1
|
Bian Y, Zhao K, Hu T, Tan C, Liang R, Weng X. A Se Nanoparticle/MgFe-LDH Composite Nanosheet as a Multifunctional Platform for Osteosarcoma Eradication, Antibacterial and Bone Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403791. [PMID: 38958509 PMCID: PMC11434235 DOI: 10.1002/advs.202403791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Despite advances in treating osteosarcoma, postoperative tumor recurrence, periprosthetic infection, and critical bone defects remain critical concerns. Herein, the growth of selenium nanoparticles (SeNPs) onto MgFe-LDH nanosheets (LDH) is reported to develop a multifunctional nanocomposite (LDH/Se) and further modification of the nanocomposite on a bioactive glass scaffold (BGS) to obtain a versatile platform (BGS@LDH/Se) for comprehensive postoperative osteosarcoma management. The uniform dispersion of negatively charged SeNPs on the LDH surface restrains toxicity-inducing aggregation and inactivation, thus enhancing superoxide dismutase (SOD) activation and superoxide anion radical (·O2 -)-H2O2 conversion. Meanwhile, Fe3+ within the LDH nanosheets can be reduced to Fe2+ by depleting glutathione (GSH) in the tumor microenvironments (TME), which can catalyze H2O2 into highly toxic reactive oxygen species. More importantly, incorporating SeNPs significantly promotes the anti-bacterial and osteogenic properties of BGS@LDH/Se. Thus, the developed BGS@LDH/Se platform can simultaneously inhibit tumor recurrence and periprosthetic infection as well as promote bone regeneration, thus holding great potential for postoperative "one-stop-shop" management of patients who need osteosarcoma resection and scaffold implantation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Kexin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| |
Collapse
|
2
|
Xu H, Zeng Q, Zou K, Huang H, Chen J, Wang P, Yuan W, Xiao L, Tong P, Jin H. Glucocorticoid-induced activation of NOX/ROS/NF-κB signaling in MSCs contributes to the development of GONFH. Apoptosis 2023; 28:1332-1345. [PMID: 37306805 PMCID: PMC10258081 DOI: 10.1007/s10495-023-01860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND This study aimed to investigate the pathogenic factors of glucocorticoids (GCs)-induced osteonecrosis of the femoral head (GONFH) and its underlying pathogenesis in vivo and in vitro. METHODS Radiographical (µCT) scanning, histopathological, immunohistochemical, reactive oxygen species (ROS) and tunel staining were conducted on GONFH patients and rats. ROS, tunel, flow cytometry, alkaline phosphatase, Oil red O staining, reverse transcription‑quantitative PCR and western blotting were applied to elucidate the exact pathogenesis mechanism. RESULTS Clinical and animal studies demonstrated increased levels of ROS, aggravated oxidative stress (OS) microenvironment, augmented apoptosis and imbalance in osteogenic/lipogenic in the GONFH group compared to the control group. The fate of mesenchymal stem cells (MSCs) directed by GCs is a crucial factor in determining GONFH. In vitro studies further revealed that GCs promote excessive ROS production through the expression of NOX family proteins, leading to a deterioration of the OS microenvironment in MSCs, ultimately resulting in apoptosis and imbalance in osteogenic/lipogenic differentiation. Furthermore, our results confirmed that the NOX inhibitor-diphenyleneiodonium chloride and the NF-κB inhibitor-BAY 11-7082 ameliorated apoptosis and osteogenic/lipogenic differentiation imbalance of MSCs induced by an excess of GCs. CONCLUSION We demonstrated for the first time that the aggravation of the OS microenvironment in MSCs caused by high doses of GCs leading to apoptosis and differentiation imbalance is a crucial factor in the pathogenesis of GONFH, mediated through activating the NOX/ROS/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huihui Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Qinghe Zeng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Kaiao Zou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Haipeng Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Jiali Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Pinger Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Wenhua Yuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Luwei Xiao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Hongting Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| |
Collapse
|
3
|
Quan H, Ren C, He Y, Wang F, Dong S, Jiang H. Application of Biomaterials in Treating Early Osteonecrosis of the Femoral Head: Research Progress and Future Perspectives. Acta Biomater 2023; 164:15-73. [PMID: 37080444 DOI: 10.1016/j.actbio.2023.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Osteonecrosis of the femoral head (ONFH), a progressive pathological process of femoral head ischemia and osteocyte necrosis, is a refractory orthopedic disease caused by multiple etiologies and there is no complete cure at present. With the extension of ONFH duration, osteocyte apoptosis and trabecular bone loss can decrease the load-bearing capacity of the femoral head, which leads to the collapse of the articular cartilage and subchondral bone. Therefore, an urgent clinical need exists to develop effective treatment strategies of early-stage ONFH for maintaining the hip joint function and preventing femoral head collapse. In recent years, extensive attention has been paid to the application of diverse biomaterials in treating early ONFH for sustaining the normal morphology and function of the autologous femoral head, and slowing disease progression. Herein, we review the research progress of bone grafts, metallic materials, bioceramics, bioglasses and polymer materials for early ONFH treatment, and discuss the biological mechanisms of bone repair and regeneration in the femoral-head necrotic area. We propose suggestions for future research directions, from a special perspective of improving the local microenvironment in femoral head by facilitating vessel-associated osteoclasts (VAOs) generation and coupling of bone-specific angiogenesis and osteogenesis, as well as inhibiting bone-associated osteoclasts (BAOs) and BAO-mediated bone resorption. This review can provide ideas for the research, development, and clinical application of biomaterials for treating early ONFH. STATEMENT OF SIGNIFICANCE: We believe that at least three aspects of this manuscript make it interesting to readers of the Acta Biomaterialia. First, we briefly summarize the incidence, pathogenesis, risk factors, classification criteria and treatment of early osteonecrosis of the femoral head (ONFH). Second, we review the research progress in biomaterials for early ONFH treatment and the biological mechanisms of bone repair and regeneration in femoral-head necrotic area. Third, we propose future research progress on improving the local microenvironment in femoral head by facilitating vessel-associated osteoclasts generation and coupling of bone-specific angiogenesis and osteogenesis, as well as inhibiting bone-associated osteoclasts and bone resorption. We hope this review can provide ideas for the research, development, and clinical application of biomaterials for treating early ONFH.
