1
|
Yu G, Peng J, Li L, Yu W, He B, Xie B. The role and mechanisms of cordycepin in inhibiting cancer cells. Braz J Med Biol Res 2024; 57:e13889. [PMID: 39194034 DOI: 10.1590/1414-431x2024e13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
With the escalating incidence and mortality rates of cancer, there is an ever-growing emphasis on the research of anticancer drugs. Cordycepin, the primary nucleoside antibiotic isolated from Cordyceps militaris, has emerged as a remarkable agent for cancer prevention and treatment. Functioning as a natural targeted antitumor drug, cordycepin assumes an increasingly pivotal role in cancer therapy. This review elucidates the mechanisms of cordycepin in inhibiting tumor cell proliferation, inducing apoptosis, as well as its capabilities in suppressing angiogenesis and metastasis. Moreover, the immunomodulatory effects of cordycepin in cancer treatment are explored. Additionally, the current status, challenges, and future prospects of cordycepin application in clinical trials are briefly discussed. The objective is to provide a valuable reference for the utilization of cordycepin in cancer treatment.
Collapse
Affiliation(s)
- Gong Yu
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiahua Peng
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lu Li
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Bin Xie
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Gonzalez-Llerena JL, Espinosa-Rodriguez BA, Treviño-Almaguer D, Mendez-Lopez LF, Carranza-Rosales P, Gonzalez-Barranco P, Guzman-Delgado NE, Romo-Mancillas A, Balderas-Renteria I. Cordycepin Triphosphate as a Potential Modulator of Cellular Plasticity in Cancer via cAMP-Dependent Pathways: An In Silico Approach. Int J Mol Sci 2024; 25:5692. [PMID: 38891880 PMCID: PMC11171877 DOI: 10.3390/ijms25115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cordycepin, or 3'-deoxyadenosine, is an adenosine analog with a broad spectrum of biological activity. The key structural difference between cordycepin and adenosine lies in the absence of a hydroxyl group at the 3' position of the ribose ring. Upon administration, cordycepin can undergo an enzymatic transformation in specific tissues, forming cordycepin triphosphate. In this study, we conducted a comprehensive analysis of the structural features of cordycepin and its derivatives, contrasting them with endogenous purine-based metabolites using chemoinformatics and bioinformatics tools in addition to molecular dynamics simulations. We tested the hypothesis that cordycepin triphosphate could bind to the active site of the adenylate cyclase enzyme. The outcomes of our molecular dynamics simulations revealed scores that are comparable to, and superior to, those of adenosine triphosphate (ATP), the endogenous ligand. This interaction could reduce the production of cyclic adenosine monophosphate (cAMP) by acting as a pseudo-ATP that lacks a hydroxyl group at the 3' position, essential to carry out nucleotide cyclization. We discuss the implications in the context of the plasticity of cancer and other cells within the tumor microenvironment, such as cancer-associated fibroblast, endothelial, and immune cells. This interaction could awaken antitumor immunity by preventing phenotypic changes in the immune cells driven by sustained cAMP signaling. The last could be an unreported molecular mechanism that helps to explain more details about cordycepin's mechanism of action.
