1
|
Xu J, Wang Y, Liu L, Wang X, Xiao S, Chen J, Jiao N, Zheng Q. Biogeography and dynamics of prokaryotic and microeukaryotic community assembly across 2600 km in the coastal and shelf ecosystems of the China Seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174883. [PMID: 39034013 DOI: 10.1016/j.scitotenv.2024.174883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Marine prokaryotes and microeukaryotes are essential components of microbial food webs, and drive the biogeochemical cycling. However, the underlying ecological mechanisms driving prokaryotic and microeukaryotic community assembly in large-scale coastal ecosystems remain unclear. In this study, we studied biogeographic patterns of prokaryotic and microeukaryotic communities in the coastal and shelf ecosystem of the China Seas. Results showed that prokaryotic richness was the highest in the Yangtze River Plume, whereas microeukaryotic richness decreased from south to north. Prokaryotic-microeukaryotic co-occurrence networks display greater complexity in the Yangtze River Plume compared to other regions, potentially indicating higher environmental heterogeneity. Furthermore, the cross-domain networks revealed that prokaryotes were more interconnected with each other than with microeukaryotes or between microeukaryotes, and all hub nodes were bacterial taxa, suggesting that prokaryotes may be more important for sustaining the stability and multifunctionality of coastal ecosystem than microeukaryotes. Variation Partitioning Analysis revealed that approximately equal proportions of environmental, biotic and spatial factors contribute to variations in microbial community composition. Temperature was the primary environmental driver of both prokaryotic and microeukaryotic communities across the China Seas. Additionally, stochastic processes (dispersal limitation) and deterministic processes (homogeneous selection) were two major ecological factors in shaping microeukaryotic and prokaryotic assemblages, respectively, suggesting their different environmental plasticity and evolutionary mechanisms. Overall, these results demonstrate both prokaryotic and microeukaryotic communities displayed a latitude-driven distribution pattern and different assembly mechanisms, improving our understanding of microbial biogeography patterns under global change and anthropogenic activity driven habitat diversification in the coastal and shelf ecosystem.
Collapse
Affiliation(s)
- Jinxin Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Yu Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Lu Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Xiaomeng Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Shicong Xiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Jiaxin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China.
| |
Collapse
|
2
|
Wijaya W, Suhaimi Z, Chua CX, Sunil RS, Kolundžija S, Rohaizat AMB, Azmi NBM, Hazrin-Chong NH, Lauro FM. Frequent pulse disturbances shape resistance and resilience in tropical marine microbial communities. ISME COMMUNICATIONS 2023; 3:55. [PMID: 37280348 PMCID: PMC10244338 DOI: 10.1038/s43705-023-00260-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
The Johor Strait separates the island of Singapore from Peninsular Malaysia. A 1-kilometer causeway built in the early 1920s in the middle of the strait effectively blocks water flowing to/from either side, resulting in low water turnover rates and build-up of nutrients in the inner Strait. We have previously shown that short-term rather than seasonal environmental changes influence microbial community composition in the Johor Strait. Here, we present a temporally-intensive study that uncovers the factors keeping the microbial populations in check. We sampled the surface water at four sites in the inner Eastern Johor Strait every other day for two months, while measuring various water quality parameters, and analysed 16S amplicon sequences and flow-cytometric counts. We discovered that microbial community succession revolves around a common stable state resulting from frequent pulse disturbances. Among these, sporadic riverine freshwater input and regular tidal currents influence bottom-up controls including the availability of the limiting nutrient nitrogen and its biological release in readily available forms. From the top-down, marine viruses and predatory bacteria limit the proliferation of microbes in the water. Harmful algal blooms, which have been observed historically in these waters, may occur only when there are simultaneous gaps in the top-down and bottom-up controls. This study gains insight into complex interactions between multiple factors contributing to a low-resistance but high-resilience microbial community and speculate about rare events that could lead to the occurrence of an algal bloom.
Collapse
Affiliation(s)
- Winona Wijaya
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Zahirah Suhaimi
- Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA, USA
- Center for Southeast Asian Coastal Interactions, Santa Cruz, CA, USA
| | - Cherlyn Xin'Er Chua
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rohan Shawn Sunil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sandra Kolundžija
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | | | - Norzarifah Binti Md Azmi
- Department of Biological Sciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nur Hazlin Hazrin-Chong
- Department of Biological Sciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Federico M Lauro
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Liu H, Cai X, Luo K, Chen S, Su M, Lu J. Microbial Diversity, Community Turnover, and Putative Functions in Submarine Canyon Sediments under the Action of Sedimentary Geology. Microbiol Spectr 2023; 11:e0421022. [PMID: 36802161 PMCID: PMC10100816 DOI: 10.1128/spectrum.04210-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Sampling challenges in deep-sea ecosystems lead to a lack of knowledge about the distribution of microbes in different submarine canyons. To study microbial diversity and community turnover under different ecological processes, we performed 16S/18S rRNA gene amplicon sequencing for sediment samples from a submarine canyon in the South China Sea. Bacteria, archaea, and eukaryotes made up 57.94% (62 phyla), 41.04% (12 phyla), and 1.02% (4 phyla) of the sequences, respectively. Thaumarchaeota, Planctomycetota, Proteobacteria, Nanoarchaeota, and Patescibacteria are the five most abundant phyla. Heterogeneous community composition was mainly observed in vertical profiles rather than horizontal geographic locations, and microbial diversity in the surface layer was much lower than that in deep layers. According to the null model tests, homogeneous selection dominated community assembly within each sediment layer, whereas heterogeneous selection and dispersal limitation dominated community assembly between distant layers. Different sedimentation processes of sediments, i.e., rapid deposition caused by turbidity currents or slow sedimentation, seem to be primarily responsible for these vertical variations. Finally, functional annotation through shotgun-metagenomic sequencing found that glycosyl transferases and glycoside hydrolases are the most abundant carbohydrate-active enzyme categories. The most likely expressed sulfur cycling pathways include assimilatory sulfate reduction, the link between inorganic and organic sulfur transformation, and organic sulfur transformation, while the potentially activated methane cycling pathways include aceticlastic methanogenesis and aerobic and anaerobic oxidation of methane. Overall, our study revealed high levels of microbial diversity and putative functions in canyon sediments and the important influence of sedimentary geology on microbial community turnover between vertical sediment layers. IMPORTANCE Deep-sea microbes have received growing attention due to their contribution to biogeochemical cycles and climate change. However, related research lags due to the difficulty of collecting samples. Based on our previous study, which revealed the formation of sediments under the dual action of turbidity currents and seafloor obstacles in a submarine canyon in the South China Sea, this interdisciplinary research provides new insights into how sedimentary geology influences microbial community assembly in sediments. We proposed some uncommon or new findings, including the following: (i) microbial diversity was much lower on the surface than in deeper layers (ii) archaea and bacteria dominated the surface and deep layers, respectively; (iii) sedimentary geology played key roles in vertical community turnover; and (iv) the microbes have great potential to catalyze sulfur, carbon, and methane cycling. This study may lead to extensive discussion of the assembly and function of deep-sea microbial communities in the context of geology.
