1
|
Zhang C, Cui H, Chen L, Yuan W, Dong S, Kong Y, Guo Z, Liu J. Pathogenicity and Transmissibility of Goose-Origin H5N6 Avian Influenza Virus Clade 2.3.4.4h in Mammals. Viruses 2022; 14:v14112454. [PMID: 36366552 PMCID: PMC9699601 DOI: 10.3390/v14112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Throughout the last decade, H5N6 avian influenza viruses (AIVs) circulating in poultry and infecting humans have caused increasing global concerns that they might become a pandemic threat to global health. Since AIVs could occasionally cause asymptomatic infections in geese, virus monitoring in such a host should be critical to the control of cross-species infection. In addition, previous studies showed that clade 2.3.4.4h H5N6 AIVs could infect mammals without adaptation. However, the pathogenicity and transmissibility of goose-origin clade 2.3.4.4h H5N6 AIVs in mammals remain unknown. In this study, two H5N6 AIVs were isolated from a domestic chicken (A/chicken/Hebei CK05/2019 (H5N6)) and a goose (A/goose/Hebei/GD07/2019(H5N6)). This study is the first to evaluate the pathogenicity and transmissibility of goose-origin clade 2.3.4.4h H5N6 AIVs in mammals by comparison with chicken-origin 2.3.4.4h H5N6 AIVs. The CK05 virus had an affinity for α-2,3-receptors, while the GD07 virus had an affinity for both α-2,3-and α-2,6-receptors. The GD07 virus had a higher replication capacity in vitro and more severe pathogenicity in mice than the CK05 virus. The CK05 virus could not be transmitted effectively among guinea pigs, whereas the GD07 virus could be transmitted through direct contact among guinea pigs. The results of this study indicated the potential health threat of clade 2.3.4.4h H5N6 AIVs to mammals and emphasized the importance of continuous monitoring of H5N6 AIVs, especially in waterfowl.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yunyi Kong
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (Z.G.); (J.L.); Tel.: +86-0431-86985975 (Z.G.); +86-0312-7520278 (J.L.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (Z.G.); (J.L.); Tel.: +86-0431-86985975 (Z.G.); +86-0312-7520278 (J.L.)
| |
Collapse
|
2
|
Durairaj K, Trinh TTT, Yun SY, Yeo SJ, Sung HW, Park H. Molecular Characterization and Pathogenesis of H6N6 Low Pathogenic Avian Influenza Viruses Isolated from Mallard Ducks (Anas platyrhynchos) in South Korea. Viruses 2022; 14:v14051001. [PMID: 35632743 PMCID: PMC9143286 DOI: 10.3390/v14051001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
The subtype H6N6 has been identified worldwide following the increasing frequency of avian influenza viruses (AIVs). These AIVs also have the ability to bind to human-like receptors, thereby increasing the risk of animal-human transmission. In September 2019, an H6N6 avian influenza virus—KNU2019-48 (A/Mallard (Anas platyrhynchos)/South Korea/KNU 2019-48/2019(H6N6))—was isolated from Anas platyrhynchos in South Korea. Phylogenetic analysis results revealed that the hemagglutinin (HA) gene of this strain belongs to the Korean lineage, whereas the neuraminidase (NA) and polymerase basic protein 1 (PB1) genes belong to the Chinese lineage. Outstanding internal proteins such as PB2, polymerase acidic protein, nucleoprotein, matrix protein, and non-structural protein belong to the Vietnamese lineage. Additionally, a monobasic amino acid (PRIETR↓GLF) at the HA cleavage site; non-deletion of the stalk region (residue 59–69) in the NA gene; and E627 in the PB2 gene indicate that the KNU2019-48 isolate is a typical low-pathogenic avian influenza (LPAI) virus. The nucleotide sequence similarity analysis of HA revealed that the highest homology (97.18%) of this isolate is to that of A/duck/Jiangxi/01.14 NCJD125-P/2015(H6N6), and the amino acid sequence of NA (97.38%) is closely related to that of A/duck/Fujian/10.11_FZHX1045-C/2016 (H6N6). An in vitro analysis of the KNU2019-48 virus shows a virus titer of not more than 2.8 Log10 TCID 50/mL until 72 h post-infection, whereas in the lungs, the virus is detected at 3 dpi (days post-infection). The isolated KNU2019-48 (H6N6) strain is the first reported AIV in Korea, and the H6 subtype virus has co-circulated in China, Vietnam, and Korea for half a decade. Overall, our study demonstrates that Korean H6N6 strain PB1-S375N, PA-A404S, and S409N mutations are infectious in humans and might contribute to the enhanced pathogenicity of this strain. Therefore, we emphasize the importance of continuous and intensive surveillance of the H6N6 virus not only in Korea but also worldwide.