Collapse
Affiliation(s)
- Jose Luis Gonzalez-Llerena
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Bryan Alejandro Espinosa-Rodriguez
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Daniela Treviño-Almaguer
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Luis Fernando Mendez-Lopez
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Pilar Carranza-Rosales
- Laboratory of Cell Biology, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Mexico;
| | - Patricia Gonzalez-Barranco
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Nancy Elena Guzman-Delgado
- Health Research Division, High Specialty Medical Unit, Cardiology Hospital N. 34. Mexican Social Security Institute, Monterrey 64360, Mexico;
| | - Antonio Romo-Mancillas
- Computer Aided Drug Design and Synthesis Group, School of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Isaias Balderas-Renteria
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| |
Collapse
|
3
|
Chen M, Luo J, Jiang W, Chen L, Miao L, Han C. Cordycepin: A review of strategies to improve the bioavailability and efficacy. Phytother Res 2023; 37:3839-3858. [PMID: 37329165 DOI: 10.1002/ptr.7921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/18/2023]
Abstract
Cordycepin is a bioactive compound extracted from Cordyceps militaris. As a natural antibiotic, cordycepin has a wide variety of pharmacological effects. Unfortunately, this highly effective natural antibiotic is proved to undergo rapid deamination by adenosine deaminase (ADA) in vivo and, as a consequence, its half-life is shortened and bioavailability is decreased. Therefore, it is of critical importance to work out ways to slow down the deamination so as to increase its bioavailability and efficacy. This study reviews recent researches on a series of aspects of cordycepin such as the bioactive molecule's pharmacological action, metabolism and transformation as well as the underlying mechanism, pharmacokinetics and, particularly, the methods for reducing the degradation to improve the bioavailability and efficacy. It is drawn that there are three methods that can be applied to improve the bioavailability and efficacy: to co-administrate an ADA inhibitor and cordycepin, to develop more effective derivatives via structural modification, and to apply new drug delivery systems. The new knowledge can help optimize the application of the highly potent natural antibiotic-cordycepin and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Min Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Medicine, Linyi University, Linyi, China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijing Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Abazari N, Stefanucci MR, Bossi LE, Trojani A, Cairoli R, Beghini A. Cordycepin (3'dA) Induces Cell Death of AC133 + Leukemia Cells via Re-Expression of WIF1 and Down-Modulation of MYC. Cancers (Basel) 2023; 15:3931. [PMID: 37568748 PMCID: PMC10417454 DOI: 10.3390/cancers15153931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Wnt/β-catenin signaling is critically required for the development and maintenance of leukemia stem cells (LSCs) in acute myeloid leukemia (AML) by constitutive activation of myeloid regeneration-related pathways. Cell-intrinsic activation of canonical Wnt signaling propagates in the nucleus by β-catenin translocation, where it induces expression of target oncogenes such as JUN, MYC and CCND1. As the Wnt/β-catenin pathway is now well established to be a key oncogenic signaling pathway promoting leukemic myelopoiesis, targeting it would be an effective strategy to impair LSC functionality. Although the effects of the adenosine analogue cordycepin in repressing β-catenins and destabilizing the LSC niche have been highlighted, the cellular and molecular effects on AML-LSC have not been fully clarified. In the present study, we evaluated the potency and efficacy of cordycepin, a selective repressor of Wnt/β-catenin signaling with anti-leukemia properties, on the AC133+ LSC fraction. Cordycepin effectively reduces cell viability of the AC133+ LSCs in the MUTZ-2 cell model and patient-derived cells through the induction of apoptosis. By Wnt-targeted RNA sequencing panel, we highlighted the re-expression of WIF1 and DKK1 among others, and the consequent downregulation of MYC and PROM1 (CD133) following MUTZ-2 cell exposure to increasing doses of cordycepin. Our results provide new insights into the molecular circuits involved in pharmacological inhibition mediated by cordycepin reinforcing the potential of targeting the Wnt/β-catenin and co-regulatory complexes in AML.
