1
|
Zykaj E, Abboud C, Asadi P, Warsame S, Almousa H, Milev MP, Greco BM, López-Sánchez M, Bratkovic D, Kachroo AH, Pérez-Jurado LA, Sacher M. A Humanized Yeast Model for Studying TRAPP Complex Mutations; Proof-of-Concept Using Variants from an Individual with a TRAPPC1-Associated Neurodevelopmental Syndrome. Cells 2024; 13:1457. [PMID: 39273027 PMCID: PMC11394476 DOI: 10.3390/cells13171457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Variants in membrane trafficking proteins are known to cause rare disorders with severe symptoms. The highly conserved transport protein particle (TRAPP) complexes are key membrane trafficking regulators that are also involved in autophagy. Pathogenic genetic variants in specific TRAPP subunits are linked to neurological disorders, muscular dystrophies, and skeletal dysplasias. Characterizing these variants and their phenotypes is important for understanding the general and specialized roles of TRAPP subunits as well as for patient diagnosis. Patient-derived cells are not always available, which poses a limitation for the study of these diseases. Therefore, other systems, like the yeast Saccharomyces cerevisiae, can be used to dissect the mechanisms at the intracellular level underlying these disorders. The development of CRISPR/Cas9 technology in yeast has enabled a scar-less editing method that creates an efficient humanized yeast model. In this study, core yeast subunits were humanized by replacing them with their human orthologs, and TRAPPC1, TRAPPC2, TRAPPC2L, TRAPPC6A, and TRAPPC6B were found to successfully replace their yeast counterparts. This system was used for studying the first reported individual with an autosomal recessive disorder caused by biallelic TRAPPC1 variants, a girl with a severe neurodevelopmental disorder and myopathy. We show that the maternal variant (TRAPPC1 p.(Val121Alafs*3)) is non-functional while the paternal variant (TRAPPC1 p.(His22_Lys24del)) is conditional-lethal and affects secretion and non-selective autophagy in yeast. This parallels defects seen in fibroblasts derived from this individual which also showed membrane trafficking defects and altered Golgi morphology, all of which were rescued in the human system by wild-type TRAPPC1. This study suggests that humanized yeast can be an efficient means to study TRAPP subunit variants in the absence of human cells and can assign significance to variants of unknown significance (VUS). This study lays the foundation for characterizing further TRAPP variants through this system, rapidly contributing to disease diagnosis.
Collapse
Affiliation(s)
- Erta Zykaj
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Chelsea Abboud
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Paria Asadi
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Simane Warsame
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Hashem Almousa
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Miroslav P. Milev
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Brittany M. Greco
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Marcos López-Sánchez
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (M.L.-S.); (L.A.P.-J.)
- Hospital del Mar, Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
| | - Drago Bratkovic
- Women’s and Children’s Hospital, Metabolic Clinic, North Adelaide, SA 5006, Australia;
| | - Aashiq H. Kachroo
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
| | - Luis Alberto Pérez-Jurado
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (M.L.-S.); (L.A.P.-J.)
- Hospital del Mar, Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Women’s and Children’s Hospital, Metabolic Clinic, North Adelaide, SA 5006, Australia;
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, QC H4B1R6, Canada; (E.Z.); (C.A.); (P.A.); (S.W.); (H.A.); (M.P.M.); (B.M.G.); (A.H.K.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
2
|
Ma T, Wang Y, Yu L, Liu J, Wang T, Sun P, Feng Y, Zhang D, Shi L, He K, Zhao L, Xu Z. Mea6/cTAGE5 cooperates with TRAPPC12 to regulate PTN secretion and white matter development. iScience 2024; 27:109180. [PMID: 38439956 PMCID: PMC10909747 DOI: 10.1016/j.isci.2024.109180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/11/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Mutations of TRAPPC12 are associated with progressive childhood encephalopathy including abnormal white matter. However, the underlying pathogenesis is still unclear. Here, we found that Trappc12 deficiency in CG4 and oligodendrocyte progenitor cells (OPCs) affects their differentiation and maturation. In addition, TRAPPC12 interacts with Mea6/cTAGE5, and Mea6/cTAGE5 ablation in OPCs affects their proliferation and differentiation, leading to marked hypomyelination, compromised synaptic functionality, and aberrant behaviors in mice. We reveal that TRAPPC12 is associated with COPII components at ER exit site, and Mea6/cTAGE5 cKO disrupts the trafficking pathway by affecting the distribution and/or expression of TRAPPC12, SEC13, SEC31A, and SAR1. Moreover, we observed marked disturbances in the secretion of pleiotrophin (PTN) in Mea6-deficient OPCs. Notably, exogenous PTN supplementation ameliorated the differentiation deficits of these OPCs. Collectively, our findings indicate that the association between TRAPPC12 and MEA6 is important for cargo trafficking and white matter development.
