding by NMR is that binding induced conformational changes extend beyond the P-stalk site to residues in the active site cleft of RTA. Collectively, these results provide valuable new insight into the conformational flexibility in the C-terminal domain of RTA and its potential role in mediating the remarkable catalytic activity of ricin.
Collapse
Affiliation(s)
- John E McLaughlin
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Michael J Rudolph
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Arkajyoti Dutta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Anastasiia M Tsymbal
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Yang Chen
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | | | - Benjamin Algava
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Michael Goger
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Jacques Y Roberge
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Nilgun E Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
2
|
Matsumoto Y, Lee K, Akasaka R, Honjo H, Koizumi M, Sato T, Kubomura A, Ishijima N, Akeda Y, Ohnishi M, Iyoda S. Increased resistance against tellurite is conferred by a mutation in the promoter region of uncommon tellurite resistance gene tehB in the ter-negative Shiga toxin-producing Escherichia coli O157:H7. Appl Environ Microbiol 2024; 90:e0228323. [PMID: 38757978 PMCID: PMC11218618 DOI: 10.1128/aem.02283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Resistance to potassium tellurite (PT) is an important indicator in isolating Shiga toxin-producing Escherichia coli (STEC) O157:H7 and other major STEC serogroups. Common resistance determinant genes are encoded in the ter gene cluster. We found an O157:H7 isolate that does not harbor ter but is resistant to PT. One nonsynonymous mutation was found in another PT resistance gene, tehA, through whole-genome sequence analyses. To elucidate the contribution of this mutation to PT resistance, complementation of tehA and the related gene tehB in isogenic strains and quantitative RT‒PCR were performed. The results indicated that the point mutation not only changed an amino acid of tehA, but also was positioned on a putative internal promoter of tehB and increased PT resistance by elevating tehB mRNA expression. Meanwhile, the amino acid change in tehA had negligible impact on the PT resistance. Comprehensive screening revealed that 2.3% of O157:H7 isolates in Japan did not harbor the ter gene cluster, but the same mutation in tehA was not found. These results suggested that PT resistance in E. coli can be enhanced through one mutational event even in ter-negative strains. IMPORTANCE Selective agents are important for isolating Shiga toxin-producing Escherichia coli (STEC) because the undesirable growth of microflora should be inhibited. Potassium tellurite (PT) is a common selective agent for major STEC serotypes. In this study, we found a novel variant of PT resistance genes, tehAB, in STEC O157:H7. Molecular experiments clearly showed that one point mutation in a predicted internal promoter region of tehB upregulated the expression of the gene and consequently led to increased resistance to PT. Because tehAB genes are ubiquitous across E. coli, these results provide universal insight into PT resistance in this species.
Collapse
Affiliation(s)
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuya Akasaka
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Tokyo College of Biotechnology, Tokyo, Japan
| | - Hayato Honjo
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Tokyo College of Biotechnology, Tokyo, Japan
| | | | - Toshio Sato
- Japan Microbiological Laboratory Co. Ltd., Miyagi, Japan
| | - Akiko Kubomura
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nozomi Ishijima
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Hoyle DV, Wee BA, Macleod K, Chase-Topping ME, Bease AG, Tongue SC, Gally DL, Delannoy S, Fach P, Pearce MC, Gunn GJ, Holmes A, Allison L. Phylogenetic relationship and virulence composition of Escherichia coli O26:H11 cattle and human strain collections in Scotland; 2002-2020. Front Microbiol 2023; 14:1260422. [PMID: 38029122 PMCID: PMC10657854 DOI: 10.3389/fmicb.2023.1260422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
O26 is the commonest non-O157 Shiga toxin (stx)-producing Escherichia coli serogroup reported in human infections worldwide. Ruminants, particularly cattle, are the primary reservoir source for human infection. In this study, we compared the whole genomes and virulence profiles of O26:H11 strains (n = 99) isolated from Scottish cattle with strains from human infections (n = 96) held by the Scottish Escherichia coli O157/STEC Reference Laboratory, isolated between 2002 and 2020. Bovine strains were from two national cross-sectional cattle surveys conducted between 2002-2004 and 2014-2015. A maximum likelihood phylogeny was constructed from a core-genome alignment with the O26:H11 strain 11368 reference genome. Genomes were screened against a panel of 2,710 virulence genes using the Virulence Finder Database. All stx-positive bovine O26:H11 strains belonged to the ST21 lineage and were grouped into three main clades. Bovine and human source strains were interspersed, and the stx subtype was relatively clade-specific. Highly pathogenic stx2a-only ST21 strains were identified in two herds sampled in the second cattle survey and in human clinical infections from 2010 onwards. The closest pairwise distance was 9 single-nucleotide polymorphisms (SNPs) between Scottish bovine and human strains and 69 SNPs between the two cattle surveys. Bovine O26:H11 was compared to public EnteroBase ST29 complex genomes and found to have the greatest commonality with O26:H11 strains from the rest of the UK, followed by France, Italy, and Belgium. Virulence profiles of stx-positive bovine and human strains were similar but more conserved for the stx2a subtype. O26:H11 stx-negative ST29 (n = 17) and ST396 strains (n = 5) were isolated from 19 cattle herds; all were eae-positive, and 10 of these herds yielded strains positive for ehxA, espK, and Z2098, gene markers suggestive of enterohaemorrhagic potential. There was a significant association (p < 0.001) between nucleotide sequence percent identity and stx status for the bacteriophage insertion site genes yecE for stx2 and yehV for stx1. Acquired antimicrobial resistance genes were identified in silico in 12.1% of bovine and 17.7% of human O26:H11 strains, with sul2, tet, aph(3″), and aph(6″) being most common. This study describes the diversity among Scottish bovine O26:H11 strains and investigates their relationship to human STEC infections.
