1
|
Hashimoto K, Yonezawa S, Haruki T, Koizumi K, Oshima Y, Kitajima I, Sato H, Saito S. Identifying the crucial tipping point in the maturation process of cultured neurons using Raman spectroscopy and a dynamic network biomarker (DNB) analysis. Biochem Biophys Res Commun 2025; 743:151167. [PMID: 39681053 DOI: 10.1016/j.bbrc.2024.151167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
The present study aimed to identify crucial tipping points during neuronal development in a post-mitotic state using Raman spectroscopy and a dynamic network biomarker (DNB) analysis. A DNB analysis is a promising method to detect early signal during state transition. We previously developed an in vitro model that mimics neuronal development. The neurodevelopmental model was generated from a principal component analysis (PCA) with a Raman spectral dataset obtained from rat hippocampal neurons cultured for 120 days. In the present study, a DNB analysis was employed to identify the tipping point during the maturation of neurons. We reused the Raman spectral dataset obtained in our previous study. Based on our previous PCA findings, the dataset obtained from neurons after 8 days of culture was used in the DNB analysis. Raman spectral fluctuations were observed after 15 days of culturing. The Raman band of lactate (1048 cm-1) was identified as a DNB Raman band. These results suggest that lactate acts as an energy source and a factor affecting neuronal development. The present study also indicates that PCA effectively established the control group for a DNB analysis.
Collapse
Affiliation(s)
- Kosuke Hashimoto
- Research Center for Pre-Disease Science, University of Toyama, Toyama, 930-8555, Japan; School of Environmental Bioscience, Kwansei Gakuin University, Hyogo, 669-1330, Japan.
| | - Shota Yonezawa
- Research Center for Pre-Disease Science, University of Toyama, Toyama, 930-8555, Japan; Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Takayuki Haruki
- Research Center for Pre-Disease Science, University of Toyama, Toyama, 930-8555, Japan; Faculty of Sustainable Design, University of Toyama, Toyama, 930-8555, Japan
| | - Keiichi Koizumi
- Research Center for Pre-Disease Science, University of Toyama, Toyama, 930-8555, Japan; Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan.
| | - Yusuke Oshima
- Research Center for Pre-Disease Science, University of Toyama, Toyama, 930-8555, Japan; Faculty of Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Isao Kitajima
- Research Center for Pre-Disease Science, University of Toyama, Toyama, 930-8555, Japan
| | - Hidetoshi Sato
- School of Environmental Bioscience, Kwansei Gakuin University, Hyogo, 669-1330, Japan
| | - Shigeru Saito
- Research Center for Pre-Disease Science, University of Toyama, Toyama, 930-8555, Japan
| |
Collapse
|
2
|
Klimovich A, Golubewa L, Padrez Y, Matulaitiene I. Characterization of human Urotensin II peptide adsorbed on silver electrode by surface-enhanced Raman scattering spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125565. [PMID: 39667059 DOI: 10.1016/j.saa.2024.125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
The cyclic human neuropeptide Urotensin II (hU-II) is an important regulatory peptide found in the central nervous system, cardiovascular system, kidney, etc., however, its conformational structure and dynamics in aqueous solutions have not been studied in detail experimentally. In the present study, the structure of hU-II and the mechanism of its adsorption on the electrochemically roughened Ag electrode are investigated using electrochemical surface-enhanced Raman scattering spectroscopy (EC-SERS) in the voltage range from -1.0 to 0.0 V. We show that the adsorption of the hU-II peptide on the roughened Ag surface without the applied potential occurs mainly through the Phe6 and Trp7 residues of the cyclic hexapeptide sequence c[Cys5-Phe6-Trp7-Lys8-Tyr9-Cys10]. Under the applied negative potentials, a rearrangement of the Phe6 and Trp7 residues relative to the Ag electrode surface occurs, changing the orientation of the ring plane from an angle to a vertical. This favors the approach of the Lys8 and Tyr9 residues to the Ag surface and the additional anchoring of the hU-II peptide to the surface. The results of the detailed analysis of the interaction of the hU-II peptide with the solid-liquid interface obtained with EC-SERS can contribute to the understanding of the mechanisms of hU-II interaction with its receptor and help in the development of pharmacological analogs of hU-II in the future.