Collapse
Affiliation(s)
- Tiantian Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100083, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100083, China
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, Haidian District, China
| | - Jinghua Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100083, China
| | - Tao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengyu Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100083, China
| | - Yinghang Feng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100083, China
| | - Dan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100083, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100083, China
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, Haidian District, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
3
|
Hentrich L, Parnes M, Lotze TE, Coorg R, de Koning TJ, Nguyen KM, Yip CK, Jungbluth H, Koy A, Dafsari HS. Novel Genetic and Phenotypic Expansion in GOSR2-Related Progressive Myoclonus Epilepsy. Genes (Basel) 2023; 14:1860. [PMID: 37895210 PMCID: PMC10606070 DOI: 10.3390/genes14101860] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Biallelic variants in the Golgi SNAP receptor complex member 2 gene (GOSR2) have been reported in progressive myoclonus epilepsy with neurodegeneration. Typical clinical features include ataxia and areflexia during early childhood, followed by seizures, scoliosis, dysarthria, and myoclonus. Here, we report two novel patients from unrelated families with a GOSR2-related disorder and novel genetic and clinical findings. The first patient, a male compound heterozygous for the GOSR2 splice site variant c.336+1G>A and the novel c.364G>A,p.Glu122Lys missense variant showed global developmental delay and seizures at the age of 2 years, followed by myoclonus at the age of 8 years with partial response to clonazepam. The second patient, a female homozygous for the GOSR2 founder variant p.Gly144Trp, showed only mild fine motor developmental delay and generalized tonic-clonic seizures triggered by infections during adolescence, with seizure remission on levetiracetam. The associated movement disorder progressed atypically slowly during adolescence compared to its usual speed, from initial intention tremor and myoclonus to ataxia, hyporeflexia, dysmetria, and dystonia. These findings expand the genotype-phenotype spectrum of GOSR2-related disorders and suggest that GOSR2 should be included in the consideration of monogenetic causes of dystonia, global developmental delay, and seizures.
Collapse
Affiliation(s)
- Lea Hentrich
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.H.)
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Mered Parnes
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (M.P.); (T.E.L.)
| | - Timothy Edward Lotze
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (M.P.); (T.E.L.)
| | - Rohini Coorg
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (M.P.); (T.E.L.)
| | - Tom J. de Koning
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Pediatrics, Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Kha M. Nguyen
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.M.N.); (C.K.Y.)
| | - Calvin K. Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.M.N.); (C.K.Y.)
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King’s College London, London WC2R 2LS, UK
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.H.)
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.H.)
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
- Department of Paediatric Neurology, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King’s College London, London WC2R 2LS, UK
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
4
|
Tapia D, Cavieres VA, Burgos PV, Cancino J. Impact of interorganelle coordination between the conventional early secretory pathway and autophagy in cellular homeostasis and stress response. Front Cell Dev Biol 2023; 11:1069256. [PMID: 37152281 PMCID: PMC10160633 DOI: 10.3389/fcell.2023.1069256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The conventional early secretory pathway and autophagy are two essential interconnected cellular processes that are crucial for maintaining cellular homeostasis. The conventional secretory pathway is an anabolic cellular process synthesizing and delivering proteins to distinct locations, including different organelles, the plasma membrane, and the extracellular media. On the other hand, autophagy is a catabolic cellular process that engulfs damaged organelles and aberrant cytosolic constituents into the double autophagosome membrane. After fusion with the lysosome and autolysosome formation, this process triggers digestion and recycling. A growing list of evidence indicates that these anabolic and catabolic processes are mutually regulated. While knowledge about the molecular actors involved in the coordination and functional cooperation between these two processes has increased over time, the mechanisms are still poorly understood. This review article summarized and discussed the most relevant evidence about the key molecular players implicated in the interorganelle crosstalk between the early secretory pathway and autophagy under normal and stressful conditions.