Collapse
Affiliation(s)
- Kaliannan Durairaj
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (K.D.); (S.-Y.Y.)
| | - Thuy-Tien Thi Trinh
- Institute of Endemic Diseases, Medical Research Center, Department of Tropical Medicine and Parasitology, Seoul National University, Seoul 03080, Korea;
| | - Su-Yeon Yun
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (K.D.); (S.-Y.Y.)
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.-W.S.); (H.P.)
| | - Haan-Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-J.Y.); (H.-W.S.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (K.D.); (S.-Y.Y.)
- Correspondence: (S.-J.Y.); (H.-W.S.); (H.P.)
| |
Collapse
|
3
|
Zhang R, Liu R, Huang Y, Chen Z, Cheng L, Fu G, Shi S, Chen H, Wan C, Fu Q. WITHDRAWN: Molecular Evolution and Amino Acid Characteristics of Main Antigen Genes of Clinical Duck-Derived H5N6 Subtype Avian Influenza Virus in East China from 2015 to 2019. Avian Dis 2022; 66:1. [PMID: 35092235 DOI: 10.1637/aviandiseases-d-21-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 11/05/2022]
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Rongchang Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China,
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Longfei Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Shaohua Shi
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Hongmei Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Qiuling Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| |
Collapse
|
4
|
Xiang B, Song J, Chen L, Liang J, Li X, Yu D, Lin Q, Liao M, Ren T, Xu C. Duck-origin H5N6 avian influenza viruses induce different pathogenic and inflammatory effects in mice. Transbound Emerg Dis 2021; 68:3509-3518. [PMID: 33316151 DOI: 10.1111/tbed.13956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Since 2013, H5N6 highly pathogenic avian influenza viruses have caused considerable economic losses in the poultry industry and have caused 24 laboratory-confirmed human cases. In this study, we isolated nine (B1-B9) H5N6 viruses from healthy ducks in Guangdong Province, Southern China from December 2018 to April 2019. Phylogenetic analysis revealed that B1, B2, B3, B4, B5, B7, B8, and B9 clustered into the G1.1 genotype and shared high sequence similarity with human H5N6 isolates from Southern China in 2017 and 2018. Meanwhile, B6 clustered into the G1.1.9 genotype. The hemagglutinin (HA), neuraminidase (NA) and nonstructural protein (NS) gene segments of B6 were closely related to the human H5N6 isolates, while the other genomic segments were closely related to H5N6 viruses isolated from waterfowl in Southern China. Compared to B7, B6 had higher pathogenicity and induced stronger inflammatory responses in mice. B6 carried a full-length PB1-F2 protein (90 aa), while the rest carried an 11-amino acid C-terminal-truncated PB1-F2. The PB1-F2 protein may increase the virulence of B6 compared to that of B7. Our findings provide insight into the pathogenic mechanisms of H5N6 viruses in mammals and emphasize the need for continued surveillance of circulating H5N6 viruses in ducks.
Collapse
Affiliation(s)
- Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jie Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jianpeng Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Deshui Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Antibodies to Highly Pathogenic A/H5Nx (Clade 2.3.4.4) Influenza Viruses in the Sera of Vietnamese Residents. Pathogens 2021; 10:pathogens10040394. [PMID: 33806156 PMCID: PMC8064466 DOI: 10.3390/pathogens10040394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
To cause a pandemic, an influenza virus has to overcome two main barriers. First, the virus has to be antigenically new to humans. Second, the virus has to be directly transmitted from humans to humans. Thus, if the avian influenza virus is able to pass the second barrier, it could cause a pandemic, since there is no immunity to avian influenza in the human population. To determine whether the adaptation process is ongoing, analyses of human sera could be conducted in populations inhabiting regions where pandemic virus variant emergence is highly possible. This study aimed to analyze the sera of Vietnamese residents using hemagglutinin inhibition reaction (HI) and microneutralization (MN) with A/H5Nx (clade 2.3.4.4) influenza viruses isolated in Vietnam and the Russian Federation in 2017–2018. In this study, we used sera from 295 residents of the Socialist Republic of Vietnam collected from three groups: 52 samples were collected from households in Nam Dinh province, where poultry deaths have been reported (2017); 96 (2017) and 147 (2018) samples were collected from patients with somatic but not infectious diseases in Hanoi. In all, 65 serum samples were positive for HI, at least to one H5 virus used in the study. In MN, 47 serum samples neutralizing one or two viruses at dilutions of 1/40 or higher were identified. We postulate that the rapidly evolving A/H5Nx (clade 2.3.4.4) influenza virus is possibly gradually adapting to the human host, insofar as healthy individuals have antibodies to a wide spectrum of variants of that subtype.