Collapse
Affiliation(s)
- Hongyu Quan
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chencan Ren
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuwei He
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Xu H, Fang L, Zeng Q, Chen J, Ling H, Xia H, Ge Q, Wu C, Zou K, Wang X, Wang P, Yuan W, Dong R, Hu S, Xiao L, He B, Tong P, Jin H. Glycyrrhizic acid alters the hyperoxidative stress-induced differentiation commitment of MSCs by activating the Wnt/β-catenin pathway to prevent SONFH. Food Funct 2023; 14:946-960. [PMID: 36541285 DOI: 10.1039/d2fo02337g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aimed to examine the in vivo and in vitro therapeutic effects of glycyrrhizic acid (GA) on steroid-induced osteonecrosis of the femoral head (SONFH), which is caused by the overuse of glucocorticoids (GCs). Clinically, we identified elevated oxidative stress (OS) levels and an imbalance in osteolipogenic homeostasis in SONFH patients compared to femoral neck fracture (FNF) patients. In vivo, we established experimental SONFH in rats via lipopolysaccharides (LPSs) combined with methylprednisolone (MPS). We showed that GA and Wnt agonist-S8320 alleviated SONFH, as evidenced by the reduced microstructural and histopathological alterations in the subchondral bone of the femoral head and the decreased levels of OS in rat models. In vitro, GA reduced dexamethasone (Dex)-induced excessive NOX4 and OS levels by activating the Wnt/β-catenin pathway, thereby promoting the osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibiting lipogenic differentiation. In addition, GA regulated the expression levels of the key transcription factors downstream of this pathway, Runx2 and PPARγ, thus maintaining osteolipogenic homeostasis. In summary, we demonstrated for the first time that GA modulates the osteolipogenic differentiation commitment of MSCs induced by excessive OS through activating the Wnt/β-catenin pathway, thereby ameliorating SONFH.
Collapse
Affiliation(s)
- Huihui Xu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Liang Fang
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Qinghe Zeng
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Jiali Chen
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Houfu Ling
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Hanting Xia
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Qinwen Ge
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Congzi Wu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Kaiao Zou
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Xu Wang
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Pinger Wang
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Wenhua Yuan
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Rui Dong
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Songfeng Hu
- Department of Orthopaedics and Traumatology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, 312000, China
| | - Luwei Xiao
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Bangjian He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Peijian Tong
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Hongting Jin
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
5
|
Zhang F, Luo H, Peng W, Wang L, Wang T, Xie Z, Zhang J, Dong W, Zheng X, Liu G, Zhu X, Kang Q, Tian X. Hypoxic condition induced H3K27me3 modification of the LncRNA Tmem235 promoter thus supporting apoptosis of BMSCs. Apoptosis 2022; 27:762-777. [PMID: 35779185 PMCID: PMC9482900 DOI: 10.1007/s10495-022-01747-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have strong regenerative potential and show good application prospects for treating clinical diseases. However, in the process of BMSC transplantation for treating ischemic and hypoxic diseases, BMSCs have high rates of apoptosis in the hypoxic microenvironment of transplantation, which significantly affects the transplantation efficacy. Our previous studies have confirmed the key role of long non-coding RNA Tmem235 (LncRNA Tmem235) in the process of hypoxia-induced BMSC apoptosis and its downstream regulatory mechanism, but the upstream mechanism by which hypoxia regulates LncRNA Tmem235 expression to induce BMSC apoptosis is still unclear. Under hypoxic conditions, we found that the level of LncRNA Tmem235 promoter histone H3 lysine 27 trimethylation modification (H3K27me3) was significantly increased by CHIP-qPCR. Moreover, H3K27me3 cooperated with LncRNA Tmem235 promoter DNA methylation to inhibit the expression of LncRNA Tmem235 and promote apoptosis of BMSCs. To study the mechanism of hypoxia-induced modification of LncRNA Tmem235 promoter H3K27me3 in the hypoxia model of BMSCs, we detected the expression of H3K27 methylase and histone demethylase and found that only histone methylase enhancer of zeste homolog 2 (EZH2) expression was significantly upregulated. Knockdown of EZH2 significantly decreased the level of H3K27me3 modification in the LncRNA Tmem235 promoter. The EZH2 promoter region contains a hypoxia-responsive element (HRE) that interacts with hypoxia-inducible factor-1alpha (HIF-1α), which is overexpressed under hypoxic conditions, thereby promoting its overexpression. In summary, hypoxia promotes the modification of the LncRNA Tmem235 promoter H3K27me3 through the HIF-1α/EZH2 signaling axis, inhibits the expression of LncRNA Tmem235, and leads to hypoxic apoptosis of BMSCs. Our findings improve the regulatory mechanism of LncRNA Tmem235 during hypoxic apoptosis of BMSCs and provide a more complete theoretical pathway for targeting LncRNA to inhibit hypoxic apoptosis of BMSCs.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Lei Wang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaohan Zheng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Gang Liu
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Qinglin Kang
- Department of Orthopedics, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Xiaobin Tian
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
6
|
Ma J, Sun Y, Zhou H, Li X, Bai Y, Liang C, Jia X, Zhang P, Yang L. Animal Models of Femur Head Necrosis for Tissue Engineering and Biomaterials Research. Tissue Eng Part C Methods 2022; 28:214-227. [PMID: 35442092 DOI: 10.1089/ten.tec.2022.0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Femur head necrosis, also known as osteonecrosis of the femoral head (ONFH), is a widespread disabling pathology mostly affecting young and middle-aged population and one of the major causes of total hip arthroplasty in the elderly. Currently, there are limited number of different clinical or medication options for the treatment or the reversal of progressive ONFH, but their clinical outcomes are neither satisfactory nor consistent. In pursuit of more reliable therapeutic strategies for ONFH, including recently emerged tissue engineering and biomaterials approaches, in vivo animal models are extremely important for therapeutic efficacy evaluation and mechanistic exploration. Based on the better understanding of pathogenesis of ONFH, animal modeling method has evolved into three major routes, including steroid-, alcohol-, and injury/trauma-induced osteonecrosis, respectively. There is no consensus yet on a standardized ONFH animal model for tissue engineering and biomaterial research; therefore, appropriate animal modeling method should be carefully selected depending on research purposes and scientific hypotheses. In this work, mainstream types of ONFH animal model and their modeling techniques are summarized, showing both merits and demerits for each. In addition, current studies and experimental techniques of evaluating therapeutic efficacy on the treatment of ONFH using animal models are also summarized, along with discussions on future directions related to tissue engineering and biomaterial research. Impact statement Exploration of tissue engineering and biomaterial-based therapeutic strategy for the treatment of femur head necrosis is important since there are limited options available with satisfactory clinical outcomes. To promote the translation of these technologies from benchwork to bedside, animal model should be carefully selected to provide reliable results and clinical outcome prediction. Therefore, osteonecrosis of the femoral head animal modeling methods as well as associated tissue engineering and biomaterial research are overviewed and discussed in this work, as an attempt to provide guidance for model selection and optimization in tissue engineering and biomaterial translational studies.