Collapse
Affiliation(s)
- Diego Tapia
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Jorge Cancino
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
5
|
Xu Y, Zhang Z, Zhao Y, Zhao C, Shi M, Dong X, Zhang J, Tan L, Zhang L, Zhao Y. TRAPPC1 is essential for the maintenance and differentiation of common myeloid progenitors in mice. EMBO Rep 2023; 24:e55503. [PMID: 36440617 PMCID: PMC9900341 DOI: 10.15252/embr.202255503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Myeloid cell development in bone marrow is essential for the maintenance of peripheral immune homeostasis. However, the role of intracellular protein trafficking pathways during myeloid cell differentiation is currently unknown. By mining bioinformatics data, we identify trafficking protein particle complex subunit 1 (TRAPPC1) as continuously upregulated during myeloid cell development. Using inducible ER-TRAPPC1 knockout mice and bone marrow chimeric mouse models, we demonstrate that TRAPPC1 deficiency causes severe monocyte and neutrophil defects, accompanied by a selective decrease in common myeloid progenitors (CMPs) and subsequent cell subsets in bone marrow. TRAPPC1-deleted CMPs differentiate poorly into monocytes and neutrophils in vivo and in vitro, in addition to exhibiting enhanced endoplasmic reticulum stress and apoptosis via a Ca2+ -mitochondria-dependent pathway. Cell cycle arrest and senescence of TRAPPC1-deleted CMPs are mediated by the activation of pancreatic endoplasmic reticulum kinase and the upregulation of cyclin-dependent kinase inhibitor p21. This study reveals the essential role of TRAPPC1 in the maintenance and differentiation of CMPs and highlights the significance of protein processing and trafficking processes in myeloid cell development.
Collapse
Affiliation(s)
- Yanan Xu
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Zhao
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Chenxu Zhao
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Mingpu Shi
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Xue Dong
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Jiayu Zhang
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Liang Tan
- Kidney Transplantation DepartmentSecond Xiangya Hospital of Central South UniversityChangshaChina
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Yong Zhao
- State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Cunji Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
6
|
Maintaining Golgi Homeostasis: A Balancing Act of Two Proteolytic Pathways. Cells 2022; 11:cells11050780. [PMID: 35269404 PMCID: PMC8909885 DOI: 10.3390/cells11050780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The Golgi apparatus is a central hub for cellular protein trafficking and signaling. Golgi structure and function is tightly coupled and undergoes dynamic changes in health and disease. A crucial requirement for maintaining Golgi homeostasis is the ability of the Golgi to target aberrant, misfolded, or otherwise unwanted proteins to degradation. Recent studies have revealed that the Golgi apparatus may degrade such proteins through autophagy, retrograde trafficking to the ER for ER-associated degradation (ERAD), and locally, through Golgi apparatus-related degradation (GARD). Here, we review recent discoveries in these mechanisms, highlighting the role of the Golgi in maintaining cellular homeostasis.
Collapse
|
7
|
Joiner AMN, Phillips BP, Yugandhar K, Sanford EJ, Smolka MB, Yu H, Miller EA, Fromme JC. Structural basis of TRAPPIII-mediated Rab1 activation. EMBO J 2021; 40:e107607. [PMID: 34018207 PMCID: PMC8204860 DOI: 10.15252/embj.2020107607] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022] Open
Abstract
The GTPase Rab1 is a master regulator of the early secretory pathway and is critical for autophagy. Rab1 activation is controlled by its guanine nucleotide exchange factor, the multisubunit TRAPPIII complex. Here, we report the 3.7 Å cryo-EM structure of the Saccharomyces cerevisiae TRAPPIII complex bound to its substrate Rab1/Ypt1. The structure reveals the binding site for the Rab1/Ypt1 hypervariable domain, leading to a model for how the complex interacts with membranes during the activation reaction. We determined that stable membrane binding by the TRAPPIII complex is required for robust activation of Rab1/Ypt1 in vitro and in vivo, and is mediated by a conserved amphipathic α-helix within the regulatory Trs85 subunit. Our results show that the Trs85 subunit serves as a membrane anchor, via its amphipathic helix, for the entire TRAPPIII complex. These findings provide a structural understanding of Rab activation on organelle and vesicle membranes.