Collapse
|
6
|
Yamaji R, Saad MD, Davis CT, Swayne DE, Wang D, Wong FYK, McCauley JW, Peiris JSM, Webby RJ, Fouchier RAM, Kawaoka Y, Zhang W. Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev Med Virol 2020; 30:e2099. [PMID: 32135031 PMCID: PMC9285678 DOI: 10.1002/rmv.2099] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/05/2023]
Abstract
The panzootic caused by A/goose/Guangdong/1/96‐lineage highly pathogenic avian influenza (HPAI) A(H5) viruses has occurred in multiple waves since 1996. From 2013 onwards, clade 2.3.4.4 viruses of subtypes A(H5N2), A(H5N6), and A(H5N8) emerged to cause panzootic waves of unprecedented magnitude among avian species accompanied by severe losses to the poultry industry around the world. Clade 2.3.4.4 A(H5) viruses have expanded in distinct geographical and evolutionary pathways likely via long distance migratory bird dispersal onto several continents and by poultry trade among neighboring countries. Coupled with regional circulation, the viruses have evolved further by reassorting with local viruses. As of February 2019, there have been 23 cases of humans infected with clade 2.3.4.4 H5N6 viruses, 16 (70%) of which had fatal outcomes. To date, no HPAI A(H5) virus has caused sustainable human‐to‐human transmission. However, due to the lack of population immunity in humans and ongoing evolution of the virus, there is a continuing risk that clade 2.3.4.4 A(H5) viruses could cause an influenza pandemic if the ability to transmit efficiently among humans was gained. Therefore, multisectoral collaborations among the animal, environmental, and public health sectors are essential to conduct risk assessments and develop countermeasures to prevent disease and to control spread. In this article, we describe an assessment of the likelihood of clade 2.3.4.4 A(H5) viruses gaining human‐to‐human transmissibility and impact on human health should such human‐to‐human transmission occur. This structured analysis assessed properties of the virus, attributes of the human population, and ecology and epidemiology of these viruses in animal hosts.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Magdi D Saad
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Charles T Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Swayne
- Department of Agriculture, OIE Collaborating Centre for Research on Emerging Avian Diseases, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China
| | - Frank Y K Wong
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, UK
| | - J S Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wenqing Zhang
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| |
Collapse
|
7
|
Xiang B, Chen L, Xie P, Lin Q, Liao M, Ren T. Wild bird-origin H5N6 avian influenza virus is transmissible in guinea pigs. J Infect 2020; 80:e20-e22. [PMID: 32145213 DOI: 10.1016/j.jinf.2020.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Peng Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| |
Collapse
|
8
|
Different Pathogenicity and Transmissibility of Goose-Origin H5N6 Avian Influenza Viruses in Chickens. Viruses 2019; 11:v11070612. [PMID: 31277451 PMCID: PMC6669512 DOI: 10.3390/v11070612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/23/2019] [Accepted: 06/27/2019] [Indexed: 01/09/2023] Open
Abstract
Highly pathogenic avian influenza H5N6 viruses have been circulating in poultry in Asia since 2013 and producing serious diseases in chickens. Here, we analyzed the genetic properties of 10 H5N6 subtypes AIVs from geese in 2015–2016 in Guangdong province. Phylogenic analysis showed that all HA genes of the 10 viruses belonged to clade 2.3.4.4, and their genes including HA, PA, PB1, M, NP, and NS all derived from Mix-like 1 (CH, VN, LS). Their PB2 genes come from Mix-like 2 (CH, VN, JP). The NA genes were classified into a Eurasian lineage. Therefore, the 10 viruses likely originate from the same ancestor and were all recombinant viruses between different genotypes. We selected A/Goose/Guangdong/GS144/2015(H5N6) (GS144) and A/Goose/Guangdong/GS148/2016(H5N6) (GS148) viruses to inoculate 5-week-old chickens intranasally with 104 EID50/0.1 mL dose intranasally to assess their pathogenicity and transmissibility. Inoculated chickens showed that the GS144 virus caused systematic infection with a lethality of 100%, but the lethality of GS148 virus was 0%. The two viruses were efficiently transmitted to contact chickens. The lethality of GS144 and GS148 virus in contact with chickens was 87.5% and 0%, respectively, which suggests that the transmissibility of GS144 virus was stronger than GS148 virus in chickens. Thus, different H5N6 viruses from the same waterfowl can show different pathogenicity and transmissibility in chickens. Continued surveillance and characteristic analysis of the H5N6 viruses will help us to keep abreast of evolution and variation in avian influenza viruses in the future.