Collapse
Affiliation(s)
- Deborah V. Hoyle
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Bryan A. Wee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Kareen Macleod
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Margo E. Chase-Topping
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Andrew G. Bease
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sue C. Tongue
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - David L. Gally
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sabine Delannoy
- Unité ColiPath – Plateforme IdentyPath, Laboratoire de Sécurité des Aliments, Agence Nationale De Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Maisons-Alfort, France
| | - Patrick Fach
- Unité ColiPath – Plateforme IdentyPath, Laboratoire de Sécurité des Aliments, Agence Nationale De Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Maisons-Alfort, France
| | - Michael C. Pearce
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - George J. Gunn
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - Anne Holmes
- Scottish E. coli O157/STEC Reference Laboratory (SERL), Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Lesley Allison
- Scottish E. coli O157/STEC Reference Laboratory (SERL), Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Okuno M, Arimizu Y, Miyahara S, Wakabayashi Y, Gotoh Y, Yoshino S, Harada T, Seto K, Yamamoto T, Nakamura K, Hayashi T, Ogura Y. Escherichia cryptic clade I is an emerging source of human intestinal pathogens. BMC Biol 2023; 21:81. [PMID: 37055811 PMCID: PMC10100065 DOI: 10.1186/s12915-023-01584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Within the genus Escherichia, several monophyletic clades other than the traditionally defined species have been identified. Of these, cryptic clade I (C-I) appears to represent a subspecies of E. coli, but due to the difficulty in distinguishing it from E. coli sensu stricto, the population structure and virulence potential of C-I are unclear. RESULTS We defined a set of true C-I strains (n = 465), including a Shiga toxin 2a (Stx2a)-producing isolate from a patient with bloody diarrhoea identified by the retrospective analyses using a C-I-specific detection system. Through genomic analysis of 804 isolates from the cryptic clades, including these C-I strains, we revealed their global population structures and the marked accumulation of virulence genes and antimicrobial resistance genes in C-I. In particular, half of the C-I strains contained hallmark virulence genes of Stx-producing E. coli (STEC) and/or enterotoxigenic E. coli (ETEC). We also found the host-specific distributions of virulence genes, which suggests bovines as the potential source of human infections caused by STEC- and STEC/ETEC hybrid-type C-I strains, as is known in STEC. CONCLUSIONS Our findings demonstrate the emergence of human intestinal pathogens in C-I lineage. To better understand the features of C-I strains and their infections, extensive surveillance and larger population studies of C-I strains are needed. The C-I-specific detection system developed in this study will be a powerful tool for screening and identifying C-I strains.
Collapse
Affiliation(s)
- Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yoko Arimizu
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Infectious Disease, National Hospital Organization Kyushu Medical Center, Fukuoka, 810-0065, Japan
| | - Seina Miyahara
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki, 889-2155, Japan
| | - Yuki Wakabayashi
- Division of Microbiology, Osaka Institute of Public Health, Osaka, 537-0025, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shuji Yoshino
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki, 889-2155, Japan
| | - Tetsuya Harada
- Division of Microbiology, Osaka Institute of Public Health, Osaka, 537-0025, Japan
| | - Kazuko Seto
- Division of Planning, Osaka Institute of Public Health, Osaka, 537-0025, Japan
| | - Takeshi Yamamoto
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan.
| |
Collapse
|
5
|
Yano B, Taniguchi I, Gotoh Y, Hayashi T, Nakamura K. Dynamic changes in Shiga toxin (Stx) 1 transducing phage throughout the evolution of O26:H11 Stx-producing Escherichia coli. Sci Rep 2023; 13:4935. [PMID: 36973327 PMCID: PMC10042803 DOI: 10.1038/s41598-023-32111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Shiga toxin (Stx) is the key virulence factor of Stx-producing Escherichia coli (STEC). All known Stxs (Stx1 and Stx2) are encoded by bacteriophages (Stx phages). Although the genetic diversity of Stx phages has frequently been described, systematic analyses of Stx phages in a single STEC lineage are limited. In this study, focusing on the O26:H11 STEC sequence type 21 (ST21) lineage, where the stx1a gene is highly conserved, we analysed the Stx1a phages in 39 strains representative of the entire ST21 lineage and found a high level of variation in Stx1a phage genomes caused by various mechanisms, including replacement by a different Stx1a phage at the same or different locus. The evolutionary timescale of events changing Stx1a phages in ST21 was also determined. Furthermore, by using an Stx1 quantification system developed in this study, we found notable variations in the efficiency of Stx1 production upon prophage induction, which sharply contrasted with the conserved iron regulated Stx1 production. These variations were associated with the Stx1a phage alteration in some cases but not in other cases; thus, Stx1 production in this STEC lineage was determined by differences not only in Stx1 phages but also in host-encoded factors.
Collapse
Affiliation(s)
- Bungo Yano
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 815-8582, Japan
| | - Itsuki Taniguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 815-8582, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 815-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 815-8582, Japan
| | - Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 815-8582, Japan.
| |
Collapse
|
6
|
Michelacci V, Montalbano Di Filippo M, Gigliucci F, Arancia S, Chiani P, Minelli F, Roosens NHC, De Keersmaecker SCJ, Bogaerts B, Vanneste K, Morabito S. Population Analysis of O26 Shiga Toxin-Producing Escherichia coli Causing Hemolytic Uremic Syndrome in Italy, 1989-2020, Through Whole Genome Sequencing. Front Cell Infect Microbiol 2022; 12:842508. [PMID: 35223557 PMCID: PMC8864317 DOI: 10.3389/fcimb.2022.842508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) belonging to the O26 serogroup represent an important cause of Hemolitic Uremic Syndrome (HUS) in children worldwide. The localization of STEC virulence genes on mobile genetic elements allowed the emergence of clones showing different assets of this accessory genomic fraction. A novel O26 STEC clone belonging to Sequence Type (ST) 29 and harboring stx2a, ehxA and etpD plasmid-borne genes has emerged and spread in Europe since the mid-1990s, while another ST29 clone positive for stx2d and lacking plasmid-borne virulence genes was recently described as emerging in France. In Italy, O26 has been the most frequently detected STEC serogroup from HUS cases since the late 1990s. In this study we describe the genomic characterization and population structure of 144 O26 STEC strains isolated from human sources in Italy in the period 1989-2020. A total of 89 strains belonged to ST21, 52 to ST29, two to ST396 and one to ST4944. ST29 strains started to be isolated from 1999. 24 strains were shown to harbour stx1a, alone (n=20) or in combination with stx2a (n=4). The majority of the strains (n=118) harbored stx2a genes only and the two ST396 strains harbored stx2d. A Hierarchical Clustering on Principal Components (HCPC) analysis, based on the detection of accessory virulence genes, antimicrobial resistance (AMR) genes and plasmid replicons, classified the strains in seven clusters identified with numbers from 1 to 7, containing two, 13, 39, 63, 16, 10 and one strain, respectively. The majority of the genetic features defining the clusters corresponded to plasmid-borne virulence genes, AMR genes and plasmid replicons, highlighting specific assets of plasmid-borne features associated with different clusters. Core genome Multi Locus Sequence Typing grouped ST21 and ST29 strains in three clades each, with each ST29 clade exactly corresponding to one HCPC cluster. Our results showed high conservation of either the core or the accessory genomic fraction in populations of ST29 O26 STEC, differently from what observed in ST21 strains, suggesting that a different selective pressure could drive the evolution of different populations of these pathogens possibly involving different ecological niches.