Collapse
Affiliation(s)
- Aliona Klimovich
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, Vilnius LT-10257, Lithuania.
| | - Lena Golubewa
- Department of Molecular Compound Physics, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, Vilnius LT-10257, Lithuania.
| | - Yaraslau Padrez
- Department of Molecular Compound Physics, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, Vilnius LT-10257, Lithuania.
| | - Ieva Matulaitiene
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, Vilnius LT-10257, Lithuania.
| |
Collapse
|
3
|
Zheng C, Zhang L, Huang H, Wang X, Van Schepdael A, Ye J. Raman spectroscopy: A promising analytical tool used in human reproductive medicine. J Pharm Biomed Anal 2024; 249:116366. [PMID: 39029353 DOI: 10.1016/j.jpba.2024.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Over the past few years, there has been growing interest in developing new methods of embryo quality assessment to improve the outcomes of assisted reproductive technologies in the medical field. Raman microscopy as an increasingly promising analytical tool has been widely used in life sciences, biomedicine and "omics" to study molecular, biochemical components, living cells and tissues due to the label-free and non-destructive nature of the imaging technique. This paper reviews the analytical capability of Raman microscopy and applications of Raman spectroscopy technology mainly in reproductive medicine. The purpose of this review is to introduce the Raman spectroscopy technology, application and underlying principles of the method, to provide an intact picture of its uses in biomedical science and reproductive medicine, to offer ideas for its future application, verification and validation. The focus is on the application of Raman spectroscopy in the reproductive medicine field, including the application in gametes, embryos and spent embryo culture media.
Collapse
Affiliation(s)
- Chao Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lumei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hefeng Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Chow DJX, Tan TCY, Upadhya A, Lim M, Dholakia K, Dunning KR. Viewing early life without labels: optical approaches for imaging the early embryo†. Biol Reprod 2024; 110:1157-1174. [PMID: 38647415 PMCID: PMC11180623 DOI: 10.1093/biolre/ioae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Embryo quality is an important determinant of successful implantation and a resultant live birth. Current clinical approaches for evaluating embryo quality rely on subjective morphology assessments or an invasive biopsy for genetic testing. However, both approaches can be inherently inaccurate and crucially, fail to improve the live birth rate following the transfer of in vitro produced embryos. Optical imaging offers a potential non-invasive and accurate avenue for assessing embryo viability. Recent advances in various label-free optical imaging approaches have garnered increased interest in the field of reproductive biology due to their ability to rapidly capture images at high resolution, delivering both morphological and molecular information. This burgeoning field holds immense potential for further development, with profound implications for clinical translation. Here, our review aims to: (1) describe the principles of various imaging systems, distinguishing between approaches that capture morphological and molecular information, (2) highlight the recent application of these technologies in the field of reproductive biology, and (3) assess their respective merits and limitations concerning the capacity to evaluate embryo quality. Additionally, the review summarizes challenges in the translation of optical imaging systems into routine clinical practice, providing recommendations for their future development. Finally, we identify suitable imaging approaches for interrogating the mechanisms underpinning successful embryo development.