Collapse
|
9
|
Antigua KJC, Choi WS, Baek YH, Song MS. The Emergence and Decennary Distribution of Clade 2.3.4.4 HPAI H5Nx. Microorganisms 2019; 7:microorganisms7060156. [PMID: 31146461 PMCID: PMC6616411 DOI: 10.3390/microorganisms7060156] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022] Open
Abstract
Reassortment events among influenza viruses occur naturally and may lead to the development of new and different subtypes which often ignite the possibility of an influenza outbreak. Between 2008 and 2010, highly pathogenic avian influenza (HPAI) H5 of the N1 subtype from the A/goose/Guangdong/1/96-like (Gs/GD) lineage generated novel reassortants by introducing other neuraminidase (NA) subtypes reported to cause most outbreaks in poultry. With the extensive divergence of the H5 hemagglutinin (HA) sequences of documented viruses, the WHO/FAO/OIE H5 Evolutionary Working Group clustered these viruses into a systematic and unified nomenclature of clade 2.3.4.4 currently known as “H5Nx” viruses. The rapid emergence and circulation of these viruses, namely, H5N2, H5N3, H5N5, H5N6, H5N8, and the regenerated H5N1, are of great concern based on their pandemic potential. Knowing the evolution and emergence of these novel reassortants helps to better understand their complex nature. The eruption of reports of each H5Nx reassortant through time demonstrates that it could persist beyond its usual seasonal activity, intensifying the possibility of these emerging viruses’ pandemic potential. This review paper provides an overview of the emergence of each novel HPAI H5Nx virus as well as its current epidemiological distribution.
Collapse
Affiliation(s)
- Khristine Joy C Antigua
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Won-Suk Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
10
|
Adlhoch C, Dabrera G, Penttinen P, Pebody R. Protective Measures for Humans against Avian Influenza A(H5N8) Outbreaks in 22 European Union/European Economic Area Countries and Israel, 2016-17. Emerg Infect Dis 2018; 24:1-8. [PMID: 29989531 PMCID: PMC6154149 DOI: 10.3201/eid2410.180269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We sought to better understand national approaches for managing potential human health risks during outbreaks of infection with avian influenza A(H5N8) virus during 2016–17. Twenty-three countries in the Union/European Economic Area and Israel participated in this study. Risk to the general public was assessed as low in 18 countries and medium in 1 country. Of 524 exposed persons identified, 274 were passively monitored and 250 were actively monitored. Of 29 persons tested, all were negative for H5N8 virus. Vaccination and antiviral drug recommendations varied across countries. A high level of personal protection was recommended although a low risk was assessed. No transmission of this virus to humans was identified.
Collapse
|
11
|
Chang HP, Peng L, Chen L, Jiang LF, Zhang ZJ, Xiong CL, Zhao GM, Chen Y, Jiang QW. Avian influenza viruses (AIVs) H9N2 are in the course of reassorting into novel AIVs. J Zhejiang Univ Sci B 2018; 19:409-414. [PMID: 29732752 DOI: 10.1631/jzus.b1700374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In 2013, two episodes of influenza emerged in China and caused worldwide concern. A new H7N9 avian influenza virus (AIV) first appeared in China on February 19, 2013. By August 31, 2013, the virus had spread to ten provinces and two metropolitan cities. Of 134 patients with H7N9 influenza, 45 died. From then on, epidemics emerged sporadically in China and resulted in several victims. On November 30, 2013, a 73-year-old woman presented with an influenza-like illness. She developed multiple organ failure and died 9 d after the onset of disease. A novel reassortant AIV, H10N8, was isolated from a tracheal aspirate specimen that was obtained from the patient 7 d after onset. This case was the first human case of influenza A subtype H10N8. On 4 February, 2014, another death due to H10N8 avian influenza was reported in Jiangxi Province, China.