Collapse
Affiliation(s)
- Aaron MN Joiner
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | | | - Kumar Yugandhar
- Department of Computational Biology/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Ethan J Sanford
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Haiyuan Yu
- Department of Computational Biology/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | | | - J Christopher Fromme
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
8
|
Tang BL. Defects in early secretory pathway transport machinery components and neurodevelopmental disorders. Rev Neurosci 2021; 32:851-869. [PMID: 33781010 DOI: 10.1515/revneuro-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The early secretory pathway, provisionally comprising of vesicular traffic between the endoplasmic reticulum (ER) and the Golgi apparatus, occurs constitutively in mammalian cells. Critical for a constant supply of secretory and plasma membrane (PM) materials, the pathway is presumably essential for general cellular function and survival. Neurons exhibit a high intensity in membrane dynamics and protein/lipid trafficking, with differential and polarized trafficking towards the somatodendritic and axonal PM domains. Mutations in genes encoding early secretory pathway membrane trafficking machinery components are known to result in neurodevelopmental or neurological disorders with disease manifestation in early life. Here, such rare disorders associated with autosomal recessive mutations in coat proteins, membrane tethering complexes and membrane fusion machineries responsible for trafficking in the early secretory pathway are summarily discussed. These mutations affected genes encoding subunits of coat protein complex I and II, subunits of transport protein particle (TRAPP) complexes, members of the YIP1 domain family (YIPF) and a SNAP receptor (SNARE) family member. Why the ubiquitously present and constitutively acting early secretory pathway machinery components could specifically affect neurodevelopment is addressed, with the plausible underlying disease etiologies and neuropathological mechanisms resulting from these mutations explored.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore117597, Singapore
| |
Collapse
|
9
|
Garcia VJ, Xu SL, Ravikumar R, Wang W, Elliott L, Gonzalez E, Fesenko M, Altmann M, Brunschweiger B, Falter-Braun P, Moore I, Burlingame A, Assaad FF, Wang ZY. TRIPP Is a Plant-Specific Component of the Arabidopsis TRAPPII Membrane Trafficking Complex with Important Roles in Plant Development. THE PLANT CELL 2020; 32:2424-2443. [PMID: 32371545 PMCID: PMC7346556 DOI: 10.1105/tpc.20.00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/25/2020] [Accepted: 04/23/2020] [Indexed: 05/23/2023]
Abstract
How the membrane trafficking system spatially organizes intracellular activities and intercellular signaling networks in plants is not well understood. Transport Protein Particle (TRAPP) complexes play key roles in the selective delivery of membrane vesicles to various subcellular compartments in yeast and animals but remain to be fully characterized in plants. Here, we investigated TRAPP complexes in Arabidopsis (Arabidopsis thaliana) using immunoprecipitation followed by quantitative mass spectrometry analysis of AtTRS33, a conserved core component of all TRAPP complexes. We identified 14 AtTRS33-interacting proteins, including homologs of all 13 TRAPP components in mammals and a protein that has homologs only in multicellular photosynthetic organisms and is thus named TRAPP-Interacting Plant Protein (TRIPP). TRIPP specifically associates with the TRAPPII complex through binary interactions with two TRAPPII-specific subunits. TRIPP colocalized with a subset of TRS33 compartments and trans-Golgi network markers in a TRS33-dependent manner. Loss-of-function tripp mutants exhibited dwarfism, sterility, partial photomorphogenesis in the dark, reduced polarity of the auxin transporter PIN2, incomplete cross wall formation, and altered localization of a TRAPPII-specific component. Therefore, TRIPP is a plant-specific component of the TRAPPII complex with important functions in trafficking, plant growth, and development.