Collapse
Affiliation(s)
- Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Avinash Upadhya
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Megan Lim
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
Fluks M, Collier R, Walewska A, Bruce AW, Ajduk A. How great thou ART: biomechanical properties of oocytes and embryos as indicators of quality in assisted reproductive technologies. Front Cell Dev Biol 2024; 12:1342905. [PMID: 38425501 PMCID: PMC10902081 DOI: 10.3389/fcell.2024.1342905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Assisted Reproductive Technologies (ART) have revolutionized infertility treatment and animal breeding, but their success largely depends on selecting high-quality oocytes for fertilization and embryos for transfer. During preimplantation development, embryos undergo complex morphogenetic processes, such as compaction and cavitation, driven by cellular forces dependent on cytoskeletal dynamics and cell-cell interactions. These processes are pivotal in dictating an embryo's capacity to implant and progress to full-term development. Hence, a comprehensive grasp of the biomechanical attributes characterizing healthy oocytes and embryos is essential for selecting those with higher developmental potential. Various noninvasive techniques have emerged as valuable tools for assessing biomechanical properties without disturbing the oocyte or embryo physiological state, including morphokinetics, analysis of cytoplasmic movement velocity, or quantification of cortical tension and elasticity using microaspiration. By shedding light on the cytoskeletal processes involved in chromosome segregation, cytokinesis, cellular trafficking, and cell adhesion, underlying oogenesis, and embryonic development, this review explores the significance of embryo biomechanics in ART and its potential implications for improving clinical IVF outcomes, offering valuable insights and research directions to enhance oocyte and embryo selection procedures.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Rebecca Collier
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Agnieszka Walewska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Alexander W. Bruce
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Han J, Ishigaki M, Takahashi Y, Watanabe H, Umebayashi Y. Analytical chemistry toward on-site diagnostics. ANAL SCI 2023; 39:133-137. [PMID: 36653697 DOI: 10.1007/s44211-023-00271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
Analytical Chemistry, through quantitative and/or qualitative analysis (identification), is a discipline that involves the development of methodologies and the exploration of new principles to obtain answers to given problems. In situ analysis techniques have attracted attention for its ability to elucidate phenomena occurring and to evaluate amount of a certain component in substances at real time and biological samples as applications of such analysis technology. Lots of techniques have been performed to understand the fundamental phenomena in varied fields such as X-ray, vibrational, and electrochemical impedance spectroscopies and also analytical reagents that enable to semi-quantitative analysis just observation. In fact, applying various in situ techniques in analytical chemistry expands to the medical diagnosis, which leads to be able to detect early diseases. Here, we describe some of previous researches in many fields such as electrochemical device for energy storage, biology, environment, and pathology and briefly introduce our recent challenges to analytical chemistry toward the on-site diagnosis.
Collapse
Affiliation(s)
- Jihae Han
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-No-Cho, Nishi-Ku, Niigata, Niigata, 950-2181, Japan
| | - Mika Ishigaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Yukiko Takahashi
- Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Hikari Watanabe
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yasuhiro Umebayashi
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-No-Cho, Nishi-Ku, Niigata, Niigata, 950-2181, Japan.
| |
Collapse
|
7
|
Exposing intracellular molecular changes during the differentiation of human-induced pluripotent stem cells into erythropoietin-producing cells using Raman spectroscopy and imaging. Sci Rep 2022; 12:20454. [PMID: 36443362 PMCID: PMC9705388 DOI: 10.1038/s41598-022-24725-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to explore intracellular molecular changes during the differentiation of human-induced pluripotent stem cells (iPSCs) into erythropoietin (EPO)-producing cells using Raman spectroscopy and imaging. Raman imaging data of fixed cells at four stages of cell differentiation were analyzed by a partial least squares (PLS) regression model, and the variations in the intracellular molecular compositions with cell differentiation were investigated. As a result, three biomarkers characterizing the cell phases were identified: dimethyl sulfoxide (DMSO), fatty acids with a low grade of unsaturation, and glycoproteins. The uptake of DMSO by EPO-producing cells, which was added into a culture medium as an inducer for cell differentiation, was detected, and the increase in unsaturated fatty acid concentrations was revealed that lipid metabolism changed over the course of cell differentiation. The decrease in the glycoprotein concentration after the cell phase during which iPSCs differentiated into EPO-producing cells was also made clear. Raman imaging successfully visualized chemical images of these three biomarkers in two dimensions, where the biomarker concentrations independently varied during cell differentiation. These results demonstrated the application potential of the proposed method to regenerative medicine for monitoring cell differentiation and discriminating cell maturation in situ at the molecular level.