Collapse
Affiliation(s)
- Jiali Ma
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, People's Republic of China
| | - Yuting Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Huan Zhou
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, People's Republic of China.,Center for Health Sciences and Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, People's Republic of China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanjie Bai
- School of Chemical Engineering, Hebei University of Technology, Tianjin, People's Republic of China
| | - Chunyong Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, People's Republic of China.,Changzhou Blon Minimally Invasive Medical Device Technology Co. Ltd., Jiangsu, People's Republic of China
| | - Xiaowei Jia
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, People's Republic of China
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Lei Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, People's Republic of China.,Center for Health Sciences and Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Zhao J, He W, Zheng H, Zhang R, Yang H. Bone Regeneration and Angiogenesis by Co-transplantation of Angiotensin II-Pretreated Mesenchymal Stem Cells and Endothelial Cells in Early Steroid-Induced Osteonecrosis of the Femoral Head. Cell Transplant 2022; 31:9636897221086965. [PMID: 35313737 PMCID: PMC8943589 DOI: 10.1177/09636897221086965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to exert a positive impact on
osteonecrosis of the femoral head (ONFH) in preclinical experiments and clinical
trials. After the femoral head suffers avascular necrosis, the transplanted MSCs
undergo a great deal of stress-induced apoptosis and senescence in this
microenvironment. So, survival and differentiation of MSCs in osteonecrotic
areas are especially important in ONFH. Although MSCs and endothelial cells
(ECs) co-culture enhancing proliferation and osteogenic differentiation of MSCs
and form more mature vasculature in vivo, it remains unknown
whether the co-culture cells are able to repair ONFH. In this study, we explored
the roles and mechanisms of co-transplantation of angiotensin II (Ang II)-MSCs
and ECs in repairing early ONFH. In vitro, when MSCs and ECs
were co-cultured in a ratio of 5:1, both types of cells managed to proliferate
and induce both osteogenesis and angiogenesis. Then, we established a rabbit
model of steroid-induced ONFH and co-transplantation of Ang II-MSCs and ECs
through the tunnel of core decompression. Four weeks later, histological and
Western blot analyses revealed that ONFH treated with Ang II-MSCs and ECs may
promote ossification and revascularization by increasing the expression of
collagen type I, runt-related transcription factor 2, osteocalcin, and vascular
endothelial growth factor in the femoral head. Our data suggest that
co-transplantation of Ang II-MSCs and ECs was able to rescue the early
steroid-induced ONFH via promoting osteogenesis and angiogenesis, which may be
regarded as a novel therapy for the treatment of ONFH in a clinical setting.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wei He
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hongqing Zheng
- Key Laboratory of Animal Epidemic Disease Diagnostic Laboratory of Molecular Biology, Institute of Animal Husbandry and Veterinary Medicine, Xianyang Vocational Technical College, Xianyang, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Murab S, Hawk T, Snyder A, Herold S, Totapally M, Whitlock PW. Tissue Engineering Strategies for Treating Avascular Necrosis of the Femoral Head. Bioengineering (Basel) 2021; 8:200. [PMID: 34940353 PMCID: PMC8699035 DOI: 10.3390/bioengineering8120200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Avascular necrosis (AVN) of the femoral head commonly leads to symptomatic osteoarthritis of the hip. In older patients, hip replacement is a viable option that restores the hip biomechanics and improves pain but in pediatric, adolescent, and young adult patients hip replacements impose significant activity limitations and the need for multiple revision surgeries with increasing risk of complication. Early detection of AVN requires a high level of suspicion as diagnostic techniques such as X-rays are not sensitive in the early stages of the disease. There are multiple etiologies that can lead to this disease. In the pediatric and adolescent population, trauma is a commonly recognized cause of AVN. The understanding of the pathophysiology of the disease is limited, adding to the challenge of devising a clinically effective treatment strategy. Surgical techniques to prevent progression of the disease and avoid total hip replacement include core decompression, vascular grafts, and use of bone-marrow derived stem cells with or without adjuncts, such as bisphosphonates and bone morphogenetic protein (BMP), all of which are partially effective only in the very early stages of the disease. Further, these strategies often only improve pain and range of motion in the short-term in some patients and do not predictably prevent progression of the disease. Tissue engineering strategies with the combined use of biomaterials, stem cells and growth factors offer a potential strategy to avoid metallic implants and surgery. Structural, bioactive biomaterial platforms could help in stabilizing the femoral head while inducing osteogenic differentiation to regenerate bone and provide angiogenic cues to concomitantly recover vasculature in the femoral head. Moreover, injectable systems that can be delivered using a minimal invasive procedure and provide mechanical support the collapsing femoral head could potentially alleviate the need for surgical interventions in the future. The present review describes the limitations of existing surgical methods and the recent advances in tissue engineering that are leading in the direction of a clinically effective, translational solution for AVN in future.