Collapse
Affiliation(s)
- Nazanin Abazari
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
| | - Marta Rachele Stefanucci
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Luca Emanuele Bossi
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Alessandra Trojani
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Roberto Cairoli
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Alessandro Beghini
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
| |
Collapse
|
5
|
Pal D, Blair H, Parker J, Hockney S, Beckett M, Singh M, Tirtakusuma R, Nelson R, McNeill H, Angel SH, Wilson A, Nizami S, Nakjang S, Zhou P, Schwab C, Sinclair P, Russell LJ, Coxhead J, Halsey C, Allan JM, Harrison CJ, Moorman AV, Heidenreich O, Vormoor J. hiPSC-derived bone marrow milieu identifies a clinically actionable driver of niche-mediated treatment resistance in leukemia. Cell Rep Med 2022; 3:100717. [PMID: 35977468 PMCID: PMC9418860 DOI: 10.1016/j.xcrm.2022.100717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
Leukemia cells re-program their microenvironment to augment blast proliferation and enhance treatment resistance. Means of clinically targeting such niche-driven treatment resistance remain ambiguous. We develop human induced pluripotent stem cell (hiPSC)-engineered niches to reveal druggable cancer-niche dependencies. We reveal that mesenchymal (iMSC) and vascular niche-like (iANG) hiPSC-derived cells support ex vivo proliferation of patient-derived leukemia cells, affect dormancy, and mediate treatment resistance. iMSCs protect dormant and cycling blasts against dexamethasone, while iANGs protect only dormant blasts. Leukemia proliferation and protection from dexamethasone-induced apoptosis is dependent on cancer-niche interactions mediated by CDH2. Consequently, we test CDH2 antagonist ADH-1 (previously in Phase I/II trials for solid tumors) in a very aggressive patient-derived xenograft leukemia mouse model. ADH-1 shows high in vivo efficacy; ADH-1/dexamethasone combination is superior to dexamethasone alone, with no ADH-1-conferred additional toxicity. These findings provide a proof-of-concept starting point to develop improved, potentially safer therapeutics targeting niche-mediated cancer dependencies in blood cancers.
Collapse
Affiliation(s)
- Deepali Pal
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK.
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Jessica Parker
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| | - Sean Hockney
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| | - Melanie Beckett
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Mankaran Singh
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Ricky Tirtakusuma
- Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Ryan Nelson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Hesta McNeill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Sharon H Angel
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Aaron Wilson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Salem Nizami
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, William Leech Building, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Peixun Zhou
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Claire Schwab
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Paul Sinclair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Lisa J Russell
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Jonathan Coxhead
- Genomics Core Facility, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH UK
| | - James M Allan
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Josef Vormoor
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
6
|
Antileukaemic Cell Proliferation and Cytotoxic Activity of Edible Golden Cordyceps ( Cordyceps militaris) Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5347718. [PMID: 35497915 PMCID: PMC9054435 DOI: 10.1155/2022/5347718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
Abstract
Golden cordyceps (Cordyceps militaris) is a mushroom of the genus Cordyceps. It has been used as a food supplement for both healthy and ill people. In this study, the antileukaemic cell proliferation activities of golden cordyceps extracts were examined and compared with standard cordycepin (CDCP) in EoL-1, U937, and KG-1a cells. Wilms' tumour 1 (WT1) protein was used as a biomarker of leukaemic cell proliferation. The cytotoxicity of the extracts on leukaemic cells was determined using the MTT assay. Their inhibitory effects on WT1 protein expression and cell cycle progression of EoL-1 cells were investigated using Western blotting and flow cytometry, respectively. Induction of KG-1a cell differentiation (using CD11b as a marker) was determined using flow cytometry. The golden cordyceps extracts exhibited cytotoxic effects on leukaemic cells with the highest IC50 value of 16.5 ± 3.9 µg/mL, while there was no effect on normal blood cells. The expression levels of WT1 protein in EoL-1 cells were decreased after treatment with the extracts. Moreover, cell cycle progression and cell proliferation were inhibited. The levels of CD11b increased slightly following the treatment. All these findings confirm the antileukaemic proliferation activity of golden cordyceps.