Collapse
|
8
|
ISHIGAKI M. <i>In situ</i> Imaging of Living Organisms by Raman and Near-infrared Spectroscopies — A look into the Brilliance of Life through Molecular Spectroscopies —. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mika ISHIGAKI
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University
| |
Collapse
|
9
|
Li Y, Bagheri P, Chang P, Zeng A, Hao J, Fung A, Wu JY, Shi L. Direct Imaging of Lipid Metabolic Changes in Drosophila Ovary During Aging Using DO-SRS Microscopy. FRONTIERS IN AGING 2022; 2:819903. [PMID: 35822015 PMCID: PMC9261447 DOI: 10.3389/fragi.2021.819903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 01/09/2023]
Abstract
Emerging studies have shown that lipids and proteins play versatile roles in various aspects of aging. High-resolution in situ optical imaging provides a powerful approach to study the metabolic dynamics of lipids and proteins during aging. Here, we integrated D2O probing and stimulated Raman scattering (DO-SRS) microscopy to directly visualize metabolic changes in aging Drosophila ovary. The subcellular spatial distribution of de novo protein synthesis and lipogenesis in ovary was quantitatively imaged and examined. Our Raman spectra showed that early stages follicles were protein-enriched whereas mature eggs were lipid-enriched. DO-SRS imaging showed a higher protein synthesis in the earlier developing stages and an increased lipid turned over at the late stage. Aged (35 days) flies exhibited a dramatic decrease in metabolic turnover activities of both proteins and lipids, particularly, in the germ stem cell niche of germarium. We found an accumulation of unsaturated lipids in the nurse cells and oocytes in old flies, suggesting that unsaturated lipids may play an important role in the processes of oocyte maturation. We further detected changes in mitochondrial morphology and accumulation of Cytochrome c during aging. To our knowledge, this is the first study that directly visualizes spatiotemporal changes in lipid and protein metabolism in Drosophila ovary during development and aging processes. Our study not only demonstrates the application of a new imaging platform in visualizing metabolic dynamics of lipids and proteins in situ but also unravels how the metabolic activity and lipid distribution change in Drosophila ovary during aging.
Collapse
Affiliation(s)
- Yajuan Li
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Pegah Bagheri
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Phyllis Chang
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Audrey Zeng
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Jie Hao
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Anthony Fung
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Jane Y. Wu
- Department of Neurology, Northwestern University, Chicago, IL, United States
| | - Lingyan Shi
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Lingyan Shi,
| |
Collapse
|
10
|
Musson R, Gąsior Ł, Bisogno S, Ptak GE. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update 2022; 28:376-399. [PMID: 35021196 PMCID: PMC9071077 DOI: 10.1093/humupd/dmab046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA damage is a hazard that affects all cells of the body. DNA-damage repair (DDR) mechanisms are in place to repair damage and restore cellular function, as are other damage-induced processes such as apoptosis, autophagy and senescence. The resilience of germ cells and embryos in response to DNA damage is less well studied compared with other cell types. Given that recent studies have described links between embryonic handling techniques and an increased likelihood of disease in post-natal life, an update is needed to summarize the sources of DNA damage in embryos and their capacity to repair it. In addition, numerous recent publications have detailed novel techniques for detecting and repairing DNA damage in embryos. This information is of interest to medical or scientific personnel who wish to obtain undamaged embryos for use in offspring generation by ART. OBJECTIVE AND RATIONALE This review aims to thoroughly discuss sources of DNA damage in male and female gametes and preimplantation embryos. Special consideration is given to current knowledge and limits in DNA damage detection and screening strategies. Finally, obstacles and future perspectives in clinical diagnosis and treatment (repair) of DNA damaged embryos are discussed. SEARCH METHODS Using PubMed and Google Scholar until May 2021, a