Collapse
Affiliation(s)
- Sumit Murab
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Teresa Hawk
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Alexander Snyder
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Sydney Herold
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Meghana Totapally
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Patrick W. Whitlock
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
9
|
Zhang F, Yan Y, Peng W, Wang L, Wang T, Xie Z, Luo H, Zhang J, Dong W. PARK7 promotes repair in early steroid-induced osteonecrosis of the femoral head by enhancing resistance to stress-induced apoptosis in bone marrow mesenchymal stem cells via regulation of the Nrf2 signaling pathway. Cell Death Dis 2021; 12:940. [PMID: 34645791 PMCID: PMC8514492 DOI: 10.1038/s41419-021-04226-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Novel therapies for the treatment of early steroid-induced osteonecrosis of the femoral head (SONFH) are urgently needed in orthopedics. Transplantation of bone marrow mesenchymal stem cells (BMSCs) provides new strategies for treating this condition at the early stage. However, stress-induced apoptosis of BMSCs transplanted into the femoral head necrotic area limits the efficacy of BMSC transplantation. Inhibiting BMSC apoptosis is key to improving the efficacy of this procedure. In our previous studies, we confirmed that Parkinson disease protein 7 (PARK7) is active in antioxidant defense and can clear reactive oxygen species (ROS), protect the mitochondria, and impart resistance to stress-induced apoptosis in BMSCs. In this study, we investigated the mechanism driving this PARK7-mediated resistance to apoptosis in BMSCs. Our results indicate that PARK7 promoted the disintegration of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like echinacoside-associated protein 1 (Keap1) complex. The free Nrf2 then entered the nucleus and activated the genetic expression of manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), and other antioxidant enzymes that clear excessive ROS, thereby protecting BMSCs from stress-induced apoptosis. To further explore whether PARK7-mediated resistance to stress-induced apoptosis could improve the efficacy of BMSC transplantation in early-stage SONFH, we transplanted BMSCs-overexpressing PARK7 into rats with early-stage SONFH. We then evaluated the survival of transplanted BMSCs and bone regeneration in the femoral head necrotic area of these rats. The results indicated that PARK7 promoted the survival of BMSCs in the osteonecrotic area and improved the transplantation efficacy of BMSCs on early-stage SONFH. This study provides new ideas and methods for resisting the stress-induced apoptosis of BMSCs and improving the transplantation effect of BMSCs on early-stage SONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yanglin Yan
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| | - Lei Wang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tao Wang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| |
Collapse
|
10
|
Kubo Y, Drescher W, Fragoulis A, Tohidnezhad M, Jahr H, Gatz M, Driessen A, Eschweiler J, Tingart M, Wruck CJ, Pufe T. Adverse Effects of Oxidative Stress on Bone and Vasculature in Corticosteroid-Associated Osteonecrosis: Potential Role of Nuclear Factor Erythroid 2-Related Factor 2 in Cytoprotection. Antioxid Redox Signal 2021; 35:357-376. [PMID: 33678001 DOI: 10.1089/ars.2020.8163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Osteonecrosis (ON) is characterized by bone tissue death due to disturbance of the nutrient artery. The detailed process leading to the necrotic changes has not been fully elucidated. Clinically, high-dose corticosteroid therapy is one of the main culprits behind osteonecrosis of the femoral head (ONFH). Recent Advances: Numerous studies have proposed that such ischemia concerns various intravascular mechanisms. Of all reported risk factors, the involvement of oxidative stress in the irreversible damage suffered by bone-related and vascular endothelial cells during ischemia simply cannot be overlooked. Several articles also have sought to elucidate oxidative stress in relation to ON using animal models or in vitro cell cultures. Critical Issues: However, as far as we know, antioxidant monotherapy has still not succeeded in preventing ONFH in humans. To provide this desideratum, we herein summarize the current knowledge about the influence of oxidative stress on ON, together with data about the preventive effects of administering antioxidants in corticosteroid-induced ON animal models. Moreover, oxidative stress is counteracted by nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent cytoprotective network through regulating antioxidant expressions. Therefore, we also describe Nrf2 regulation and highlight its role in the pathology of ON. Future Directions: This is a review of all available literature to date aimed at developing a deeper understanding of the pathological mechanism behind ON from the perspective of oxidative stress. It may be hoped that this synthesis will spark the development of a prophylactic strategy to benefit corticosteroid-associated ONFH patients. Antioxid. Redox Signal. 35, 357-376.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Wolf Drescher
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany.,Department of Orthopaedics and Traumatology, Rummelsberg Hospital, Schwarzenbruck, Germany
| | | | | | - Holger Jahr
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Matthias Gatz
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Arne Driessen
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Yang Y, Deng G, Wang P, Lv G, Mao R, Sun Y, Wang B, Liu X, Bian L, Zhou D. A Selenium Nanocomposite Protects the Mouse Brain from Oxidative Injury Following Intracerebral Hemorrhage. Int J Nanomedicine 2021; 16:775-788. [PMID: 33574665 PMCID: PMC7871993 DOI: 10.2147/ijn.s293681] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a common neurological crisis leading to high mortality and morbidity. Oxidative stress-induced secondary injury plays a critical role in neurological deterioration. Previously, we synthesized a porous Se@SiO2 nanocomposite and identified their therapeutic role in osteonecrosis of the femoral head. Whether this nanocomposite is neuroprotective remains to be elucidated. METHODS A porous Se@SiO2 nanocomposite was synthesized, and its biosafety was determined using a CCK-8 assay. The neuroprotective effect was evaluated by TUNEL staining, and intracellular ROS were detected with a DCFH-DA probe in SH-SY5Y cells exposed to hemin. Furthermore, the effect of the nanocomposite on cell apoptosis, brain edema and blood-brain barrier permeability were evaluated in a collagenase-induced ICH mouse model. The potential mechanism was also explored. RESULTS The results demonstrated that Se@SiO2 treatment significantly improved neurological function, increased glutathione peroxidase activity and downregulated malonaldehyde levels. The proportion of apoptotic cells, brain edema and blood-brain barrier permeability were reduced significantly in ICH mice treated with Se@SiO2 compared to vehicle-treated mice. In vitro, Se@SiO2 protected SH-SY5Y cells from hemin-induced apoptosis by preventing intracellular reactive oxygen species accumulation. CONCLUSION These results suggested that the porous Se@SiO2 nanocomposite exerted neuroprotection by suppressing oxidative stress. Se@SiO2 may be a potential candidate for the clinical treatment of ICH and oxidative stress-related brain injuries.
Collapse
Affiliation(s)
- Yong Yang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 201620, People’s Republic of China
| | - Peng Wang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Guangzhao Lv
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Rui Mao
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People’s Republic of China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
12
|
Fei W, Lin J, Gao Z, Zhang H, Zhang J, Liu X, Tan J, Deng G. Improved rotator cuff healing after surgical repair via suppression of reactive oxygen species by sustained release of Se. NEW J CHEM 2021. [DOI: 10.1039/d0nj06294d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Porous Se@SiO2 nanocomposites showed effective results in promoting rotator cuff healing after surgical repair and have great potential in relevant clinical applications.