Collapse
Affiliation(s)
- Veder J Garcia
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Raksha Ravikumar
- Plant Science Department, Botany, Technische Universität München, 85354 Freising, Germany
| | - Wenfei Wang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liam Elliott
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Efren Gonzalez
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Mary Fesenko
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Melina Altmann
- Institute of Network Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
| | - Barbara Brunschweiger
- Plant Science Department, Botany, Technische Universität München, 85354 Freising, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
- Faculty of Biology, Microbe-Host-Interactions, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Farhah F Assaad
- Plant Science Department, Botany, Technische Universität München, 85354 Freising, Germany
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
10
|
Zhang C, Li C, Siu GKY, Luo X, Yu S. Distinct Roles of TRAPPC8 and TRAPPC12 in Ciliogenesis via Their Interactions With OFD1. Front Cell Dev Biol 2020; 8:148. [PMID: 32258032 PMCID: PMC7090148 DOI: 10.3389/fcell.2020.00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
The transport protein particle (TRAPP) complex was initially identified as a tethering factor for COPII vesicle. Subsequently, three forms (TRAPPI, II, and III) have been found and TRAPPIII has been reported to serve as a regulator in autophagy. This study investigates a new role of mammalian TRAPPIII in ciliogenesis. We found a ciliopathy protein, oral-facial-digital syndrome 1 (OFD1), interacting with the TRAPPIII-specific subunits TRAPPC8 and TRAPPC12. TRAPPC8 is necessary for the association of OFD1 with pericentriolar material 1 (PCM1). Its depletion reduces the extent of colocalized signals between OFD1 and PCM1, but does not compromise the structural integrity of centriolar satellites. The interaction between TRAPPC8 and OFD1 inhibits that between OFD1 and TRAPPC12, suggesting different roles of TRAPPIII-specific subunits in ciliogenesis and explaining the differences in cilium lengths in TRAPPC8-depleted and TRAPPC12-depleted hTERT-RPE1 cells. On the other hand, TRAPPC12 depletion causes increased ciliary length because TRAPPC12 is required for the disassembly of primary cilia. Overall, this study has revealed different roles of TRAPPC8 and TRAPPC12 in the assembly of centriolar satellites and demonstrated a possible tethering role of TRAPPIII during ciliogenesis.
Collapse
Affiliation(s)
- Caiyun Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Gavin Ka Yu Siu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Xiaomin Luo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Sidney Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| |
Collapse
|
11
|
Zhang Z, Bai M, Barbosa GO, Chen A, Wei Y, Luo S, Wang X, Wang B, Tsukui T, Li H, Sheppard D, Kornberg TB, Ma DK. Broadly conserved roles of TMEM131 family proteins in intracellular collagen assembly and secretory cargo trafficking. SCIENCE ADVANCES 2020; 6:eaay7667. [PMID: 32095531 PMCID: PMC7015688 DOI: 10.1126/sciadv.aay7667] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Collagen is the most abundant protein in animals. Its dysregulation contributes to aging and many human disorders, including pathological tissue fibrosis in major organs. How premature collagen proteins in the endoplasmic reticulum (ER) assemble and route for secretion remains molecularly undefined. From an RNA interference screen, we identified an uncharacterized Caenorhabditis elegans gene tmem-131, deficiency of which impairs collagen production and activates ER stress response. We find that amino termini of human TMEM131 contain bacterial PapD chaperone-like domains, which recruit premature collagen monomers for proper assembly and secretion. Carboxy termini of TMEM131 interact with TRAPPC8, a component of the TRAPP tethering complex, to drive collagen cargo trafficking from ER to the Golgi. We provide evidence that previously undescribed roles of TMEM131 in collagen recruitment and secretion are evolutionarily conserved in C. elegans, Drosophila, and humans.
Collapse
Affiliation(s)
- Zhe Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Meirong Bai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guilherme Oliveira Barbosa
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuehua Wei
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shuo Luo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bingying Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dean Sheppard
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas B. Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Van Bergen NJ, Guo Y, Al-Deri N, Lipatova Z, Stanga D, Zhao S, Murtazina R, Gyurkovska V, Pehlivan D, Mitani T, Gezdirici A, Antony J, Collins F, Willis MJH, Coban Akdemir ZH, Liu P, Punetha J, Hunter JV, Jhangiani SN, Fatih JM, Rosenfeld JA, Posey JE, Gibbs RA, Karaca E, Massey S, Ranasinghe TG, Sleiman P, Troedson C, Lupski JR, Sacher M, Segev N, Hakonarson H, Christodoulou J. Deficiencies in vesicular transport mediated by TRAPPC4 are associated with severe syndromic intellectual disability. Brain 2020; 143:112-130. [PMID: 31794024 PMCID: PMC6935753 DOI: 10.1093/brain/awz374] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Yiran Guo
- Center for Applied Genomics (CAG) at the Children’s Hospital of Philadelphia (CHOP), Philadelphia, USA
| | - Noraldin Al-Deri
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniela Stanga
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sarah Zhao
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Rakhilya Murtazina
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Valeriya Gyurkovska
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, 34303, Turkey
| | - Jayne Antony
- TY Nelson Department of Neurology and Neurosurgery, Children’s Hospital at Westmead, Sydney, Australia
| | - Felicity Collins
- Western Sydney Genetics Program, Children’s Hospital at Westmead, Sydney, Australia