Collapse
|
7
|
Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D, de Moor CH. A Systematic Review of the Biological Effects of Cordycepin. Molecules 2021; 26:5886. [PMID: 34641429 PMCID: PMC8510467 DOI: 10.3390/molecules26195886] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
We conducted a systematic review of the literature on the effects of cordycepin on cell survival and proliferation, inflammation, signal transduction and animal models. A total of 1204 publications on cordycepin were found by the cut-off date of 1 February 2021. After application of the exclusion criteria, 791 papers remained. These were read and data on the chosen subjects were extracted. We found 192 papers on the effects of cordycepin on cell survival and proliferation and calculated a median inhibitory concentration (IC50) of 135 µM. Cordycepin consistently repressed cell migration (26 papers) and cellular inflammation (53 papers). Evaluation of 76 papers on signal transduction indicated consistently reduced PI3K/mTOR/AKT and ERK signalling and activation of AMPK. In contrast, the effects of cordycepin on the p38 and Jun kinases were variable, as were the effects on cell cycle arrest (53 papers), suggesting these are cell-specific responses. The examination of 150 animal studies indicated that purified cordycepin has many potential therapeutic effects, including the reduction of tumour growth (37 papers), repression of pain and inflammation (9 papers), protecting brain function (11 papers), improvement of respiratory and cardiac conditions (8 and 19 papers) and amelioration of metabolic disorders (8 papers). Nearly all these data are consistent with cordycepin mediating its therapeutic effects through activating AMPK, inhibiting PI3K/mTOR/AKT and repressing the inflammatory response. We conclude that cordycepin has excellent potential as a lead for drug development, especially for age-related diseases. In addition, we discuss the remaining issues around the mechanism of action, toxicity and biodistribution of cordycepin.
Collapse
Affiliation(s)
- Masar Radhi
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Sadaf Ashraf
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK;
| | - Steven Lawrence
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Asta Arendt Tranholm
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Peter Arthur David Wellham
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Abdul Hafeez
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Ammar Sabah Khamis
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Robert Thomas
- The Primrose Oncology Unit, Bedford Hospital NHS Trust, Bedford MK42 9DJ, UK;
- Department of Oncology, Addenbrooke’s Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Daniel McWilliams
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham NG5 1PB, UK
| | - Cornelia Huiberdina de Moor
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| |
Collapse
|
8
|
Abnormal bone marrow microenvironment: the “harbor” of acute lymphoblastic leukemia cells. BLOOD SCIENCE 2021; 3:29-34. [PMID: 35402834 PMCID: PMC8975096 DOI: 10.1097/bs9.0000000000000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Bone marrow (BM) microenvironment regulates and supports the production of blood cells which are necessary to maintain homeostasis. In analogy to normal hematopoiesis, leukemogenesis is originated from leukemic stem cells (LSCs) which gives rise to more differentiated malignant cells. Leukemia cells occupy BM niches and reconstruct them to support leukemogenesis. The abnormal BM niches are the main sanctuary of LSCs where they can evade chemotherapy-induced death and acquire drug resistance. In this review, we focus on the protective effects of BM niche cells on acute lymphoblastic leukemia cells.
Collapse
|
9
|
Kim HN, Ruan Y, Ogana H, Kim YM. Cadherins, Selectins, and Integrins in CAM-DR in Leukemia. Front Oncol 2020; 10:592733. [PMID: 33425742 PMCID: PMC7793796 DOI: 10.3389/fonc.2020.592733] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The interaction between leukemia cells and the bone microenvironment is known to provide drug resistance in leukemia cells. This phenomenon, called cell adhesion-mediated drug resistance (CAM-DR), has been demonstrated in many subsets of leukemia including B- and T-acute lymphoblastic leukemia (B- and T-ALL) and acute myeloid leukemia (AML). Cell adhesion molecules (CAMs) are surface molecules that allow cell-cell or cell-extracellular matrix (ECM) adhesion. CAMs not only recognize ligands for binding but also initiate the intracellular signaling pathways that are associated with cell proliferation, survival, and drug resistance upon binding to their ligands. Cadherins, selectins, and integrins are well-known cell adhesion molecules that allow binding to neighboring cells, ECM proteins, and soluble factors. The expression of cadherin, selectin, and integrin correlates with the increased drug resistance of leukemia cells. This paper will review the role of cadherins, selectins, and integrins in CAM-DR and the results of clinical trials targeting these molecules.