Collapse
Affiliation(s)
- Valeria Michelacci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Federica Gigliucci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Arancia
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Minelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nancy H. C. Roosens
- Sciensano, Biological Health Risks, Transversal Activities in Applied Genomics, Brussels, Belgium
| | | | - Bert Bogaerts
- Sciensano, Biological Health Risks, Transversal Activities in Applied Genomics, Brussels, Belgium
| | - Kevin Vanneste
- Sciensano, Biological Health Risks, Transversal Activities in Applied Genomics, Brussels, Belgium
| | - Stefano Morabito
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Large-Scale Phylogenetic Analysis Reveals a New Genetic Clade among Escherichia coli O26 Strains. Microbiol Spectr 2022; 10:e0252521. [PMID: 35107330 PMCID: PMC8809355 DOI: 10.1128/spectrum.02525-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O26 is the predominant non-O157 serogroup causing hemolytic uremic syndrome worldwide. Moreover, the serogroup is highly dynamic and harbors several pathogenic clones. Here, we investigated the phylogenetic relationship of STEC O26 at a global level based on 1,367 strains from 20 countries deposited in NCBI and Enterobase databases. The whole-genome-based analysis identified a new genetic clade, called ST29C4. The new clade was unique in terms of multilocus sequence type (ST29), CRISPR (group Ia), and dominant plasmid gene profile (ehxA+/katP-/espP-/etpD-). Moreover, the combination of multiple typing methods (core genome single nucleotide polymorphism [SNP] typing, CRISPR typing, and virulence genes analysis) demonstrated that this new lineage ST29C4 was in the intermediate phylogenetic position between ST29C3 and other non-ST29C3 strains. Besides, we observed that ST29C4 harbored extraintestinal pathogenic E. coli (ExPEC)-related virulence gene (VG), tsh, and STEC-associated VG, stx2a, suggesting the emergence of a hybrid pathogen. The ST29C4 strains also exhibited high similarity in stx2a-prophage and integrase with the O104:H4 strain, further demonstrating its potential risk to human health. Collectively, the large-scale phylogenetic analysis extends the understanding of the clonal structure of O26 strains and provides new insights for O26 strain microevolution. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) O26 is the second prevalent STEC serogroup only to O157, which can cause a series of diseases ranging from mild diarrhea to life-threatening hemolytic uremic syndrome (HUS). The serogroup is highly diverse and multiple clones are characterized, including ST29C1-C3 and ST21C1-C2. However, the phylogenetic relationship of these clones remains fully unclear. In this study, we revealed a new genetic clade among O26 strains, ST29C4, which was unique in terms of CRISPR, multilocus sequence type (MLST), and plasmid gene profile (PGP). Moreover, the combination of multiple typing methods demonstrated that this new clone was located in the intermediate phylogenetic position between ST29C3 and other non-ST29C3 strains (i.e., ST29C1-C2 and ST21C1-C2). Overall, the large-scale phylogenetic analysis extends our current understanding of O26 microevolution.
Collapse
|
8
|
Nishida R, Nakamura K, Taniguchi I, Murase K, Ooka T, Ogura Y, Gotoh Y, Itoh T, Toyoda A, Mainil JG, Piérard D, Seto K, Harada T, Isobe J, Kimata K, Etoh Y, Hamasaki M, Narimatsu H, Yatsuyanagi J, Kameyama M, Matsumoto Y, Nagai Y, Kawase J, Yokoyama E, Ishikawa K, Shiomoto T, Lee K, Kang D, Akashi K, Ohnishi M, Iyoda S, Hayashi T. The global population structure and evolutionary history of the acquisition of major virulence factor-encoding genetic elements in Shiga toxin-producing Escherichia coli O121:H19. Microb Genom 2021; 7. [PMID: 34878971 PMCID: PMC8767318 DOI: 10.1099/mgen.0.000716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) are foodborne pathogens causing serious diseases, such as haemorrhagic colitis and haemolytic uraemic syndrome. Although O157:H7 STEC strains have been the most prevalent, incidences of STEC infections by several other serotypes have recently increased. O121:H19 STEC is one of these major non-O157 STECs, but systematic whole genome sequence (WGS) analyses have not yet been conducted on this STEC. Here, we performed a global WGS analysis of 638 O121:H19 strains, including 143 sequenced in this study, and a detailed comparison of 11 complete genomes, including four obtained in this study. By serotype-wide WGS analysis, we found that O121:H19 strains were divided into four lineages, including major and second major lineages (named L1 and L3, respectively), and that the locus of enterocyte effacement (LEE) encoding a type III secretion system (T3SS) was acquired by the common ancestor of O121:H19. Analyses of 11 complete genomes belonging to L1 or L3 revealed remarkable interlineage differences in the prophage pool and prophage-encoded T3SS effector repertoire, independent acquisition of virulence plasmids by the two lineages, and high conservation in the prophage repertoire, including that for Stx2a phages in lineage L1. Further sequence determination of complete Stx2a phage genomes of 49 strains confirmed that Stx2a phages in lineage L1 are highly conserved short-tailed phages, while those in lineage L3 are long-tailed lambda-like phages with notable genomic diversity, suggesting that an Stx2a phage was acquired by the common ancestor of L1 and has been stably maintained. Consistent with these genomic features of Stx2a phages, most lineage L1 strains produced much higher levels of Stx2a than lineage L3 strains. Altogether, this study provides a global phylogenetic overview of O121:H19 STEC and shows the interlineage genomic differences and the highly conserved genomic features of the major lineage within this serotype of STEC.