- Medical Genomics Department, Royal Prince Alfred Hospital, Sydney, Australia
| | - Mary J H Willis
- Department of Pediatrics, Naval Medical Center San Diego, San Diego, California, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ender Karaca
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Thisara G Ranasinghe
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Patrick Sleiman
- Center for Applied Genomics (CAG) at the Children’s Hospital of Philadelphia (CHOP), Philadelphia, USA
| | - Chris Troedson
- TY Nelson Department of Neurology and Neurosurgery, Children’s Hospital at Westmead, Sydney, Australia
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG) at the Children’s Hospital of Philadelphia (CHOP), Philadelphia, USA
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, VIC, Australia
- Kids Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
13
|
Kalde M, Elliott L, Ravikumar R, Rybak K, Altmann M, Klaeger S, Wiese C, Abele M, Al B, Kalbfuß N, Qi X, Steiner A, Meng C, Zheng H, Kuster B, Falter-Braun P, Ludwig C, Moore I, Assaad FF. Interactions between Transport Protein Particle (TRAPP) complexes and Rab GTPases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:279-297. [PMID: 31264742 DOI: 10.1111/tpj.14442] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
Transport Protein Particle II (TRAPPII) is essential for exocytosis, endocytosis, protein sorting and cytokinesis. In spite of a considerable understanding of its biological role, little information is known about Arabidopsis TRAPPII complex topology and molecular function. In this study, independent proteomic approaches initiated with TRAPP components or Rab-A GTPase variants converge on the TRAPPII complex. We show that the Arabidopsis genome encodes the full complement of 13 TRAPPC subunits, including four previously unidentified components. A dimerization model is proposed to account for binary interactions between TRAPPII subunits. Preferential binding to dominant negative (GDP-bound) versus wild-type or constitutively active (GTP-bound) RAB-A2a variants discriminates between TRAPPII and TRAPPIII subunits and shows that Arabidopsis complexes differ from yeast but resemble metazoan TRAPP complexes. Analyzes of Rab-A mutant variants in trappii backgrounds provide genetic evidence that TRAPPII functions upstream of RAB-A2a, allowing us to propose that TRAPPII is likely to behave as a guanine nucleotide exchange factor (GEF) for the RAB-A2a GTPase. GEFs catalyze exchange of GDP for GTP; the GTP-bound, activated, Rab then recruits a diverse local network of Rab effectors to specify membrane identity in subsequent vesicle fusion events. Understanding GEF-Rab interactions will be crucial to unravel the co-ordination of plant membrane traffic.
Collapse
Affiliation(s)
- Monika Kalde
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Liam Elliott
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Raksha Ravikumar
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Katarzyna Rybak
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Melina Altmann
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, 85764, Germany
| | - Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Christian Wiese
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Miriam Abele
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Benjamin Al
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Nils Kalbfuß
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Xingyun Qi
- Department of Biology, McGill University, Montreal, H3B 1A1, Canada
| | - Alexander Steiner
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Chen Meng
- BayBioMS, Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, 85354, Germany
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, H3B 1A1, Canada
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, 85764, Germany
- Faculty of Biology, Microbe-Host-Interactions, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, 82152, Germany
| | - Christina Ludwig
- BayBioMS, Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, 85354, Germany
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Farhah F Assaad
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| |
Collapse
|
14
|
Milev MP, Stanga D, Schänzer A, Nascimento A, Saint-Dic D, Ortez C, Natera-de Benito D, Barrios DG, Colomer J, Badosa C, Jou C, Gallano P, Gonzalez-Quereda L, Töpf A, Johnson K, Straub V, Hahn A, Sacher M, Jimenez-Mallebrera C. Characterization of three TRAPPC11 variants suggests a critical role for the extreme carboxy terminus of the protein. Sci Rep 2019; 9:14036. [PMID: 31575891 PMCID: PMC6773699 DOI: 10.1038/s41598-019-50415-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
TRAPPC11 was identified as a component of the TRAPP III complex that functions in membrane trafficking and autophagy. Variants in TRAPPC11 have been reported to be associated with a broad spectrum of phenotypes but all affected individuals display muscular pathology. Identifying additional variants will further our understanding of the clinical spectrum of phenotypes and will reveal regions of the protein critical for its functions. Here we report three individuals from unrelated families that have bi-allellic TRAPPC11 variants. Subject 1 harbors a compound heterozygous variant (c.1287 + 5G > A and c.3379_3380insT). The former variant results in a partial deletion of the foie gras domain (p.Ala372_Ser429del), while the latter variant results in a frame-shift and extension at the carboxy terminus (p.Asp1127Valfs*47). Subjects 2 and 3 both harbour a homozygous missense variant (c.2938G > A; p.Gly980Arg). Fibroblasts from all three subjects displayed membrane trafficking defects manifested as delayed endoplasmic reticulum (ER)-to-Golgi transport and/or a delay in protein exit from the Golgi. All three individuals also show a defect in glycosylation of an ER-resident glycoprotein. However, only the compound heterozygous subject displayed an autophagic flux defect. Collectively, our characterization of these individuals with bi-allelic TRAPPC11 variants highlights the functional importance of the carboxy-terminal portion of the protein.