Collapse
Affiliation(s)
- Hye Na Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yongsheng Ruan
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| |
Collapse
|
10
|
Kihira K, Chelakkot VS, Kainuma H, Okumura Y, Tsuboya N, Okamura S, Kurihara K, Iwamoto S, Komada Y, Hori H. Close interaction with bone marrow mesenchymal stromal cells induces the development of cancer stem cell-like immunophenotype in B cell precursor acute lymphoblastic leukemia cells. Int J Hematol 2020; 112:795-806. [PMID: 32862292 DOI: 10.1007/s12185-020-02981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Minimal residual disease of leukemia may reside in the bone marrow (BM) microenvironment and escape the effects of chemotherapeutic agents. This study investigated interactions between B cell precursor (BCP)-acute lymphoblastic leukemia (ALL) cells and BM mesenchymal stromal cells (BM-MSCs) in vitro. Five BCP-ALL cell lines established from pediatric patients and primary samples from a BCP-ALL patient were examined by flow cytometry and immunocytochemistry for expression of specific cell surface markers and cell adhesion proteins. The cell lines developed chemoresistance to commonly used anti-leukemic agents through adhesion to MSC-TERT cells in long-term culture. The change in chemosensitivity after adhering to BM-MSCs was associated with the expression of CD34, CD133, P-glycoprotein and BCRP/ABCG2, and downregulation of CD38. Similar phenotypic changes were observed in primary samples obtained by marrow aspiration or biopsy from a BCP-ALL patient. BM-MSC-adhering leukemia cells also showed deceleration of cell proliferation and expressed proteins in the Cadherin and Integrin pathways. These results suggest that BCP-ALL cells residing in the BM microenvironment may acquire chemoresistance by altering their phenotype to resemble that of cancer stem cells. Our results indicate that cell adhesion could be potentially targeted to improve the chemosensitivity of residual BCP-ALL cells in the BM microenvironment.
Collapse
Affiliation(s)
- Kentaro Kihira
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | | | - Hiroki Kainuma
- Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yosuke Okumura
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoki Tsuboya
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Satoshi Okamura
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kosuke Kurihara
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroki Hori
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan. .,Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
11
|
Liu T, Zhu G, Yan W, Lv Y, Wang X, Jin G, Cui M, Lin Z, Ren X. Cordycepin Inhibits Cancer Cell Proliferation and Angiogenesis through a DEK Interaction via ERK Signaling in Cholangiocarcinoma. J Pharmacol Exp Ther 2020; 373:279-289. [PMID: 32102917 DOI: 10.1124/jpet.119.263202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that arises from the epithelial cells of the bile duct and is notorious for its poor prognosis. The clinical outcome remains disappointing, and thus more effective therapeutic options are urgently required. Cordycepin, a traditional Chinese medicine, provides multiple pharmacological strategies in antitumors, but its mechanisms have not been fully elucidated. In this study, we reported that cordycepin inhibited the viability and proliferation capacity of CCA cells in a time- and dose-dependent manner determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assay. Flow cytometry and Hoechst dye showed that cordycepin induced cancer cell apoptosis via extracellular signal-regulated kinase (ERK) 1/2 deactivation. Moreover, cordycepin significantly reduced the angiogenetic capabilities of CCA in vitro as examined by tube formation assay. We also discovered that cordycepin inhibited DEK expression by using Western blot assay. DEK serves as an oncogenic protein that is overexpressed in various gastrointestinal tumors. DEK silencing inhibited CCA cell viability and angiogenesis but not apoptosis induction determined by Western blot and flow cytometry. Furthermore, cordycepin significantly inhibited tumor growth and angiogenic capacities in a xenograft model by downregulating the expression of DEK, phosphorylated ERK1/2 CD31 and von Willebrand factor (vWF). Taken together, we demonstrated that cordycepin inhibited CCA cell proliferation and angiogenesis with a DEK interaction via downregulation in ERK signaling. These data indicate that cordycepin may serve as a novel agent for CCA clinical treatment and prognosis improvement. SIGNIFICANCE STATEMENT: Cordycepin provides multiple strategies in antitumors, but its mechanisms are not fully elucidated, especially on cholangiocarcinoma (CCA). We reported that cordycepin inhibited the viability of CCA cells, induced apoptosis via extracellular signal-regulated kinase 1/2 deactivation and DEK inhibition, and reduced the angiogenetic capabilities of CCA both in vivo and in vitro.