Collapse
Affiliation(s)
- Ruriko Nishida
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiji Nakamura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Itsuki Taniguchi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Tadasuke Ooka
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Yasuhiro Gotoh
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience of Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | | | - Denis Piérard
- Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kazuko Seto
- Osaka Institute of Public Health, Osaka, Japan
| | | | | | | | - Yoshiki Etoh
- Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | | | | | | | - Mitsuhiro Kameyama
- Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi, Japan
| | - Yuko Matsumoto
- Yokohama City Institute of Public Health, Kanagawa, Japan
| | - Yuhki Nagai
- Mie Prefectural Institute of Public Health and Environmental Sciences, Mie, Japan
| | - Jun Kawase
- Shimane Prefectural Institute of Public Health and Environmental Science, Shimane, Japan
| | - Eiji Yokoyama
- Chiba Prefectural Institute of Public Health, Chiba, Japan
| | | | - Takayuki Shiomoto
- Ishikawa Prefectural Institute of Public Health and Environmental Science, Ishikawa, Japan
| | - Kenichi Lee
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Dongchon Kang
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Sunao Iyoda
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Hayashi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- *Correspondence: Tetsuya Hayashi,
| |
Collapse
|
9
|
Nakamura K, Tokuda C, Arimitsu H, Etoh Y, Hamasaki M, Deguchi Y, Taniguchi I, Gotoh Y, Ogura Y, Hayashi T. Development of a homogeneous time-resolved FRET (HTRF) assay for the quantification of Shiga toxin 2 produced by E. coli. PeerJ 2021; 9:e11871. [PMID: 34395095 PMCID: PMC8325423 DOI: 10.7717/peerj.11871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major intestinal pathogen and causes serious gastrointestinal illness, which includes diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome. The major virulence factors of STEC are Shiga toxins (Stx1 and Stx2), which belong to the AB-type toxin family. Among several subtypes of Stx1 and Stx2, the production of Stx2a is thought to be a risk factor for severe STEC infections, but Stx2a production levels vary markedly between STEC strains, even strains with the same serotype. Therefore, quantitative analyses of Stx2 production by STEC strains are important to understand the virulence potential of specific lineages or sublineages. In this study, we developed a novel Stx2 quantification method by utilizing homogeneous time-resolved fluorescence resonance energy transfer (HTRF) technology. To determine suitable “sandwich” assay conditions, we tested 6 combinations of fluorescence-labeled monoclonal antibodies (mAbs) specific to Stx2 and compared the HTRF signal intensities obtained at various incubation times. Through this analysis, we selected the most suitable mAb pair, one recognizing the A subunit and the other recognizing the B subunit, thus together detecting Stx holotoxins. The optimal incubation time was also determined (18 h). Then, we optimized the concentrations of the two mAbs based on the range for linearity. The established HTRF assay detected 0.5 ng/ml of the highly purified recombinant Stx2a and Stx2e proteins and the working range was 1–64 ng/ml for both Stx2a and Stx2e. Through the quantification analysis of Stx proteins in STEC cell lysates, we confirmed that other Stx2 subtypes (Stx2b, Stx2c, Stx2d and Stx2g) can also be quantified at a certain level of accuracy, while this assay system does not detect Stx2f, which is highly divergent in sequence from other Stx2 subtypes, and Stx1. As the HTRF protocol we established is simple, this assay system should prove useful for the quantitative analysis of Stx2 production levels of a large number of STEC strains.
Collapse
Affiliation(s)
- Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hideyuki Arimitsu
- School of Human Science and Environment, University of Hyogo, Himeji, Japan
| | - Yoshiki Etoh
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | | | - Yuichiro Deguchi
- Production Medicine Center, Agricultural Mutual Aid Association in Miyazaki Prefecture, Koyugun-Shintomicho, Japan
| | - Itsuki Taniguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Johanns VC, Epping L, Semmler T, Ghazisaeedi F, Lübke-Becker A, Pfeifer Y, Eichhorn I, Merle R, Bethe A, Walther B, Wieler LH. High-Zinc Supplementation of Weaned Piglets Affects Frequencies of Virulence and Bacteriocin Associated Genes Among Intestinal Escherichia coli Populations. Front Vet Sci 2020; 7:614513. [PMID: 33392299 PMCID: PMC7772137 DOI: 10.3389/fvets.2020.614513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
To prevent economic losses due to post-weaning diarrhea (PWD) in industrial pig production, zinc (Zn) feed additives have been widely used, especially since awareness has risen that the regular application of antibiotics promotes buildup of antimicrobial resistance in both commensal and pathogenic bacteria. In a previous study on 179 Escherichia coli collected from piglets sacrificed at the end of a Zn feeding trial, including isolates obtained from animals of a high-zinc fed group (HZG) and a corresponding control group (CG), we found that the isolate collection exhibited three different levels of tolerance toward zinc, i.e., the minimal inhibitory concentration (MIC) detected was 128, followed by 256 and 512 μg/ml ZnCl2. We further provided evidence that enhanced zinc tolerance in porcine intestinal E. coli populations is clearly linked to excessive zinc feeding. Here we provide insights about the genomic make-up and phylogenetic background of these 179 E. coli genomes. Bayesian analysis of the population structure (BAPS) revealed a lack of association between the actual zinc tolerance level and a particular phylogenetic E. coli cluster or even branch for both, isolates belonging to the HZG and CG. In addition, detection rates for genes and operons associated with virulence (VAG) and bacteriocins (BAG) were lower in isolates originating from the HZG (41 vs. 65% and 22 vs. 35%, p < 0.001 and p = 0.002, resp.). Strikingly, E. coli harboring genes defining distinct pathotypes associated with intestinal disease, i.e., enterotoxigenic, enteropathogenic, and Shiga toxin-producing E. coli (ETEC, EPEC, and STEC) constituted 1% of the isolates belonging to the HZG but 14% of those from the CG. Notably, these pathotypes were positively associated with enhanced zinc tolerance (512 μg/ml ZnCl2 MIC, p < 0.001). Taken together, zinc excess seems to influence carriage rates of VAGs and BAGs in porcine intestinal E. coli populations, and high-zinc feeding is negatively correlated with enteral pathotype occurrences, which might explain earlier observations concerning the relative increase of Enterobacterales considering the overall intestinal microbiota of piglets during zinc feeding trials while PWD rates have decreased.