comprehensive search for peer-reviewed original English-language articles was carried out using keywords relevant to the topic with no limits placed on time. Keywords included ‘DNA damage repair’, ‘gametes’, ‘sperm’, ‘oocyte’, ‘zygote’, ‘blastocyst’ and ‘embryo’. References from retrieved articles were also used to obtain additional articles. Literature on the sources and consequences of DNA damage on germ cells and embryos was also searched. Additional papers cited by primary references were included. Results from our own studies were included where relevant. OUTCOMES DNA damage in gametes and embryos can differ greatly based on the source and severity. This damage affects the development of the embryo and can lead to long-term health effects on offspring. DDR mechanisms can repair damage to a certain extent, but the factors that play a role in this process are numerous and altogether not well characterized. In this review, we describe the multifactorial origin of DNA damage in male and female gametes and in the embryo, and suggest screening strategies for the selection of healthy gametes and embryos. Furthermore, possible therapeutic solutions to decrease the frequency of DNA damaged gametes and embryos and eventually to repair DNA and increase mitochondrial quality in embryos before their implantation is discussed. WIDER IMPLICATIONS Understanding DNA damage in gametes and embryos is essential for the improvement of techniques that could enhance embryo implantation and pregnancy success. While our knowledge about DNA damage factors and regulatory mechanisms in cells has advanced greatly, the number of feasible practical techniques to avoid or repair damaged embryos remains scarce. Our intention is therefore to focus on strategies to obtain embryos with as little DNA damage as possible, which will impact reproductive biology research with particular significance for reproductive clinicians and embryologists.
Collapse
Affiliation(s)
- Richard Musson
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Łukasz Gąsior
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Simona Bisogno
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grażyna Ewa Ptak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Fernandes DP, Rossetto R, Montenegro AR, Fernandes CCL, Bravo PA, Moreno ME, Cavalcanti CM, Kubota GA, Rondina D. Effectiveness of near-infrared spectroscopy as a non-invasive tool to discriminate spectral profiles of in vitro cultured oocytes from goats. Anim Reprod 2021; 18:e20200255. [PMID: 34925556 PMCID: PMC8677351 DOI: 10.1590/1984-3143-ar2020-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Here, we aimed to discriminate between the spectral profiles of spent culture media after oocyte in vitro maturation (IVM) and culture (IVC) from goats of different ages subjected to repeated hormonal treatments. The profiles were discriminated using near infrared (NIR) spectroscopy combined with multivariate methods. A total of 19 goats (young = 10; old = 9) were subjected to serial hormonal stimulation (HS) with gonadotropins. Cumulus oophorus complexes (COCs) were collected using laparoscopic ovum pick-up (LOPU) and subjected to IVM and parthenogenetic activation. The initial embryos were subjected to IVC. Spent culture media were collected after oocyte IVM and on day 2 of IVC and analyzed using NIR spectroscopy. NIR spectral data were interpreted through chemometric methods, such as principle component analysis (PCA) and partial least square discriminant analysis (PLS-DA). The results of PCA analysis clearly showed a separation in the spectral profiles between the experimental groups (HS sessions; young and old animals) both after IVM and IVC. Overall, the main absorption bands were attributed to the C-H group second overtone, first overtone of O-H and N-H, and C-H combinations and may serve as molecular markers. On the other hand, the spectral data obtained using PLS-DA models provided a better classification of the groups. The results showed the possibility of discriminating young and old groups as well as the three HS sessions with high specificity, sensitivity, and accuracy using NIR spectra. Thus, the culture medium analysis using NIR spectroscopy combined with multivariate methods indicated the dissimilarities between the groups and provided an insight into the in vitro development of goat oocytes. This technique serves as an efficient, objective, rapid, and non-invasive method to discriminate spectral profiles.