Collapse
Affiliation(s)
- Miroslav P Milev
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Daniela Stanga
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Djenann Saint-Dic
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Carlos Ortez
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Desiré González Barrios
- Servicio de Pediatría, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jaume Colomer
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carmen Badosa
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Pathology Department and Biobank, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Pia Gallano
- U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lidia Gonzalez-Quereda
- U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Katherine Johnson
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany.
| | - Michael Sacher
- Concordia University, Department of Biology, Montreal, Quebec, Canada. .,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, Canada.
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain. .,U705 and U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Singh S, Kumari R, Chinchwadkar S, Aher A, Matheshwaran S, Manjithaya R. Exocyst Subcomplex Functions in Autophagosome Biogenesis by Regulating Atg9 Trafficking. J Mol Biol 2019; 431:2821-2834. [PMID: 31103773 PMCID: PMC6698439 DOI: 10.1016/j.jmb.2019.04.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 01/16/2023]
Abstract
During autophagy, double-membrane vesicles called autophagosomes capture and degrade the intracellular cargo. The de novo formation of autophagosomes requires several vesicle transport and membrane fusion events which are not completely understood. We studied the involvement of exocyst, an octameric tethering complex, which has a primary function in tethering post-Golgi secretory vesicles to plasma membrane, in autophagy. Our findings indicate that not all subunits of exocyst are involved in selective and general autophagy. We show that in the absence of autophagy specific subunits, autophagy arrest is accompanied by accumulation of incomplete autophagosome-like structures. In these mutants, impaired Atg9 trafficking leads to decreased delivery of membrane to the site of autophagosome biogenesis thereby impeding the elongation and completion of the autophagosomes. The subunits of exocyst, which are dispensable for autophagic function, do not associate with the autophagy specific subcomplex of exocyst.
Collapse
Affiliation(s)
- Sunaina Singh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Ruchika Kumari
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Sarika Chinchwadkar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Amol Aher
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Saravanan Matheshwaran
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India.
| |
Collapse
|
16
|
Sacher M, Shahrzad N, Kamel H, Milev MP. TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic 2018; 20:5-26. [PMID: 30152084 DOI: 10.1111/tra.12615] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
Abstract
The movement of proteins between cellular compartments requires the orchestrated actions of many factors including Rab family GTPases, Soluble NSF Attachment protein REceptors (SNAREs) and so-called tethering factors. One such tethering factor is called TRAnsport Protein Particle (TRAPP), and in humans, TRAPP proteins are distributed into two related complexes called TRAPP II and III. Although thought to act as a single unit within the complex, in the past few years it has become evident that some TRAPP proteins function independently of the complex. Consistent with this, variations in the genes encoding these proteins result in a spectrum of human diseases with diverse, but partially overlapping, phenotypes. This contrasts with other tethering factors such as COG, where variations in the genes that encode its subunits all result in an identical phenotype. In this review, we present an up-to-date summary of all the known disease-related variations of genes encoding TRAPP-associated proteins and the disorders linked to these variations which we now call TRAPPopathies.