Collapse
Affiliation(s)
- Tesi Liu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Guang Zhu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Wendi Yan
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - You Lv
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Xue Wang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Guang Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Minghua Cui
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Xiangshan Ren
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| |
Collapse
|
12
|
Wang CH, Chang CH, Lin TL, Fu RH, Huang YC, Chen SY, Shyu WC, Liu SP. The novel application of cordycepin in maintaining stem cell pluripotency and increasing iPS cell generation efficiency. Sci Rep 2020; 10:2187. [PMID: 32042022 PMCID: PMC7010772 DOI: 10.1038/s41598-020-59154-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Maintaining the pluripotency of either embryonic stem (ES) cells or induced pluripotent stem (iPS) cells is a fundamental part of stem cell research. In this study, we reported that cordycepin promoted the expression of pluripotency markers in ES and iPS cells. ES cells treated with cordycepin demonstrated their potential for generating embryoid bodies and differentiating into all three germ layers. The expression levels of phospho-Jak2, phospho-Stat3, integrin αV, and integrin β5 were increased after cordycepin treatment. Furthermore, the protein expression levels of IL-6 family proteins (IL-6, IL-11, LIF, oncostatin M (OSM), ciliary neurotrophic factor (CNTF)), and epidermal growth factor (EGF) were also upregulated after cordycepin treatment, but were restored after co-treatment with a Jak2 inhibitor (AG490). The gene expression levels of Yamanaka factors were upregulated in mouse embryonic fibroblasts (MEFs) after cordycepin treatment. Moreover, the generation efficiencies of iPS cells were elevated after cordycepin treatment. We found that iPS cells generated after cordycepin treatment, not only expressed pluripotency markers, but also showed the ability of differentiating into neuron stem/progenitor cells. Taken together, we demonstrated that cordycepin maintained the pluripotency of stem cells via regulation of extracellular matrix (ECM) and Jak2/Stat3 signaling pathway and improved the generation efficiency of iPSCs.
Collapse
Affiliation(s)
- Chie-Hong Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Cheng-Hsuan Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Tsung-Li Lin
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Center for Translational Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuen Huang
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Yin Chen
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Center for Translational Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan. .,Center for Translational Medicine, China Medical University Hospital, Taichung, Taiwan. .,Department of Social Work, Asia University, Taichung, Taiwan.
| |
Collapse
|
13
|
The protective effect of Cordycepin on diabetic nephropathy through autophagy induction in vivo and in vitro. Int Urol Nephrol 2019; 51:1883-1892. [PMID: 31359358 DOI: 10.1007/s11255-019-02241-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the most serious chronic complications of diabetes mellitus (DM). Autophagy is an important physiological function for podocytes to maintain stability of intracellular environment. In this study, we planned to clarify the effect of Cordycepin, a traditional Chinese medicine, on DN and the related mechanisms. METHODS All rats were randomly divided into normal control group, diabetic controls, low-dose group (10 mg/kg), medium-dose group (100 mg/kg), and high-dose group (500 mg/kg). The level of cholesterol, blood sugar, triglyceride, creatinine, and urine protein was examined through an automatic biochemistry analyser. Enzyme-linked immunosorbent assay (Elisa) was used to detect the level of IL-1β, IL-6, and IL-18. HE staining was used to examine histopathologic changes. TUNEL staining was used to detected cell apoptosis. The expression of fibrosis markers α-SMA, t-TG, and TIMP-1, apoptosis-related proteins cleaved-caspase3, Bax and Bcl-2, autophagy markers Beclin1, light chain 3 (LC3)I/II, and p62 were evaluated by western blot. RESULTS The level of cholesterol, blood sugar, triglyceride, creatinine, and urine protein in the diabetic controls was much higher than that in the normal control group. Obvious histopathology injuries were also found in DN model group. After Cordycepin treatment, all the above indexes were improved compared with the DN group and tissue damages were also alleviated. Further studies showed that Cordycepin suppressed cell apoptosis and renal fibrosis and rescued cell autophagy in DN rat model. Moreover, the results of our in vitro experiments showed that the addition of 3-methyladenine (3-MA, specific autophagy inhibitor) successfully abolished the protective effect of Cordycepin on renal fibrosis through inducing apoptosis and renal fibrosis. The above protective effects of Cordycepin were exhibited in a dose-dependent manner. CONCLUSION Cordycepin participated in the modulation of cell apoptosis, fibrosis, and autophagy induction in DN. Our study for the first time revealed that Cordycepin had a certain therapeutic effect on DN in rats through autophagy induction.