Collapse
Affiliation(s)
- Denilsa Pires Fernandes
- Laboratório de Nutrição e Produção de Ruminantes, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Rafael Rossetto
- Laboratório de Nutrição e Produção de Ruminantes, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Assis Rubens Montenegro
- Laboratório de Nutrição e Produção de Ruminantes, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | | | - Pamela Angela Bravo
- Laboratório de Nutrição e Produção de Ruminantes, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Maria Eugenia Moreno
- Laboratório de Nutrição e Produção de Ruminantes, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Camila Muniz Cavalcanti
- Laboratório de Nutrição e Produção de Ruminantes, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Guilherme Araújo Kubota
- Laboratório de Nutrição e Produção de Ruminantes, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Davide Rondina
- Laboratório de Nutrição e Produção de Ruminantes, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
12
|
Ishigaki M, Kashiwagi S, Wakabayashi S, Hoshino Y. In situ assessment of mitochondrial respiratory activity and lipid metabolism of mouse oocytes using resonance Raman spectroscopy. Analyst 2021; 146:7265-7273. [PMID: 34735555 DOI: 10.1039/d1an01106e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to develop a method to determine the degree of oocyte maturation in metaphase II in situ based on the balance between mitochondrial respiratory activity and lipid metabolism using resonance Raman spectroscopy. A decrease in the respiratory activity of overmatured oocytes was indicated by the reduced intensities of the resonance Raman bands corresponding to reduced cytochrome c in the cytoplasm. Moreover, the increased lipid concentration in overmature oocytes indicated lower lipid metabolism with a decreased mitochondrial function. New indexes were defined in terms of the ratios of the representative Raman peak intensities of reduced cytochrome c (750 and 1127 cm-1) to those of lipids (1438 cm-1 ) and they successfully classify the oocytes into groups based on their quality, which varied with their maturation degree. The high development rate of embryos that were fertilized in vitro after laser irradiation showed that laser irradiation was noninvasive to oocytes. The evaluation of two factors in situ, the active respiration and lipid metabolism, means to catch the most fundamental biochemical reactions of life activities. Our results demonstrate the potential application of resonance Raman spectroscopy as a new, noninvasive, and universal cell evaluation technology, for not only oocytes but also more general cells such as somatic cells and iPS cells.
Collapse
Affiliation(s)
- Mika Ishigaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan. .,Raman Project Center for Medical and Biological Applications, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Shinsuke Kashiwagi
- Bio/Life Science Project, Sales Division, HORIBA, Ltd, 2 Miyanohigashi-cho, Kisshoin, Minami-ku, Kyoto 601-8510, Japan
| | - Satoru Wakabayashi
- Bio/Life Science Project, Sales Division, HORIBA, Ltd, 2 Miyanohigashi-cho, Kisshoin, Minami-ku, Kyoto 601-8510, Japan
| | - Yumi Hoshino
- Laboratory of Animal Reproduction, Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
| |
Collapse
|
13
|
Zheng W, Zhang S, Gu Y, Gong F, Kong L, Lu G, Lin G, Liang B, Hu L. Non-invasive Metabolomic Profiling of Embryo Culture Medium Using Raman Spectroscopy With Deep Learning Model Predicts the Blastocyst Development Potential of Embryos. Front Physiol 2021; 12:777259. [PMID: 34867485 PMCID: PMC8640355 DOI: 10.3389/fphys.2021.777259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose: This study aimed to establish a non-invasive predicting model via Raman spectroscopy for evaluating the blastocyst development potential of day 3 high-quality cleavage stage embryos. Methods: Raman spectroscopy was used to detect the metabolic spectrum of spent day 3 (D3) embryo culture medium, and a classification model based on deep learning was established to differentiate between embryos that could develop into blastocysts (blastula) and that could not (non-blastula). The full-spectrum data for 80 blastula and 48 non-blastula samples with known blastocyst development potential from 34 patients were collected for this study. Results: The accuracy of the predicting method was 73.53% and the main different Raman shifts between blastula and non-blastula groups were 863.5, 959.5, 1,008, 1,104, 1,200, 1,360, 1,408, and 1,632 cm-1 from 80 blastula and 48 non-blastula samples by the linear discriminant method. Conclusion: This study demonstrated that the developing potential of D3 cleavage stage embryos to the blastocyst stage could be predicted with spent D3 embryo culture medium using Raman spectroscopy with deep learning classification models, and the overall accuracy reached at 73.53%. In the Raman spectroscopy, ribose vibration specific to RNA were found, indicating that the difference between the blastula and non-blastula samples could be due to materials that have similar structure with RNA. This result could be used as a guide for biomarker development of embryo quality assessment in the future.