Collapse
Affiliation(s)
- Wenyong Fei
- Department of Sport Medicine
- Department of Orthopeadics and Orthopeadics Institute
- Northern Jiangsu People's Hospital
- Clinical Medical College
- Yangzhou University
| | - Jian Lin
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Zijun Gao
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Hao Zhang
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Junkai Zhang
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Jiyang Tan
- Soochow University Affiliated Wuxi Ninth People's Hospital
- WuXi
- China
| | - Guoying Deng
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| |
Collapse
|
13
|
Zhang F, Peng W, Zhang J, Wang L, Dong W, Zheng Y, Wang Z, Xie Z, Wang T, Wang C, Yan Y. PARK7 enhances antioxidative-stress processes of BMSCs via the ERK1/2 pathway. J Cell Biochem 2020; 122:222-234. [PMID: 32918333 PMCID: PMC7820948 DOI: 10.1002/jcb.29845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
Oxidative stresss in the microenvironment surrounding lesions induces apoptosis of transplanted bone‐marrow‐derived mesenchymal stem cells (BMSCs). Hence, there is an urgent need for improving antioxidative‐stress processes of transplanted BMSCs to further promote their survival. The present study reports the role and mechanism of Parkinson's disease protein 7 (PARK7) in enhancing antioxidative activity in BMSCs. We used a PARK7 lentivirus to transfect BMSCs to up‐ or downregulate PARK7, and then used H2O2 to simulate oxidative stress in BMSCs in vitro. Overexpression of PARK7 effectively reduced reactive oxygen species and malondialdehyde, protected mitochondrial membrane potential, and resisted oxidative‐stress‐induced apoptosis of BMSCs, but the expression of PARK7 was downregulated, these results were reversed. At the same time, we also found that overexpression of PARK7 increased extracellular‐regulated protein kinase 1/2 (ERK1/2) phosphorylation and nuclear translocation, as well as upregulated Elk1 phosphorylation and superoxide dismutase (SOD) expression. In contrast, when U0126 was used to block the ERK1/2 pathway, ERK1/2 and Elk1 phosphorylation levels were downregulated, ERK1/2 nuclear translocation and SOD content were significantly reduced, and PARK7‐overexperssion‐induced antioxidative activity was completely blocked. Collectively, our results suggest that PARK7 overexpression increased antioxidative‐stress processes and survival of BMSCs subjected to H2O2 via activating the ERK1/2 signaling pathway. Our findings may guide the development of a PARK7‐specific strategy for improving the transplantation efficacy of BMSCs.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Traumatologic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wuxun Peng
- Department of Traumatologic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Zhang
- Department of Traumatologic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Wang
- Department of Statistics, Guizhou Maternal and Child Health Hospital, Guiyang, Guizhou, China
| | - Wentao Dong
- Department of Traumatologic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinggang Zheng
- Department of Orthopedics, The Affiliated Wudang Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenwen Wang
- Department of Orthopedics, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhihong Xie
- School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Wang
- School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chuan Wang
- School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanglin Yan
- School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
14
|
Wang L, Zhang F, Peng W, Zhang J, Dong W, Yuan D, Wang Z, Zheng Y. Preincubation with a low-dose hydrogen peroxide enhances anti-oxidative stress ability of BMSCs. J Orthop Surg Res 2020; 15:392. [PMID: 32907609 PMCID: PMC7487789 DOI: 10.1186/s13018-020-01916-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Objective To investigate the effects of low-concentration hydrogen peroxide pretreatment on the anti-oxidative stress of the bone marrow mesenchymal stem cells (BMSCs). Methods Rabbit BMSCs were isolated and cultured by density gradient centrifugation combined with the adherence method. Then, the third generation of well-grown BMSCs was continuously treated with 50-μM hydrogen peroxide (H2O2) for 8 h as the optimal pretreatment concentration and the BMSCs were continuously applied for 24 h with 500 μM H2O2, and the optimal damage concentration was determined as the oxidative stress cell model. The experiment was divided into three groups: control group, high-concentration H2O2 injury group (500 μM), and low-concentration H2O2 pretreatment group (50 μM + 500 μM). In each group, the DCFH-DA fluorescence probe was used to detect the reactive oxygen species (ROS). ELISA was used to detect the activity of superoxide dismutase (SOD) and catalase (CAT), and the TBA method was used to detect malondialdehyde (MDA). The mitochondrial membrane potential was detected by JC-1. The cell viability was detected by CCK-8 method, while flow cytometry and TUNEL/DAPI double staining were performed to detect cell apoptosis. Hence, the effect of H2O2 pretreatment on the anti-oxidative stress of BMSCs was investigated. One-way analysis of variance was performed using SPSS 19.0 statistical software, and P < 0.05 was considered statistically significant. Results A large number of typical BMSCs were obtained by density gradient centrifugation and adherent culture. The oxidative stress cell model was successfully established by 500-μM H2O2. Compared with the high-concentration H2O2 injury group, the low-concentration H2O2 pretreatment reduced the production of ROS [(62.33 ± 5.05), P < 0.05], SOD and CAT activities significantly increased (P < 0.05), and MDA levels significantly decreased (P < 0.05). The mitochondrial membrane potential fluorescence changes, the ratio of red/green fluorescence intensity of the high-concentration H2O2 injury group was less, and the ratio of the low-concentration H2O2 pretreatment group was significantly higher than that. The ratio of red/green increased by about 1.8 times (P < 0.05). The cell viability and survival rate of BMSCs were significantly increased in low-concentration H2O2 pretreatment group (P < 0.05), and the cell apoptosis rate was significantly decreased (P < 0.05). Conclusion Pretreatment with low-concentration H2O2 can enhance the anti-oxidative stress ability and reduce their apoptosis of BMSCs under oxidative stress.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Dajiang Yuan
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhenwen Wang
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yinggang Zheng
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
15
|
Kumar A, Chaudhary RK, Singh R, Singh SP, Wang SY, Hoe ZY, Pan CT, Shiue YL, Wei DQ, Kaushik AC, Dai X. Nanotheranostic Applications for Detection and Targeting Neurodegenerative Diseases. Front Neurosci 2020; 14:305. [PMID: 32425743 PMCID: PMC7203731 DOI: 10.3389/fnins.2020.00305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology utilizes engineered materials and devices which function with biological systems at the molecular level and could transform the management of neurodegenerative diseases (NDs) by provoking, reacting to, and intermingling with target sites to stimulate physiological responses while minimizing side effects. Blood-brain barrier (BBB) protects the brain from harmful agents, and transporting drugs across the BBB is a major challenge for diagnosis, targeting, and treatment of NDs. The BBB provides severe limitations for diagnosis and treatment of Alzheimer's disease (AD), Parkinson's disease (PD), and various other neurological diseases. Conventional drug delivery systems generally fail to cross the BBB, thus are inefficient in treatment. Although gradual development through research is ensuring the progress of nanotheranostic approaches from animal to human modeling, aspects of translational applicability and safety are a key concern. This demands a deep understanding of the interaction of body systems with nanomaterials. There are various plant-based nanobioactive compounds which are reported to have applicability in the diagnosis and treatment of these NDs. This review article provides an overview of applications of nanotheranostics in AD and PD. The review also discusses nano-enabled drug delivery systems and their current and potential applications for the treatment of various NDs.