Collapse
Affiliation(s)
- Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nassim Shahrzad
- Department of Medicine, University of California, San Francisco, California
| | - Hiba Kamel
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Miroslav P Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Riedel F, Galindo A, Muschalik N, Munro S. The two TRAPP complexes of metazoans have distinct roles and act on different Rab GTPases. J Cell Biol 2017; 217:601-617. [PMID: 29273580 PMCID: PMC5800803 DOI: 10.1083/jcb.201705068] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 12/03/2022] Open
Abstract
In yeast, the TRAPP complexes activate Rab1 with TRAPPII also activating Rab11, but less is known about the two TRAPPs in metazoans. Riedel et al. show that in Drosophila melanogaster, TRAPPIII is an essential Rab1 activator, and TRAPPII activates Rab1 and Rab11 and becomes essential when an unrelated Rab11 activator is deleted. Originally identified in yeast, transport protein particle (TRAPP) complexes are Rab GTPase exchange factors that share a core set of subunits. TRAPPs were initially found to act on Ypt1, the yeast orthologue of Rab1, but recent studies have found that yeast TRAPPII can also activate the Rab11 orthologues Ypt31/32. Mammals have two TRAPP complexes, but their role is less clear, and they contain subunits that are not found in the yeast complexes but are essential for cell growth. To investigate TRAPP function in metazoans, we show that Drosophila melanogaster have two TRAPP complexes similar to those in mammals and that both activate Rab1, whereas one, TRAPPII, also activates Rab11. TRAPPII is not essential but becomes so in the absence of the gene parcas that encodes the Drosophila orthologue of the SH3BP5 family of Rab11 guanine nucleotide exchange factors (GEFs). Thus, in metazoans, Rab1 activation requires TRAPP subunits not found in yeast, and Rab11 activation is shared by TRAPPII and an unrelated GEF that is metazoan specific.
Collapse
Affiliation(s)
- Falko Riedel
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Antonio Galindo
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Nadine Muschalik
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Sean Munro
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| |
Collapse
|
18
|
Thomas LL, Joiner AMN, Fromme JC. The TRAPPIII complex activates the GTPase Ypt1 (Rab1) in the secretory pathway. J Cell Biol 2017; 217:283-298. [PMID: 29109089 PMCID: PMC5748984 DOI: 10.1083/jcb.201705214] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/01/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022] Open
Abstract
The TRAPP complexes are nucleotide exchange factors that activate Rab GTPases, and four different versions of TRAPP have been reported. Thomas et al. show that only two versions of TRAPP are detectable in normal cells and demonstrate that the TRAPPIII complex regulates Golgi trafficking in addition to its established role in autophagy. Rab GTPases serve as molecular switches to regulate eukaryotic membrane trafficking pathways. The transport protein particle (TRAPP) complexes activate Rab GTPases by catalyzing GDP/GTP nucleotide exchange. In mammalian cells, there are two distinct TRAPP complexes, yet in budding yeast, four distinct TRAPP complexes have been reported. The apparent differences between the compositions of yeast and mammalian TRAPP complexes have prevented a clear understanding of the specific functions of TRAPP complexes in all cell types. In this study, we demonstrate that akin to mammalian cells, wild-type yeast possess only two TRAPP complexes, TRAPPII and TRAPPIII. We find that TRAPPIII plays a major role in regulating Rab activation and trafficking at the Golgi in addition to its established role in autophagy. These disparate pathways share a common regulatory GTPase Ypt1 (Rab1) that is activated by TRAPPIII. Our findings lead to a simple yet comprehensive model for TRAPPIII function in both normal and starved eukaryotic cells.
Collapse
Affiliation(s)
- Laura L Thomas
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Aaron M N Joiner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
19
|
TFG facilitates outer coat disassembly on COPII transport carriers to promote tethering and fusion with ER-Golgi intermediate compartments. Proc Natl Acad Sci U S A 2017; 114:E7707-E7716. [PMID: 28851831 DOI: 10.1073/pnas.1709120114] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conserved coat protein complex II (COPII) mediates the initial steps of secretory protein trafficking by assembling onto subdomains of the endoplasmic reticulum (ER) in two layers to generate cargo-laden transport carriers that ultimately fuse with an adjacent ER-Golgi intermediate compartment (ERGIC). Here, we demonstrate that Trk-fused gene (TFG) binds directly to the inner layer of the COPII coat. Specifically, the TFG C terminus interacts with Sec23 through a shared interface with the outer COPII coat and the cargo receptor Tango1/cTAGE5. Our findings indicate that TFG binding to Sec23 outcompetes these other associations in a concentration-dependent manner and ultimately promotes outer coat dissociation. Additionally, we demonstrate that TFG tethers vesicles harboring the inner COPII coat, which contributes to their clustering between the ER and ERGIC in cells. Together, our studies define a mechanism by which COPII transport carriers are retained locally at the ER/ERGIC interface after outer coat disassembly, which is a prerequisite for fusion with ERGIC membranes.
Collapse
|