Collapse
Affiliation(s)
- Hui-Ping Chang
- Department of Life Sciences, Henan Institute of Education, Zhengzhou 450000, China
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai 200032, China
| | - Liang Chen
- Department of Public Health Microbiology, School of Public Health, Fudan University, Shanghai 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Lu-Fang Jiang
- Department of Public Health Microbiology, School of Public Health, Fudan University, Shanghai 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhi-Jie Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Cheng-Long Xiong
- Department of Public Health Microbiology, School of Public Health, Fudan University, Shanghai 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Gen-Ming Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1G5Z3, Canada
| | - Qing-Wu Jiang
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Tsunekuni R, Yaguchi Y, Kashima Y, Yamashita K, Takemae N, Mine J, Tanikawa T, Uchida Y, Saito T. Spatial transmission of H5N6 highly pathogenic avian influenza viruses among wild birds in Ibaraki Prefecture, Japan, 2016-2017. Arch Virol 2018; 163:1195-1207. [PMID: 29392495 DOI: 10.1007/s00705-018-3752-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/10/2018] [Indexed: 11/25/2022]
Abstract
From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Yuji Yaguchi
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Yuki Kashima
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Kaoru Yamashita
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan.
| |
Collapse
|
13
|
Lu S, Zhao Z, Zhang J, Wang W, He X, Yu M, Zhang C, Li X, Guo Z, Yang X, Liu L, Zhi M, Fu T, Lv X, Ma W, Liao M, Chai H, Liu L, Qian J, Ma J. Genetics, pathogenicity and transmissibility of novel reassortant H5N6 highly pathogenic avian influenza viruses first isolated from migratory birds in western China. Emerg Microbes Infect 2018; 7:6. [PMID: 29362400 PMCID: PMC5837145 DOI: 10.1038/s41426-017-0001-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Shaoxia Lu
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Zongzheng Zhao
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130062, Jilin, China
| | - Jiajie Zhang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Weidong Wang
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Ningxia, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Xin He
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Ningxia, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Mengqi Yu
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Ningxia, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Chunmao Zhang
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130062, Jilin, China
| | - Xiang Li
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Zhendong Guo
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130062, Jilin, China
| | - Xiaoyu Yang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Lina Liu
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130062, Jilin, China
| | - Min Zhi
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Tian Fu
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Xinru Lv
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Wenge Ma
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Mengying Liao
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China.
| | - Linna Liu
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130062, Jilin, China.
| | - Jun Qian
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130062, Jilin, China.
| | - Jianzhang Ma
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
14
|
Cueno ME, Suzuki I, Shimotomai S, Yokoyama T, Nagahisa K, Imai K. Structural comparison among the 2013-2017 avian influenza A H5N6 hemagglutinin proteins: A computational study with epidemiological implications. J Mol Graph Model 2017; 79:185-191. [PMID: 29220671 DOI: 10.1016/j.jmgm.2017.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 12/09/2022]
Abstract
Avian influenza viruses easily spread allowing viral re-assortment to simply occur which in-turn increases the potential for a pandemic. A novel 2013 H5N6 influenza strain was detected among the avian population and was reported to continuously evolve, however, this was never structurally demonstrated. Here, we elucidated the putative structural evolution of the novel H5N6 influenza strain. Throughout this study, we analyzed 2013-2017 H5N6 HA protein models. Model quality was first verified before further analyses and structural comparison was made using superimposition. We found that Leu was inserted at position 1291 among the 2013-2015 models while Leu was not inserted among the 2016-2017 models. Moreover, presence of Leu at position 1291 shifts residue E1261 by 159.6° affecting nearby residues which may explain the difference between the 2013-2015 and 2016-2017 HA structural groups. Similarly, we believe that our results would support the hypothesis that the current H5N6 strain is still continuously evolving.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; Immersion Physics Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo 178-0063, Japan.
| | - Izuho Suzuki
- Immersion Physics Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo 178-0063, Japan
| | - Shiori Shimotomai
- Immersion Physics Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo 178-0063, Japan
| | - Takuma Yokoyama
- Immersion Physics Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo 178-0063, Japan
| | - Kai Nagahisa
- Immersion Physics Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo 178-0063, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| |
Collapse
|
15
|
Gao S, Kang Y, Li S, Xiang B, Ma H, Yuan R. Increasing genetic diversity of H5N6 avian influenza virus in China: A serious threat to persistence and dissemination in Guangdong province. J Infect 2017; 75:586-590. [PMID: 29037866 DOI: 10.1016/j.jinf.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Shimin Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, China
| | - Yinfeng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; College of Veterinary Medicine, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Siyao Li
- Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Bin Xiang
- College of Veterinary Medicine, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Haili Ma
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, China.