Collapse
Affiliation(s)
- Ajay Kumar
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ravi Kumar Chaudhary
- Department of Biotechnology, Institute of Applied Medicines & Research, Ghaziabad, India
| | - Rachita Singh
- Department of Electrical and Electronics Engineering, IIMT Engineering College, Uttar Pradesh Technical University, Meerut, India
| | - Satya P. Singh
- School of Computer Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shao-Yu Wang
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Zheng-Yu Hoe
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Dong-Qing Wei
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aman Chandra Kaushik
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Zhu T, Cui Y, Zhang M, Zhao D, Liu G, Ding J. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater 2020; 5:584-601. [PMID: 32405574 PMCID: PMC7210379 DOI: 10.1016/j.bioactmat.2020.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis, which is typically induced by trauma, glucocorticoid abuse, or alcoholism, is one of the most severe diseases in clinical orthopedics. Osteonecrosis often leads to joint destruction, and arthroplasty is eventually required. Enhancement of bone regeneration is a critical management strategy employed in osteonecrosis therapy. Bone tissue engineering based on engineered three-dimensional (3D) scaffolds with appropriate architecture and osteoconductive activity, alone or functionalized with bioactive factors, have been developed to enhance bone regeneration in osteonecrosis. In this review, we elaborate on the ideal properties of 3D scaffolds for enhanced bone regeneration in osteonecrosis, including biocompatibility, degradability, porosity, and mechanical performance. In addition, we summarize the development of 3D scaffolds alone or functionalized with bioactive factors for accelerating bone regeneration in osteonecrosis and discuss their prospects for translation to clinical practice. Engineered three-dimensional scaffolds boost bone regeneration in osteonecrosis. The ideal properties of three-dimensional scaffolds for osteonecrosis treatment are discussed. Bioactive factors-functionalized three-dimensional scaffolds are promising bone regeneration devices for osteonecrosis management. The challenges and opportunities of engineered three-dimensional scaffolds for osteonecrosis therapy are predicted.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, PR China
| | - Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Duoyi Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Corresponding author.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
17
|
Zhang F, Peng W, Zhang J, Dong W, Wu J, Wang T, Xie Z. P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head. Cell Death Dis 2020; 11:42. [PMID: 31959744 PMCID: PMC6971291 DOI: 10.1038/s41419-020-2238-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Survival and stemness of bone marrow mesenchymal stem cells (BMSCs) in osteonecrotic areas are especially important in the treatment of early steroid-induced osteonecrosis of the femoral head (ONFH). We had previously used BMSCs to repair early steroid-induced ONFH, but the transplanted BMSCs underwent a great deal of stress-induced apoptosis and aging in the oxidative-stress (OS) microenvironment of the femoral-head necrotic area, which limited their efficacy. Our subsequent studies have shown that under OS, massive accumulation of damaged mitochondria in cells is an important factor leading to stress-induced apoptosis and senescence of BMSCs. The main reason for this accumulation is that OS leads to upregulation of protein 53 (P53), which inhibits mitochondrial translocation of Parkin and activation of Parkin’s E3 ubiquitin ligase, which decreases the level of mitophagy and leads to failure of cells to effectively remove damaged mitochondria. However, P53 downregulation can effectively reverse this process. Therefore, we upregulated Parkin and downregulated P53 in BMSCs. We found that this significantly enhanced mitophagy in BMSCs, decreased the accumulation of damaged mitochondria in cells, effectively resisted stress-induced BMSCs apoptosis and senescence, and improved the effect of BMSCs transplantation on early steroid-induced ONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China. .,Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jianhua Wu
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tao Wang
- Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhihong Xie
- Guizhou Medical University, Guiyang, Guizhou, 550004, China
| |
Collapse
|
18
|
Hameister R, Kaur C, Dheen ST, Lohmann CH, Singh G. Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty. J Biomed Mater Res B Appl Biomater 2020; 108:2073-2087. [PMID: 31898397 DOI: 10.1002/jbm.b.34546] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 12/08/2019] [Indexed: 12/16/2022]
Abstract
The interplay between implant design, biomaterial characteristics, and the local microenvironment adjacent to the implant is of utmost importance for implant performance and success of the joint replacement surgery. Reactive oxygen and nitrogen species (ROS/RNS) are among the various factors affecting the host as well as the implant components. Excessive formation of ROS and RNS can lead to oxidative stress, a condition that is known to damage cells and tissues and also to affect signaling pathways. It may further compromise implant longevity by accelerating implant degradation, primarily through activation of inflammatory cells. In addition, wear products of metallic, ceramic, polyethylene, or bone cement origin may also generate oxidative stress themselves. This review outlines the generation of free radicals and oxidative stress in arthroplasty and provides a conceptual framework on its implications for soft tissue remodeling and bone resorption (osteolysis) as well as implant longevity. Key findings derived from cell culture studies, animal models, and patients' samples are presented. Strategies to control oxidative stress by implant design and antioxidants are explored and areas of controversy and challenges are highlighted. Finally, directions for future research are identified. A better understanding of the host-implant interplay and the role of free radicals and oxidative stress will help to evaluate therapeutic approaches and will ultimately improve implant performance in arthroplasty.
Collapse
Affiliation(s)
- Rita Hameister
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shaikali Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Gurpal Singh
- Centre for Orthopaedics Pte Ltd, Singapore, Singapore
| |
Collapse
|
19
|
Okura T, Seki T, Suzuki K, Ishiguro N, Hasegawa Y. Serum levels of carotenoids in patients with osteonecrosis of the femoral head are lower than in healthy, community-living people. J Orthop Surg (Hong Kong) 2019; 26:2309499018770927. [PMID: 29695195 DOI: 10.1177/2309499018770927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Oxidative stress is closely associated with the pathogenesis of nontraumatic osteonecrosis of the femoral head (ONFH). This study aimed to determine whether the serum levels of antioxidant nutrients were decreased in patients with ONFH. METHODS We analyzed the serum levels of antioxidant nutrients in 39 patients with ONFH (ONFH group) and 78 age- and gender-matched healthy people (control group) who voluntarily participated in the Yakumo study, which is a comprehensive health examination program. We measured and compared the serum levels of α-tocopherol (vitamin E) and total carotenoids, including zeaxanthin/lutein, β-cryptoxanthin, lycopene, α-carotene, and β-carotene, in the ONFH and control groups using high-performance liquid chromatography. RESULTS The mean serum levels of total carotenoids were significantly lower in the ONFH group than in the control group (2.36 ± 1.26 and 3.79 ± 2.36 µmol/l, respectively, p < 0.001). However, no significant difference was found in α-tocopherol between the two groups (26.37 ± 6.90 µmol/l in the ONFH group and 26.24 ± 6.28 µmol/l in the control group, p = 0.920). Among each carotenoid, the serum levels of zeaxanthin/lutein, lycopene, and β-carotene were significantly lower in the ONFH group than in the control group ( p < 0.001). CONCLUSIONS The serum levels of carotenoids were lower in patients with ONFH than in healthy, community-living people. This result suggests that carotenoids may be related to the pathogenesis of ONFH.