Collapse
|
14
|
Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi. Molecules 2019; 24:molecules24122231. [PMID: 31207985 PMCID: PMC6632035 DOI: 10.3390/molecules24122231] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cordycepin (3′-deoxyadenosine), a cytotoxic nucleoside analogue found in Cordyceps militaris, has attracted much attention due to its therapeutic potential and biological value. Cordycepin interacts with multiple medicinal targets associated with cancer, tumor, inflammation, oxidant, polyadenylation of mRNA, etc. The investigation of the medicinal drug actions supports the discovery of novel targets and the development of new drugs to enhance the therapeutic potency and reduce toxicity. Cordycepin may be of great value owing to its medicinal potential as an external drug, such as in cosmeceutical, traumatic, antalgic and muscle strain applications. In addition, the biological application of cordycepin, for example, as a ligand, has been used to uncover molecular structures. Notably, studies that investigated the metabolic mechanisms of cordycepin-producing fungi have yielded significant information related to the biosynthesis of high levels of cordycepin. Here, we summarized the medicinal targets, biological applications, cytotoxicity, delivery carriers, stability, and pros/cons of cordycepin in clinical applications, as well as described the metabolic mechanisms of cordycepin in cordycepin-producing fungi. We posit that new approaches, including single-cell analysis, have the potential to enhance medicinal potency and unravel all facets of metabolic mechanisms of cordycepin in Cordyceps militaris.
Collapse
|
15
|
Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Bioactive Ingredients in Chinese Herbal Medicines That Target Non-coding RNAs: Promising New Choices for Disease Treatment. Front Pharmacol 2019; 10:515. [PMID: 31178721 PMCID: PMC6537929 DOI: 10.3389/fphar.2019.00515] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal medicines (CHMs) are widely used in China and have long been a powerful method to treat diseases in Chinese people. Bioactive ingredients are the main components extracted from herbs that have therapeutic properties. Since artemisinin was discovered to inhibit malaria by Nobel laureate Youyou Tu, extracts from natural plants, particularly bioactive ingredients, have aroused increasing attention among medical researchers. The bioactive ingredients of some CHMs have been found to target various non-coding RNA molecules (ncRNAs), especially miRNAs, lncRNAs, and circRNAs, which have emerged as new treatment targets in numerous diseases. Here we review the evidence that, by regulating the expression of ncRNAs, these ingredients exert protective effects, including pro-apoptosis, anti-proliferation and anti-migration, anti-inflammation, anti-atherosclerosis, anti-infection, anti-senescence, and suppression of structural remodeling. Consequently, they have potential as treatment agents in diseases such as cancer, cardiovascular disease, nervous system disease, inflammatory bowel disease, asthma, infectious diseases, and senescence-related diseases. Although research has been relatively limited and inadequate to date, the promising choices and new alternatives offered by bioactive ingredients for the treatment of the above diseases warrant serious investigation.
Collapse
Affiliation(s)
- Yan Dong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi J Biol Sci 2018; 25:991-995. [PMID: 30108453 PMCID: PMC6088102 DOI: 10.1016/j.sjbs.2018.05.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 12/14/2022] Open
Abstract
Public interest in complementary and alternative medicine has been increased worldwide, due to its wide applications in cancer prevention and treatment. Cordycepin is one of the most common and crucial types of complementary and alternative medicine. Cordycepin (3′-deoxyadenosine), a derivative of adenosine, was first isolated from medicine drug Cordyceps militaris. Cordycepin has been widely used as one compound for antitumor, which has been found to exert antiangiogenic, anti-metastatic, and antiproliferative effects, as well as inducing apoptosis. However, the mechanism of its anti-tumor activity is not well known. This review will clarify anti-tumor mechanisms of Cordycepin, which regulate signaling pathways related with tumor growth and metastasis. Cordycepin inhibit tumor growth via upregulating tumor apoptosis, inducing cell cycle arrest and targeting cancer stem cells (CSCs). Cordycepin regulates tumor microenvironment via suppressing tumor metastasis-related pathways. Thus, Cordycepins may be one of important supplement or substitute medicine drug for cancer treatment.