| | - Runyu Yuan
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
16
|
He G, Zhou L, Zhu C, Shi H, Li X, Wu D, Liu J, Lv J, Hu C, Li Z, Wang Z, Wang T. Identification of two novel avian influenza a (H5N6) viruses in wild birds, Shanghai, in 2016. Vet Microbiol 2017; 208:53-57. [PMID: 28888649 DOI: 10.1016/j.vetmic.2017.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022]
Abstract
The H5N6 avian influenza virus (AIV) has been continuously reported in wild birds, which may contribute to further geographical spread during their long-distance migrations. Active AIV surveillance in wild birds was conducted during October and November 2016 in Shanghai, China. Two novel influenza A (H5N6) viruses were detected in samples from migratory waterfowl that are genetically similar to recent South Korea and Japan H5N6 viruses collected in 2016 and 2017, highlighting the role of migratory waterfowl in the dissemination of H5N6 viruses along migratory flyways.
Collapse
Affiliation(s)
- Guimei He
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Lichen Zhou
- School of Life Sciences, East China Normal University, Shanghai, China; Shanghai Zoo, Shanghai, China
| | - Caihui Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Xiaofang Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Di Wu
- Shanghai Wildlife Conservation and Management Center, Shanghai, China
| | - Jing Liu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiamin Lv
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chuanxia Hu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhihui Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenghuan Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Tianhou Wang
- School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
17
|
Gao S, Kang Y, Yuan R, Ma H, Xiang B, Wang Z, Dai X, Wang F, Xiao J, Liao M, Ren T. Immune Responses of Chickens Infected with Wild Bird-Origin H5N6 Avian Influenza Virus. Front Microbiol 2017; 8:1081. [PMID: 28676793 PMCID: PMC5476689 DOI: 10.3389/fmicb.2017.01081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Since April 2014, new infections of H5N6 avian influenza virus (AIV) in humans and domestic poultry have caused considerable economic losses in the poultry industry and posed an enormous threat to human health worldwide. In previous research using gene sequence and phylogenetic analysis, we reported that H5N6 AIV isolated in February 2015 (ZH283) in Pallas’s sandgrouse was highly similar to that isolated in a human in December 2015 (A/Guangdong/ZQ874/2015), whereas a virus (i.e., SW8) isolated in oriental magpie-robin in 2014 was highly similar to that of A/chicken/Dongguan/2690/2013 (H5N6). However, the pathogenicity, transmissibility, and host immune-related response of chickens infected by those wild bird-origin H5N6 AIVs remain unknown. In response, we examined the viral distribution and mRNA expression profiles of immune-related genes in chickens infected with both viruses. Results showed that the H5N6 AIVs were highly pathogenic to chickens and caused not only systemic infection in multiple tissues, but also 100% mortality within 3–5 days post-infection. Additionally, ZH283 efficiently replicated in all tested tissues and transmitted among chickens more rapidly than SW8. Moreover, quantitative real-time polymerase chain reaction analysis showed that following infection with H5N6, AIVs immune-related genes remained active in a tissue-dependent manner, as well as that ZH283 induced mRNA expression profiles such as TLR3, TLR7, IL-6, TNF-α, IL-1β, IL-10, IL-8, and MHC-II to a greater extent than SW8 in the tested tissues of infected chickens. Altogether, our findings help to illuminate the pathogenesis and immunologic mechanisms of H5N6 AIVs in chickens.
Collapse
Affiliation(s)
- Shimin Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture UniversityTaigu, China.,College of Veterinary Medicine, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Yinfeng Kang
- College of Veterinary Medicine, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer CenterGuangzhou, China
| | - Runyu Yuan
- College of Veterinary Medicine, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China.,Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China
| | - Haili Ma
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture UniversityTaigu, China
| | - Bin Xiang
- College of Veterinary Medicine, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Zhaoxiong Wang
- College of Animal Science, Yangtze UniversityJingzhou, China
| | - Xu Dai
- College of Veterinary Medicine, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Fumin Wang
- Guangdong Provincial Wildlife Rescue CenterGuangzhou, China
| | - Jiajie Xiao
- Guangdong Provincial Wildlife Rescue CenterGuangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|