Collapse
Affiliation(s)
- Vanessa C. Johanns
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Fereshteh Ghazisaeedi
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Yvonne Pfeifer
- Nosocomial Pathogens and Antibiotic Resistance (FG13), Robert Koch Institute, Wernigerode, Germany
| | - Inga Eichhorn
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Astrid Bethe
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
11
|
Rudolph MJ, Davis SA, Tumer NE, Li XP. Structural basis for the interaction of Shiga toxin 2a with a C-terminal peptide of ribosomal P stalk proteins. J Biol Chem 2020; 295:15588-15596. [PMID: 32878986 PMCID: PMC7667979 DOI: 10.1074/jbc.ac120.015070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
The principal virulence factor of human pathogenic enterohemorrhagic Escherichia coli is Shiga toxin (Stx). Shiga toxin 2a (Stx2a) is the subtype most commonly associated with severe disease outcomes such as hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 subunit (Stx2A1) binds to the conserved elongation factor binding C-terminal domain (CTD) of ribosomal P stalk proteins to inhibit translation. Stx2a holotoxin also binds to the CTD of P stalk proteins because the ribosome-binding site is exposed. We show here that Stx2a binds to an 11-mer peptide (P11) mimicking the CTD of P stalk proteins with low micromolar affinity. We cocrystallized Stx2a with P11 and defined their interactions by X-ray crystallography. We found that the last six residues of P11 inserted into a shallow pocket on Stx2A1 and interacted with Arg-172, Arg-176, and Arg-179, which were previously shown to be critical for binding of Stx2A1 to the ribosome. Stx2a formed a distinct P11-binding mode within a different surface pocket relative to ricin toxin A subunit and trichosanthin, suggesting different ribosome recognition mechanisms for each ribosome inactivating protein (RIP). The binding mode of Stx2a to P11 is also conserved among the different Stx subtypes. Furthermore, the P stalk protein CTD is flexible and adopts distinct orientations and interaction modes depending on the structural differences between the RIPs. Structural characterization of the Stx2a-ribosome complex is important for understanding the role of the stalk in toxin recruitment to the sarcin/ricin loop and may provide a new target for inhibitor discovery.
Collapse
Affiliation(s)
| | - Simon A. Davis
- New York Structural Biology Center, New York, New York, USA
| | - Nilgun E. Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA,For correspondence: Xiao-Ping Li, ; Nilgun E. Tumer,
| | - Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA,For correspondence: Xiao-Ping Li, ; Nilgun E. Tumer,
| |
Collapse
|
12
|
Li Y, Ma X, Li C, Dai X, Zhang L. Occurrence and genomic characterization of ESBL-producing Escherichia coli ST29 strains from swine with abundant virulence genes. Microb Pathog 2020; 148:104483. [PMID: 32918980 DOI: 10.1016/j.micpath.2020.104483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/31/2020] [Accepted: 09/06/2020] [Indexed: 11/19/2022]
Abstract
Food-production animals were considered to be a major reservoir of antimicrobial-resistant bacteria and clinically relevant pathogens. The potential of commensal Escherichia coli from pigs as a source of opportunistic pathogens associated with extraintestinal infections in humans needs to be assessed. In this study, 13 E. coli isolates from an intensive pig farm in China were analyzed using whole genome sequencing followed by in-depth in silico analysis. Genomic analysis showed comprehensive antimicrobial resistance profiles, with each isolate carrying between 4 and 22 antimicrobial resistance genes. Although these E. coli isolates were assigned to low-virulence phylogroup A and B1, 31 different virulence genes were detected at least once in the 13 sequenced isolates. Extraintestinal pathogenic E. coli-associated virulence genes, including iss, iha, tsh and iroN, were found in commensal E. coli isolates in this study. Of note, a large number of virulence genes (n = 22) were identified in ESBL-producing E. coli sequence type (ST) 29 isolates. Our study revealed the presence of comprehensive antimicrobial resistance and virulence gene profiles in commensal E. coli isolates of pigs. The emerged ESBL-producing E. coli ST 29 isolates harboring a high abundance of VAGs highlighted that this new clonal linage may pose a threat to public health.
Collapse
Affiliation(s)
- Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinyue Ma
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chengwen Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyi Dai
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
13
|
Baba H, Kanamori H, Kudo H, Kuroki Y, Higashi S, Oka K, Takahashi M, Yoshida M, Oshima K, Aoyagi T, Tokuda K, Kaku M. Genomic analysis of Shiga toxin-producing Escherichia coli from patients and asymptomatic food handlers in Japan. PLoS One 2019; 14:e0225340. [PMID: 31743366 PMCID: PMC6863542 DOI: 10.1371/journal.pone.0225340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe gastrointestinal disease and colonization among food handlers. In Japan, STEC infection is a notifiable disease, and food handlers are required to undergo routine stool examination for STEC. However, the molecular epidemiology of STEC is not entirely known. We investigated the genomic characteristics of STEC from patients and asymptomatic food handlers in Miyagi Prefecture, Japan. Whole-genome sequencing (WGS) was performed on 65 STEC isolates obtained from 38 patients and 27 food handlers by public health surveillance in Miyagi Prefecture between April 2016 and March 2017. Isolates of O157:H7 ST11 and O26:H11 ST21 were predominant (n = 19, 29%, respectively). Non-O157 isolates accounted for 69% (n = 45) of all isolates. Among 48 isolates with serotypes found in the patients (serotype O157:H7 and 5 non-O157 serotypes, O26:H11, O103:H2, O103:H8, O121:H19 and O145:H28), adhesion genes eae, tir, and espB, and type III secretion system genes espA, espJ, nleA, nleB, and nleC were detected in 41 to 47 isolates (85–98%), whereas isolates with other serotypes found only in food handlers were negative for all of these genes. Non-O157 isolates were especially prevalent among patients younger than 5 years old. Shiga-toxin gene stx1a, adhesion gene efa1, secretion system genes espF and cif, and fimbrial gene lpfA were significantly more frequent among non-O157 isolates from patients than among O157 isolates from patients. The most prevalent resistance genes among our STEC isolates were aminoglycoside resistance genes, followed by sulfamethoxazole/trimethoprim resistance genes. WGS revealed that 20 isolates were divided into 9 indistinguishable core genomes (<5 SNPs), demonstrating clonal expansion of these STEC strains in our region, including an O26:H11 strain with stx1a+stx2a. Non-O157 STEC with multiple virulence genes were prevalent among both patients and food handlers in our region of Japan, highlighting the importance of monitoring the genomic characteristics of STEC.