Collapse
|
17
|
Wang CW, Lee BH, Tai CJ. The inhibition of cordycepin on cancer stemness in TGF-beta induced chemo-resistant ovarian cancer cell. Oncotarget 2017; 8:111912-111921. [PMID: 29340100 PMCID: PMC5762368 DOI: 10.18632/oncotarget.22951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023] Open
Abstract
Chemotherapy is one of the main approach for ovarian cancer. Cancer stem cells (CSCs) escape chemotherapy and lead to chemoresistance. We previously demonstrated that cordycepin (Cd) inhibited metastasis in human ovarian carcinoma cells, the aim of this study is to investigate the effects of Cd on ovarian cancer stemness. TGF-beta was used to induce chemoresistance of chemotherapeutic agent cisplatin in SKOV-3 ovarian cancer cells. After treating with 100 μM of Cd, cell viability, the percentage of cancer stem cells, and the levels of matrix metalloproteinases (MMPs) were decreased in TGF-beta-induced SKOV-3 cells. Treatment of Cd recovered E-cadherin levels and inhibited vimentin levels while TGF-beta treatment significantly increased the expression of vimentin and PGC-1alpha, and decreased E-cadherin levels in SKOV-3 cells, indicating that the action of Cd on cancer stemness may contribute to the regulation of epithelial-mesenchymal transition (EMT). Cd efficiently attenuated chemoresistance caused by TGF-beta in SKOV-3 cancer stem cells to promote the cytotoxicity of cisplatin.
Collapse
Affiliation(s)
- Chia-Woei Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Bao-Hong Lee
- Department of Traditional Chinese Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11042, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11042, Taiwan
| | - Chen-Jei Tai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.,Department of Traditional Chinese Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11042, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11042, Taiwan
| |
Collapse
|
18
|
Hemmati S, Haque T, Gritsman K. Inflammatory Signaling Pathways in Preleukemic and Leukemic Stem Cells. Front Oncol 2017; 7:265. [PMID: 29181334 PMCID: PMC5693908 DOI: 10.3389/fonc.2017.00265] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare subset of bone marrow cells that usually exist in a quiescent state, only entering the cell cycle to replenish the blood compartment, thereby limiting the potential for errors in replication. Inflammatory signals that are released in response to environmental stressors, such as infection, trigger active cycling of HSCs. These inflammatory signals can also directly induce HSCs to release cytokines into the bone marrow environment, promoting myeloid differentiation. After stress myelopoiesis is triggered, HSCs require intracellular signaling programs to deactivate this response and return to steady state. Prolonged or excessive exposure to inflammatory cytokines, such as in prolonged infection or in chronic rheumatologic conditions, can lead to continued HSC cycling and eventual HSC loss. This promotes bone marrow failure, and can precipitate preleukemic states or leukemia through the acquisition of genetic and epigenetic changes in HSCs. This can occur through the initiation of clonal hematopoiesis, followed by the emergence preleukemic stem cells (pre-LSCs). In this review, we describe the roles of multiple inflammatory signaling pathways in the generation of pre-LSCs and in progression to myelodysplastic syndrome (MDS), myeloproliferative neoplasms, and acute myeloid leukemia (AML). In AML, activation of some inflammatory signaling pathways can promote the cycling and differentiation of LSCs, and this can be exploited therapeutically. We also discuss the therapeutic potential of modulating inflammatory signaling for the treatment of myeloid malignancies.
Collapse
Affiliation(s)
- Shayda Hemmati
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tamanna Haque
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Kira Gritsman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|