Collapse
Affiliation(s)
- Toshiaki Okura
- 1 Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Seki
- 1 Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Suzuki
- 2 Department of Public Health, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Naoki Ishiguro
- 1 Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiharu Hasegawa
- 3 Department of Hip and Knee Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
20
|
Zhang F, Peng W, Zhang J, Dong W, Yuan D, Zheng Y, Wang Z. New strategy of bone marrow mesenchymal stem cells against oxidative stress injury via Nrf2 pathway: oxidative stress preconditioning. J Cell Biochem 2019; 120:19902-19914. [PMID: 31347718 PMCID: PMC6852471 DOI: 10.1002/jcb.29298] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
Abstract
Clinically, bone marrow mesenchymal stem cells (BMSCs) have been used in treatment of many diseases, but the local oxidative stress (OS) of lesion severely limits the survival of BMSCs, which reduces the efficacy of BMSCs transplantation. Therefore, enhancing the anti‐OS stress ability of BMSCs is a key breakthrough point. Preconditioning is a common protective mechanism for cells or body. Here, the aim of this study was to investigate the effects of OS preconditioning on the anti‐OS ability of BMSCs and its mechanism. Fortunately, OS preconditioning can increase the expression of superoxide dismutase, catalase, NQO1, and heme oxygenase 1 through the nuclear factor erythroid 2‐related factor 2 pathway, thereby decreased the intracellular reactive oxygen species (ROS) levels, relieved the damage of ROS to mitochondria, DNA and cell membrane, enhanced the anti‐OS ability of BMSCs, and promoted the survival of BMSCs under OS.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wuxun Peng
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Zhang
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wentao Dong
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dajiang Yuan
- Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinggang Zheng
- Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenwen Wang
- Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
21
|
Zheng Z, Deng G, Qi C, Xu Y, Liu X, Zhao Z, Zhang Z, Chu Y, Wu H, Liu J. Porous Se@SiO 2 nanospheres attenuate ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) and inflammation by antioxidative stress. Int J Nanomedicine 2018; 14:215-229. [PMID: 30643402 PMCID: PMC6312062 DOI: 10.2147/ijn.s184804] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objectives Acute kidney injury (AKI) is a growing global health concern, and is associated with high rates of mortality and morbidity in intensive care units. Se is a trace element with antioxidant properties. This study aimed to determine whether porous Se@SiO2 nanospheres could relieve oxidative stress and inflammation in ischemia/reperfusion (I/R)-induced AKI. Methods Male 6- to 8-week-old C57bl/6 mice were divided into four groups: sham + saline, sham + Se@SiO2, I/R + saline, and I/R + Se@SiO2. Mice in the I/R groups experienced 30 minutes of bilateral renal I/R to induce an AKI. Porous Se@SiO2 nanospheres (1 mg/kg) were intraperitoneally injected into mice in the I/R + Se@SiO2 group 2 hours before I/R, and the same dose was injected every 12 hours thereafter. Hypoxia/reoxygenation (H/R) was used to mimic I/R in vitro. PBS was used as a control treatment. Human kidney 2 cells were seeded into 12-well plates (5×105 cells/well) and divided into four groups: control + PBS group, control + Se@SiO2 group, H/R + PBS group, and H/R + Se@SiO2 group (n=3 wells). We then determined the expression levels of ROS, glutathione, inflammatory cytokines and proteins, fibrosis proteins, and carried out histological analysis upon kidney tissues. Results In vitro, intervention with porous Se@SiO2 nanospheres significantly reduced levels of ROS (P<0.05), inflammatory cytokines (P<0.05), and inflammation-associated proteins (P<0.05). In vivo, tubular damage, cell apoptosis, and interstitial inflammation during AKI were reduced significantly following treatment with porous Se@SiO2 nanospheres. Moreover, the occurrence of fibrosis and tubular atrophy after AKI was attenuated by porous Se@SiO2 nanospheres. Conclusion Porous Se@SiO2 nanospheres exhibited a protective effect in I/R-induced AKI by resisting oxidative stress and inflammation. This suggests that porous Se@SiO2 nanospheres may represent a new therapeutic method for AKI.
Collapse
Affiliation(s)
- Zhihuang Zheng
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Qi
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China,
| | - Yuyin Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China,
| | - Xijian Liu
- Department of Chemical Engineering and Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China,
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China,
| | - Yuening Chu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China,
| | - Jun Liu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|
22
|
Wang W, Huang X, Zhang Y, Deng G, Liu X, Fan C, Xi Y, Yu J, Ye X. Se@SiO 2 nanocomposites suppress microglia-mediated reactive oxygen species during spinal cord injury in rats. RSC Adv 2018; 8:16126-16138. [PMID: 35547361 PMCID: PMC9088170 DOI: 10.1039/c8ra01906a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022] Open
Abstract
Selenium (Se) is an essential trace element with strong antioxidant activity, showing a great prospect in the treatment of spinal cord injury (SCI). However, the narrow gap between the beneficial and toxic effects has limited its further clinical application. In this experiment, we used porous Se@SiO2 nanocomposites (Se@SiO2) modified by nanotechnology as a new means of release control to investigate the anti-oxidative effect in SCI. In vitro Se@SiO2 toxicity, anti-oxidative and anti-inflammatory effects on microglia were assayed. In vivo we investigated the protective effect of Se@SiO2 to SCI rats. Neurological function was evaluated by Basso, Beattie and Bresnahan (BBB). The histopathological analysis, microglia activation, oxidative stress, inflammatory factors (TNF-α, IL-1β and IL-6) and apoptosis were detected at 3 and 14 days after SCI. The favorable biocompatibility of Se@SiO2 suppressed microglia activation, which is known to be associated with oxidative stress and inflammation in vivo and in vitro. In addition, Se@SiO2 improved the rat neurological function and reduced apoptosis via caspase-3, Bax and Bcl-2 pathways in SCI. Se@SiO2 was able to treat SCI and reduce oxidative stress, inflammation and apoptosis induced by microglia activation, which may provide a novel and safe strategy for clinical application.