Collapse
Affiliation(s)
- Hiroaki Baba
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hayami Kudo
- Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | | | - Seiya Higashi
- Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Kentaro Oka
- Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | | | - Makiko Yoshida
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kengo Oshima
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tetsuji Aoyagi
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koichi Tokuda
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mitsuo Kaku
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
14
|
Browne AS, Biggs PJ, Wilkinson DA, Cookson AL, Midwinter AC, Bloomfield SJ, Hranac CR, Rogers LE, Marshall JC, Benschop J, Withers H, Hathaway S, George T, Jaros P, Irshad H, Fong Y, Dufour M, Karki N, Winkleman T, French NP. Use of Genomics to Investigate Historical Importation of Shiga Toxin-Producing Escherichia coli Serogroup O26 and Nontoxigenic Variants into New Zealand. Emerg Infect Dis 2019; 25:489-500. [PMID: 30789138 PMCID: PMC6390770 DOI: 10.3201/eid2503.180899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin-producing Escherichia coli serogroup O26 is an important public health pathogen. Phylogenetic bacterial lineages in a country can be associated with the level and timing of international imports of live cattle, the main reservoir. We sequenced the genomes of 152 E. coli O26 isolates from New Zealand and compared them with 252 E. coli O26 genomes from 14 other countries. Gene variation among isolates from humans, animals, and food was strongly associated with country of origin and stx toxin profile but not isolation source. Time of origin estimates indicate serogroup O26 sequence type 21 was introduced at least 3 times into New Zealand from the 1920s to the 1980s, whereas nonvirulent O26 sequence type 29 strains were introduced during the early 2000s. New Zealand's remarkably fewer introductions of Shiga toxin-producing Escherichia coli O26 compared with other countries (such as Japan) might be related to patterns of trade in live cattle.
Collapse
|
15
|
Effective Surveillance Using Multilocus Variable-Number Tandem-Repeat Analysis and Whole-Genome Sequencing for Enterohemorrhagic Escherichia coli O157. Appl Environ Microbiol 2019; 85:AEM.00728-19. [PMID: 31227555 DOI: 10.1128/aem.00728-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023] Open
Abstract
Due to the potential of enterohemorrhagic Escherichia coli (EHEC) serogroup O157 to cause large food borne outbreaks, national and international surveillance is necessary. For developing an effective method of molecular surveillance, a conventional method, multilocus variable-number tandem-repeat analysis (MLVA), and whole-genome sequencing (WGS) analysis were compared. WGS of 369 isolates of EHEC O157 belonging to 7 major MLVA types and their relatives were subjected to comprehensive in silico typing, core genome single nucleotide polymorphism (cgSNP), and core genome multilocus sequence typing (cgMLST) analyses. The typing resolution was the highest in cgSNP analysis. However, determination of the sequence of the mismatch repair protein gene mutS is necessary because spontaneous deletion of the gene could lead to a hypermutator phenotype. MLVA had sufficient typing resolution for a short-term outbreak investigation and had advantages in rapidity and high throughput. cgMLST showed less typing resolution than cgSNP, but it is less time-consuming and does not require as much computer power. Therefore, cgMLST is suitable for comparisons using large data sets (e.g., international comparison using public databases). In conclusion, screening using MLVA followed by cgMLST and cgSNP analyses would provide the highest typing resolution and improve the accuracy and cost-effectiveness of EHEC O157 surveillance.IMPORTANCE Intensive surveillance for enterohemorrhagic Escherichia coli (EHEC) serogroup O157 is important to detect outbreaks and to prevent the spread of the bacterium. Recent advances in sequencing technology made molecular surveillance using whole-genome sequence (WGS) realistic. To develop rapid, high-throughput, and cost-effective typing methods for real-time surveillance, typing resolution of WGS and a conventional typing method, multilocus variable-number tandem-repeat analysis (MLVA), was evaluated. Nation-level systematic comparison of MLVA, core genome single nucleotide polymorphism (cgSNP), and core genome multilocus sequence typing (cgMLST) indicated that a combination of WGS and MLVA is a realistic approach to improve EHEC O157 surveillance.
Collapse
|
16
|
Montero DA, Canto FD, Velasco J, Colello R, Padola NL, Salazar JC, Martin CS, Oñate A, Blanco J, Rasko DA, Contreras C, Puente JL, Scheutz F, Franz E, Vidal RM. Cumulative acquisition of pathogenicity islands has shaped virulence potential and contributed to the emergence of LEE-negative Shiga toxin-producing Escherichia coli strains. Emerg Microbes Infect 2019; 8:486-502. [PMID: 30924410 PMCID: PMC6455142 DOI: 10.1080/22221751.2019.1595985] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens causing severe gastroenteritis, which may lead to hemolytic uremic syndrome. The Locus of Enterocyte Effacement (LEE), a Pathogenicity Island (PAI), is a major determinant of intestinal epithelium attachment of a group of STEC strains; however, the virulence repertoire of STEC strains lacking LEE, has not been fully characterized. The incidence of LEE-negative STEC strains has increased in several countries, highlighting the relevance of their study. In order to gain insights into the basis for the emergence of LEE-negative STEC strains, we performed a large-scale genomic analysis of 367 strains isolated worldwide from humans, animals, food and the environment. We identified uncharacterized genomic islands, including two PAIs and one Integrative Conjugative Element. Additionally, the Locus of Adhesion and Autoaggregation (LAA) was the most prevalent PAI among LEE-negative strains and we found that it contributes to colonization of the mice intestine. Our comprehensive and rigorous comparative genomic and phylogenetic analyses suggest that the accumulative acquisition of PAIs has played an important, but currently unappreciated role, in the evolution of virulence in these strains. This study provides new knowledge on the pathogenicity of LEE-negative STEC strains and identifies molecular markers for their epidemiological surveillance.