Collapse
Affiliation(s)
- Wei Zheng
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
| | - Yifan Gu
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
| | - Fei Gong
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
| | - Lingyin Kong
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Guangxiu Lu
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
| | - Ge Lin
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Hu
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| |
Collapse
|
14
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
15
|
Abstract
This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed.
Collapse
|
16
|
Raman spectroscopy on live mouse early embryo while it continues to develop into blastocyst in vitro. Sci Rep 2019; 9:6636. [PMID: 31036868 PMCID: PMC6488652 DOI: 10.1038/s41598-019-42958-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Laser based spectroscopic methods can be versatile tools in investigating early stage mammalian embryo structure and biochemical processes in live oocytes and embryos. The limiting factor for using the laser methods in embryological studies is the effect of laser irradiation on the ova. The aim of this work is to explore the optimal parameters of the laser exposure in Raman spectroscopic measurements applicable for studying live early embryos in vitro without impacting their developmental capability. Raman spectra from different areas of mouse oocytes and 2-cells embryos were measured and analyzed. The laser power and exposure time were varied and further embryo development was evaluated to select optimal conditions of the measurements. This work demonstrates safe laser irradiation parameters can be selected, which allow acquisition of Raman spectra suitable for further analysis without affecting the early mouse embryo development in vitro up to morphologically normal blastocyst. The estimation of living embryo state is demonstrated via analysis and comparison of the spectra from fertilized embryo with the spectra from unfertilized oocytes or embryos subjected to UV laser irradiation. These results demonstrate the possibility of investigating preimplantation mammalian embryo development and estimating its state/quality. It will have potential in developing prognosis of mammalian embryos in assisted reproductive technologies.
Collapse
|
17
|
Kumamoto Y, Mochizuki K, Hashimoto K, Harada Y, Tanaka H, Fujita K. High-Throughput Cell Imaging and Classification by Narrowband and Low-Spectral-Resolution Raman Microscopy. J Phys Chem B 2019; 123:2654-2661. [PMID: 30830787 DOI: 10.1021/acs.jpcb.8b11295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the use of narrowband Raman spectra for rapid label-free molecular imaging aimed at cell classification using principal component regression and linear discriminant analysis. In the classification of breast nontumorigenic epithelial and cancer cell lines, the classification accuracies using a spectral range of 100 cm-1 were equivalent to or better than that with using the fingerprint and high-wavenumber regions. Narrowing the Raman spectral range for analysis allows reduction of the charge-coupled device (CCD) pixels required for spectrum detection, resulting in the improvement of image acquisition speed with adequate classification accuracy. Our measurements revealed that the wavenumber region at 1397-1501 cm-1 can provide molecular information sufficient for cell classification without causing notable errors in the baseline-correction. A spectral resolution of ∼9 cm-1 was found to be sufficient to provide high accuracy in cell classification, which allowed us to apply pixel binning at the CCD readout for further acceleration of the imaging speed. As a result, the acquisition time for a 1200 × 1500 pixels Raman hyperspectral image at 1397-1501 cm-1 was reduced to 21 min. Under this condition, different cell lines were classified at accuracies higher than 90%. The presented approach will improve throughput of cell and tissue analysis and classification using Raman spectroscopy and extend practical uses of Raman imaging in biology and medicine.