Collapse
Affiliation(s)
- Weiheng Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University No 415 Fengyang Road Shanghai 200003 China +86 021 81870950 +86 021 81885624 +86 021 81886807 +86 021 81870952
| | - Xiaodong Huang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University No 415 Fengyang Road Shanghai 200003 China +86 021 81870950 +86 021 81885624 +86 021 81886807 +86 021 81870952
| | - Yongxing Zhang
- Trauma Center of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai 201620 China
| | - Guoying Deng
- Trauma Center of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai 201620 China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 China
| | - Chunquan Fan
- Department of Orthopaedic Surgery, The 175th Hospital of PLA, Orthopaedics Center of PLA, Affiliated Southeast Hospital of Xiamen University Zhangzhou Fujian Province PR China
| | - Yanhai Xi
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University No 415 Fengyang Road Shanghai 200003 China +86 021 81870950 +86 021 81885624 +86 021 81886807 +86 021 81870952
| | - Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University No 415 Fengyang Road Shanghai 200003 China +86 021 81870950 +86 021 81885624 +86 021 81886807 +86 021 81870952
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University No 415 Fengyang Road Shanghai 200003 China +86 021 81870950 +86 021 81885624 +86 021 81886807 +86 021 81870952
| |
Collapse
|
23
|
Deng G, Chen C, Zhang J, Zhai Y, Zhao J, Ji A, Kang Y, Liu X, Dou K, Wang Q. Se@SiO 2 nanocomposites attenuate doxorubicin-induced cardiotoxicity through combatting oxidative damage. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:112-121. [PMID: 29569935 DOI: 10.1080/21691401.2018.1452250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX) is an effective anticancer drug which is widely used in clinical treatment. However, the severe cardiotoxicity limits its use. Thus, it is an urgent need to attenuate the toxicity of DOX without impairing its efficacy. Many studies show that Se may protect normal tissues from damages of some anticancer drugs. Recently, Se@SiO2 nanocomposites emerges as better substitutes for direct element Se in treatment of cancer cells for their ideal biocompatibility. In the present article, we synthesized Se@SiO2 nanocomposites and confirmed their characterization according to previous studies. We accomplished a conjunctive use of Se@SiO2 nanocomposites with DOX then explored the toxicity and efficacy of this combination. In the in vivo experiments, the survival rate of mice with DOX treatment was significantly increased by Se@SiO2. And Se@SiO2 has few interference to the therapeutic effect of DOX. Particularly, Se@SiO2 significantly attenuated DOX-induced myocardial tissue damage (serum index, apoptosis index, western-blot index) and protected mice from reduction in LVEF induced by DOX in mice model. In summary, we concluded that the protective effect of Se@SiO2 in DOX-induced cardiotoxicity was possibly attributable to the inhibition of ROS production, showing great potential of Se@SiO2 nanocomposite in the clinical use of DOX.
Collapse
Affiliation(s)
- Guoying Deng
- a Trauma Center, Shanghai General Hospital of Nanjing Medical University , Shanghai , P.R. China.,b Trauma Center, Shanghai General Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , P.R. China
| | - Changzhe Chen
- c State Key Laboratory of Cardiovascular Disease, Department of Cardiology , Cardiovascular Institute, Fuwai Hospital and National Center for Cardiovascular Diseases , Beijing , China.,d Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Junjie Zhang
- a Trauma Center, Shanghai General Hospital of Nanjing Medical University , Shanghai , P.R. China.,e Department of Orthopedics, The Second People's Hospital of Changzhou, Nanjing Medical University , Changzhou , China
| | - Yue Zhai
- b Trauma Center, Shanghai General Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , P.R. China
| | - Jingpeng Zhao
- b Trauma Center, Shanghai General Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , P.R. China
| | - Anqi Ji
- b Trauma Center, Shanghai General Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , P.R. China
| | - Yingjie Kang
- f Department of Radiology , Shuguang Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , P.R. China
| | - Xijian Liu
- g College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai , P.R. China
| | - Kefei Dou
- c State Key Laboratory of Cardiovascular Disease, Department of Cardiology , Cardiovascular Institute, Fuwai Hospital and National Center for Cardiovascular Diseases , Beijing , China.,d Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Qiugen Wang
- a Trauma Center, Shanghai General Hospital of Nanjing Medical University , Shanghai , P.R. China.,b Trauma Center, Shanghai General Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , P.R. China
| |
Collapse
|
24
|
Deng G, Dai C, Chen J, Ji A, Zhao J, Zhai Y, Kang Y, Liu X, Wang Y, Wang Q. Porous Se@SiO 2 nanocomposites protect the femoral head from methylprednisolone-induced osteonecrosis. Int J Nanomedicine 2018; 13:1809-1818. [PMID: 29606872 PMCID: PMC5868597 DOI: 10.2147/ijn.s159776] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Methylprednisolone (MPS) is an important drug used in therapy of many diseases. However, osteonecrosis of the femoral head is a serious damage in the MPS treatment. Thus, it is imperative to develop new drugs to prevent the serious side effect of MPS. Methods The potential interferences Se@SiO2 nanocomposites may have to the therapeutic effect of methylprednisolone (MPS) were evaluated by classical therapeutic effect index of acute respiratory distress syndrome (ARDS), such as wet-to-dry weight ratio, inflammatory factors IL-1β and TNF-α. And oxidative stress species (ROS) index like superoxide dismutase (SOD) and glutathione (GSH) were tested. Then, the protection effects of Se@SiO2 have in osteonecrosis of the femoral head (ONFH) were evaluated by micro CT, histologic analysis and Western-blot analysis. Results In the present study, we found that in the rat model of ARDS, Se@SiO2 nanocomposites induced SOD and GSH indirectly to reduce ROS damage. The wet-to-dry weight ratio of lung was significantly decreased after MPS treatment compared with the control group, whereas the Se@SiO2 did not affect the reduced wet-to-dry weight ratio of MPS. Se@SiO2 also did not impair the effect of MPS on the reduction of inflammatory factors IL-1β and TNF-α, and on the alleviation of structural destruction. Furthermore, micro CT and histologic analysis confirmed that Se@SiO2 significantly alleviate MPS-induced destruction of femoral head. Moreover, compared with MPS group, Se@SiO2 could increase collagen II and aggrecan, and reduce the IL-1β level in the cartilage of femoral head. In addition, the biosafety of Se@SiO2 in vitro and in vivo were supported by cell proliferation assay and histologic analysis of main organs from rat models. Conclusion Se@SiO2 nanocomposites have a protective effect in MPS-induced ONFH without influence on the therapeutic activity of MPS, suggesting the potential as effective drugs to avoid ONFH in MPS therapy.
Collapse
Affiliation(s)
- Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenyun Dai
- Institute of Translation Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinyuan Chen
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Anqi Ji
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingpeng Zhao
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue Zhai
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingjie Kang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Yin Wang
- Ultrasound Department of Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Qiugen Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Zhu Y, Deng G, Ji A, Yao J, Meng X, Wang J, Wang Q, Wang Q, Wang R. Porous Se@SiO 2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress. Int J Nanomedicine 2017; 12:7143-7152. [PMID: 29026307 PMCID: PMC5627737 DOI: 10.2147/ijn.s143192] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute paraquat (PQ) poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI). Selenium (Se) can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6), PQ (n=18), and PQ + Se@SiO2 (n=18). The PQ and PQ + Se@SiO2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h) after PQ treatment. Porous Se@SiO2 nanospheres 1 mg/kg (in the PQ + Se@SiO2 group) were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS), nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung tissues showed that lung damage was reduced after porous Se@SiO2 nanosphere treatment. These data indicate that porous Se@SiO2 nanospheres may reduce NF-κB, p-NF-κB and inflammatory cytokine levels by inhibiting ROS in PQ-induced ALI. This study demonstrates that porous Se@SiO2 nanospheres may be a therapeutic method for use in the future for PQ poisoning.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Anqi Ji
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jiayi Yao
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Jinfeng Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| | - Qian Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Qiugen Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine
| |
Collapse
|