Collapse
Affiliation(s)
- David Arturo Montero
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Felipe Del Canto
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Juliana Velasco
- b Servicio de Urgencia Infantil, Hospital Clínico de la Universidad de Chile "Dr. José Joaquín Aguirre" , Santiago , Chile
| | - Rocío Colello
- c Centro de Investigación Veterinaria Tandil, CONICET-CIC, Facultad de Ciencias Veterinarias, UNCPBA , Tandil , Argentina
| | - Nora Lia Padola
- c Centro de Investigación Veterinaria Tandil, CONICET-CIC, Facultad de Ciencias Veterinarias, UNCPBA , Tandil , Argentina
| | - Juan Carlos Salazar
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Carla San Martin
- d Departamento de Microbiología, Facultad de Ciencias Biológicas , Universidad de Concepción , Concepción , Chile
| | - Angel Oñate
- d Departamento de Microbiología, Facultad de Ciencias Biológicas , Universidad de Concepción , Concepción , Chile
| | - Jorge Blanco
- e Laboratorio de Referencia de E. coli, Facultad de Veterinaria , Universidad de Santiago de Compostela , Lugo , España
| | - David A Rasko
- f Department of Microbiology and Immunology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Carmen Contreras
- g Departamento de Microbiología Molecular , Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , México
| | - Jose Luis Puente
- g Departamento de Microbiología Molecular , Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , México
| | - Flemming Scheutz
- h Department of Bacteria, Parasites and Fungi , The International Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Statens Serum Institut , Copenhagen , Denmark
| | - Eelco Franz
- i National Institute for Public Health, Centre for Infectious Disease Control , Bilthoven , The Netherlands
| | - Roberto M Vidal
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile.,j Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| |
Collapse
|
17
|
González-Escalona N, Allard MA, Brown EW, Sharma S, Hoffmann M. Nanopore sequencing for fast determination of plasmids, phages, virulence markers, and antimicrobial resistance genes in Shiga toxin-producing Escherichia coli. PLoS One 2019; 14:e0220494. [PMID: 31361781 PMCID: PMC6667211 DOI: 10.1371/journal.pone.0220494] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 02/02/2023] Open
Abstract
Whole genome sequencing can provide essential public health information. However, it is now known that widely used short-read methods have the potential to miss some randomly-distributed segments of genomes. This can prevent phages, plasmids, and virulence factors from being detected or properly identified. Here, we compared assemblies of three complete Shiga toxin-producing Escherichia coli (STEC) O26:H11/H- genomes from two different sequence types (ST21 and 29), each acquired using the Nextera XT MiSeq, MinION nanopore-based sequencing, and Pacific Biosciences (PacBio) sequencing. Each closed genome consisted of a single chromosome, approximately 5.7 Mb for CFSAN027343, 5.6 Mb for CFSAN027346, and 5.4 MB for CFSAN027350. However, short-read whole genome sequencing (WGS) using Nextera XT MiSeq failed to identify some virulence genes in plasmids and on the chromosome, both of which were detected using the long-read platforms. Results from long-read MinION and PacBio allowed us to identify differences in plasmid content: a single 88 kb plasmid in CFSAN027343; a 157kb plasmid in CFSAN027350; and two plasmids in CFSAN027346 (one 95 Kb, one 72 Kb). These data enabled rapid characterization of the virulome, detection of antimicrobial genes, and composition/location of Stx phages. Taken together, positive correlations between the two long-read methods for determining plasmids, virulome, antimicrobial resistance genes, and phage composition support MinION sequencing as one accurate and economical option for closing STEC genomes and identifying specific virulence markers.
Collapse
Affiliation(s)
- Narjol González-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
- * E-mail:
| | - Marc A. Allard
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Shashi Sharma
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| |
Collapse
|
18
|
Ogura Y, Seto K, Morimoto Y, Nakamura K, Sato MP, Gotoh Y, Itoh T, Toyoda A, Ohnishi M, Hayashi T. Genomic Characterization of β-Glucuronidase-Positive Escherichia coli O157:H7 Producing Stx2a. Emerg Infect Dis 2019; 24:2219-2227. [PMID: 30457544 PMCID: PMC6256406 DOI: 10.3201/eid2412.180404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among Shiga toxin (Stx)–producing Escherichia coli (STEC) O157:H7 strains, those producing Stx2a cause more severe diseases. Atypical STEC O157:H7 strains showing a β-glucuronidase–positive phenotype (GP STEC O157:H7) have rarely been isolated from humans, mostly from persons with asymptomatic or mild infections; Stx2a-producing strains have not been reported. We isolated, from a patient with bloody diarrhea, a GP STEC O157:H7 strain (PV15-279) that produces Stx2a in addition to Stx1a and Stx2c. Genomic comparison with other STEC O157 strains revealed that PV15-279 recently emerged from the stx1a/stx2c-positive GP STEC O157:H7 clone circulating in Japan. Major virulence genes are shared between typical (β-glucuronidase–negative) and GP STEC O157:H7 strains, and the Stx2-producing ability of PV15-279 is comparable to that of typical STEC O157:H7 strains; therefore, PV15-279 presents a virulence potential similar to that of typical STEC O157:H7. This study reveals the importance of GP O157:H7 as a source of highly pathogenic STEC clones.
Collapse
|
19
|
Microevolution of epidemiological highly relevant non-O157 enterohemorrhagic Escherichia coli of serogroups O26 and O111. Int J Med Microbiol 2018; 308:1085-1095. [DOI: 10.1016/j.ijmm.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/25/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
|
20
|
Karnisova L, Marejkova M, Hrbackova H, Mellmann A, Karch H, Fruth A, Drevinek P, Blahova K, Bielaszewska M, Nunvar J. Attack of the clones: whole genome-based characterization of two closely related enterohemorrhagic Escherichia coli O26 epidemic lineages. BMC Genomics 2018; 19:647. [PMID: 30170539 PMCID: PMC6119250 DOI: 10.1186/s12864-018-5045-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O26:H11/H-, the most common non-O157 serotype causing hemolytic uremic syndrome worldwide, are evolutionarily highly dynamic with new pathogenic clones emerging rapidly. Here, we investigated the population structure of EHEC O26 isolated from patients in several European countries using whole genome sequencing, with emphasis on a detailed analysis of strains of the highly virulent new European clone (nEC) which has spread since 1990s. RESULTS Genome-wide single nucleotide polymorphism (SNP)-based analysis of 32 EHEC O26 isolated in the Czech Republic, Germany, Austria and Italy demonstrated a split of the nEC (ST29C2 clonal group) into two distinct lineages, which we termed, based on their temporal emergence, as "early" nEC and "late" nEC. The evolutionary divergence of the early nEC and late nEC is marked by the presence of 59 and 70 lineage-specific SNPs (synapomorphic mutations) in the genomes of the respective lineages. In silico analyses of publicly available E. coli O26 genomic sequences identified the late nEC lineage worldwide. Using a PCR designed to target the late nEC synapomorphic mutation in the sen/ent gene, we identified the early nEC decline accompanied by the late nEC rise in Germany and the Czech Republic since 2004 and 2013, respectively. Most of the late nEC strains harbor one of two major types of Shiga toxin 2a (Stx2a)-encoding prophages. The type I stx2a-phage is virtually identical to stx2a-phage of EHEC O104:H4 outbreak strain, whereas the type II stx2a-phage is a hybrid of EHEC O104:H4 and EHEC O157:H7 stx2a-phages and carries a novel mutation in Stx2a. Strains harboring these two phage types do not differ by the amounts and biological activities of Stx2a produced. CONCLUSIONS Using SNP-level analyses, we provide the evidence of the evolutionary split of EHEC O26:H11/H- nEC into two distinct lineages, and a recent replacement of the early nEC by the late nEC in Germany and the Czech Republic. PCR targeting the late nEC synapomorphic mutation in ent/sen enables the discrimination of early nEC strains and late nEC strains in clinical and environmental samples, thereby facilitating further investigations of their geographic distribution, prevalence, clinical significance and epidemiology.