Collapse
Affiliation(s)
- Yasuaki Kumamoto
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences , Kyoto Prefectural University of Medicine , 465 Kajiicho, Kawaramachi-Hirokoji , Kamigyo, Kyoto , Kyoto 6028566 , Japan
| | | | - Kosuke Hashimoto
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences , Kyoto Prefectural University of Medicine , 465 Kajiicho, Kawaramachi-Hirokoji , Kamigyo, Kyoto , Kyoto 6028566 , Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences , Kyoto Prefectural University of Medicine , 465 Kajiicho, Kawaramachi-Hirokoji , Kamigyo, Kyoto , Kyoto 6028566 , Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences , Kyoto Prefectural University of Medicine , 465 Kajiicho, Kawaramachi-Hirokoji , Kamigyo, Kyoto , Kyoto 6028566 , Japan
| | - Katsumasa Fujita
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences , Kyoto Prefectural University of Medicine , 465 Kajiicho, Kawaramachi-Hirokoji , Kamigyo, Kyoto , Kyoto 6028566 , Japan
| |
Collapse
|
18
|
Ishigaki M, Hoshino Y, Ozaki Y. Phosphoric acid and phosphorylation levels are potential biomarkers indicating developmental competence of matured oocytes. Analyst 2019; 144:1527-1534. [DOI: 10.1039/c8an01589a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We identified biomarkers for mice oocyte maturation in metaphase II in vivo and in situ using Raman spectroscopy.
Collapse
Affiliation(s)
- Mika Ishigaki
- School of Science and Technology
- Kwansei Gakuin University
- Sanda
- Japan
- Center for Promotion of Project Research
| | - Yumi Hoshino
- Graduate School of Biosphere Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Yukihiro Ozaki
- School of Science and Technology
- Kwansei Gakuin University
- Sanda
- Japan
| |
Collapse
|
19
|
Li XX, Cao PH, Han WX, Xu YK, Wu H, Yu XL, Chen JY, Zhang F, Li YH. Non-invasive metabolomic profiling of culture media of ICSI- and IVF-derived early developmental cattle embryos via Raman spectroscopy. Anim Reprod Sci 2018; 196:99-110. [DOI: 10.1016/j.anireprosci.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
20
|
Li H, Luo W, Li G, Zhang G, Zhang P, Li C, Gu Y. A practical wide-field Raman imaging method with high spectral and spatial resolution. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:083103. [PMID: 30184661 DOI: 10.1063/1.5041529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
Raman imaging has a great advantage in characterizing inhomogeneous systems. A practical wide-field Raman imaging platform is developed that shows major improvements on imaging speed, sensitivity, and resolution. Different from the traditional Raman imaging systems using the wavelength-fixed lasers and the chromatic dispersion devices, this system adopts an inverted architecture, integrated with a tunable laser and the wavelength-fixed filters. Owing to the high transmission of the fixed filters, the imaging sensitivity can be improved 5-10 times in comparison to the present wide-field Raman imaging setups using liquid-crystal tunable filters. Via combining with the high-power tunable laser, Raman images could be obtained in minutes and the Raman shift of the images could be tuned easily and accurately. The resolution of this system can reach 1.5 cm-1 in the spectrum and 490 nm in space, which could provide more fingerprint details of the analytes. This effective Raman imaging method allowing us to see chemical spatial variations on microscale is anticipated to be widely applied in scientific research fields.
Collapse
Affiliation(s)
- Haibo Li
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, People's Republic of China
| | - Wenhua Luo
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Gan Li
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, People's Republic of China
| | - Guangfeng Zhang
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, People's Republic of China
| | - Pengcheng Zhang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Changmao Li
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, People's Republic of China
| | - Yuejiao Gu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| |
Collapse
|