Collapse
Affiliation(s)
- Lucia Karnisova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Monika Marejkova
- National Reference Laboratory for E. coli and Shigella, National Institute of Public Health, Prague, Czech Republic
| | - Hana Hrbackova
- Laboratory for Tissue Cultures, National Institute of Public Health, Prague, Czech Republic
| | - Alexander Mellmann
- Institute for Hygiene and the National Consulting Laboratory on Hemolytic Uremic Syndrome, University of Münster, Münster, Germany
| | - Helge Karch
- Institute for Hygiene and the National Consulting Laboratory on Hemolytic Uremic Syndrome, University of Münster, Münster, Germany
| | - Angelika Fruth
- National Reference Center for Salmonella and Other Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kveta Blahova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martina Bielaszewska
- National Reference Laboratory for E. coli and Shigella, National Institute of Public Health, Prague, Czech Republic
| | - Jaroslav Nunvar
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
21
|
Ogura Y, Gotoh Y, Itoh T, Sato MP, Seto K, Yoshino S, Isobe J, Etoh Y, Kurogi M, Kimata K, Maeda E, Piérard D, Kusumoto M, Akiba M, Tominaga K, Kirino Y, Kato Y, Shirahige K, Ooka T, Ishijima N, Lee KI, Iyoda S, Mainil JG, Hayashi T. Population structure of Escherichia coli O26 : H11 with recent and repeated stx2 acquisition in multiple lineages. Microb Genom 2017; 3:e000141. [PMID: 29208163 PMCID: PMC5729918 DOI: 10.1099/mgen.0.000141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
A key virulence factor of enterohaemorrhagic Escherichia coli (EHEC) is the bacteriophage-encoded Shiga toxin (Stx). Stxs are classified into two types, Stx1 and Stx2, and Stx2-producing strains are thought to cause more severe infections than strains producing only Stx1. Although O26 : H11 is the second most prevalent EHEC following O157 : H7, the majority of O26 : H11 strains produce Stx1 alone. However, Stx2-producing O26 strains have increasingly been detected worldwide. Through a large-scale genome analysis, we present a global phylogenetic overview and evolutionary timescale for E. coli O26 : H11. The origin of O26 has been estimated to be 415 years ago. Sequence type 21C1 (ST21C1), one of the two sublineages of ST21, the most predominant O26 : H11 lineage worldwide, emerged 213 years ago from one of the three ST29 sublineages (ST29C2). The other ST21 lineage (ST21C2) emerged 95 years ago from ST21C1. Increases in population size occurred in the late 20th century for all of the O26 lineages, but most remarkably for ST21C2. Analysis of the distribution of stx2-positive strains revealed the recent and repeated acquisition of the stx2 gene in multiple lineages of O26, both in ST21 and ST29. Other major EHEC virulence genes, such as type III secretion system effector genes and plasmid-encoded virulence genes, were well conserved in ST21 compared to ST29. In addition, more antimicrobial-resistance genes have accumulated in the ST21C1 lineage. Although current attention is focused on several highly virulent ST29 clones that have acquired the stx2 gene, there is also a considerable risk that the ST21 lineage could yield highly virulent clones.
Collapse
Affiliation(s)
| | | | | | | | - Kazuko Seto
- Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Shyuji Yoshino
- Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki, Japan
| | | | - Yoshiki Etoh
- Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Mariko Kurogi
- Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki, Japan
| | | | - Eriko Maeda
- Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | | | - Masahiro Kusumoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Masato Akiba
- National Institute of Animal Health, Ibaraki, Japan
| | - Kiyoshi Tominaga
- Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi, Japan
| | | | | | | | | | | | - Ken-ichi Lee
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Sunao Iyoda
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | | | | |
Collapse
|
22
|
Delannoy S, Mariani-Kurkdjian P, Webb HE, Bonacorsi S, Fach P. The Mobilome; A Major Contributor to Escherichia coli stx2-Positive O26:H11 Strains Intra-Serotype Diversity. Front Microbiol 2017; 8:1625. [PMID: 28932209 PMCID: PMC5592225 DOI: 10.3389/fmicb.2017.01625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Shiga toxin-producing Escherichia coli of serotype O26:H11/H- constitute a diverse group of strains and several clones with distinct genetic characteristics have been identified and characterized. Whole genome sequencing was performed using Illumina and PacBio technologies on eight stx2-positive O26:H11 strains circulating in France. Comparative analyses of the whole genome of the stx2-positive O26:H11 strains indicate that several clones of EHEC O26:H11 are co-circulating in France. Phylogenetic analysis of the French strains together with stx2-positive and stx-negative E. coli O26:H11 genomes obtained from Genbank indicates the existence of four clonal complexes (SNP-CCs) separated in two distinct lineages, one of which comprises the "new French clone" (SNP-CC1) that appears genetically closely related to stx-negative attaching and effacing E. coli (AEEC) strains. Interestingly, the whole genome SNP (wgSNP) phylogeny is summarized in the cas gene phylogeny, and a simple qPCR assay targeting the CRISPR array specific to SNP-CC1 (SP_O26-E) can distinguish between the two main lineages. The PacBio sequencing allowed a detailed analysis of the mobile genetic elements (MGEs) of the strains. Numerous MGEs were identified in each strain, including a large number of prophages and up to four large plasmids, representing overall 8.7-19.8% of the total genome size. Analysis of the prophage pool of the strains shows a considerable diversity with a complex history of recombination. Each clonal complex (SNP-CC) is characterized by a unique set of plasmids and phages, including stx-prophages, suggesting evolution through separate acquisition events. Overall, the MGEs appear to play a major role in O26:H11 intra-serotype clonal diversification.
Collapse
Affiliation(s)
- Sabine Delannoy
- Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPathMaisons-Alfort, France
| | - Patricia Mariani-Kurkdjian
- Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coliParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche MédicaleParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris CitéParis, France
| | - Hattie E. Webb
- Department of Animal and Food Sciences, Texas Tech UniversityLubbock, TX, United States
| | - Stephane Bonacorsi
- Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coliParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche MédicaleParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris CitéParis, France
| | - Patrick Fach
- Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPathMaisons-Alfort, France
| |
Collapse
|