Collapse
Affiliation(s)
- Hualin Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Xueyu Cai
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Kunwen Luo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Sihan Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou Guangdong, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou Guangdong, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, China
| |
Collapse
|
4
|
Hahn MW, Huemer A, Pitt A, Hoetzinger M. Opening a next-generation black box: Ecological trends for hundreds of species-like taxa uncovered within a single bacterial >99% 16S rRNA operational taxonomic unit. Mol Ecol Resour 2021; 21:2471-2485. [PMID: 34101998 DOI: 10.1111/1755-0998.13444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022]
Abstract
Current knowledge on environmental distribution and taxon richness of free-living bacteria is mainly based on cultivation-independent investigations employing 16S rRNA gene sequencing methods. Yet, 16S rRNA genes are evolutionarily rather conserved, resulting in limited taxonomic and ecological resolutions provided by this marker. The faster evolving protein-encoding gene priB was used to reveal ecological patterns hidden within a single operational taxonomic unit (OTU) defined by >99% 16S rRNA sequence similarity. The studied subcluster PnecC of the genus Polynucleobacter represents a ubiquitous group of abundant freshwater bacteria with cosmopolitan distribution, which is very frequently detected by diversity surveys of freshwater systems. Based on genome taxonomy and a large set of genome sequences, a sequence similarity threshold for delineation of species-like taxa could be established. In total, 600 species-like taxa were detected in 99 freshwater habitats scattered across three regions representing a latitudinal range of 3,400 km (42°N to 71°N) and a pH gradient of 4.2 to 8.6. In addition to the unexpectedly high richness, the increased taxonomic resolution revealed structuring of Polynucleobacter communities by a couple of macroecological trends, which was previously only demonstrated for phylogenetically much broader groups of bacteria. An unexpected pattern was the almost complete compositional separation of Polynucleobacter communities of Ca2+ -rich and Ca2+ -poor habitats. This compositional pattern strongly resembled the vicariance of plant species on silicate and limestone soils. The new cultivation-independent approach presented opened a window to an incredible, previously unseen diversity, and enables investigations aiming on deeper understanding of how environmental conditions shape bacterial communities and drive evolution of free-living bacteria.
Collapse
Affiliation(s)
- Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Andrea Huemer
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Alexandra Pitt
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Matthias Hoetzinger
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
5
|
Chénard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, Lauro FM. Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal waters. Sci Rep 2019; 9:16390. [PMID: 31704973 PMCID: PMC6841670 DOI: 10.1038/s41598-019-52648-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 11/09/2022] Open
Abstract
Singapore, an equatorial island in South East Asia, is influenced by a bi-annual reversal of wind directions which defines two monsoon seasons. We characterized the dynamics of the microbial communities of Singapore coastal waters by collecting monthly samples between February 2017 and July 2018 at four sites located across two straits with different trophic status, and sequencing the V6-V8 region of the small sub-unit ribosomal RNA gene (rRNA gene) of Bacteria, Archaea, and Eukaryota. Johor Strait, which is subjected to wider environmental fluctuations from anthropogenic activities, presented a higher abundance of copiotrophic microbes, including Cellvibrionales and Rhodobacterales. The mesotrophic Singapore Strait, where the seasonal variability is caused by changes in the oceanographic conditions, harboured a higher proportion of typically marine microbe groups such as Synechococcales, Nitrosupumilales, SAR11, SAR86, Marine Group II Archaea and Radiolaria. In addition, we observed seasonal variability of the microbial communities in the Singapore Strait, which was possibly influenced by the alternating monsoon regime, while no seasonal pattern was detected in the Johor Strait.
Collapse
Affiliation(s)
- Caroline Chénard
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Winona Wijaya
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Daniel Vaulot
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Sorbonne Université, CNRS, UMR7144, Ecology of Marine Plankton team, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Adriana Lopes Dos Santos
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile
| | - Patrick Martin
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Avneet Kaur
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Federico M Lauro
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore.
| |
Collapse
|
6
|
Mai YZ, Lai ZN, Li XH, Peng SY, Wang C. Structural and functional shifts of bacterioplanktonic communities associated with spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary, South China. MARINE POLLUTION BULLETIN 2018; 136:309-321. [PMID: 30509812 DOI: 10.1016/j.marpolbul.2018.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 06/09/2023]
Abstract
In this study, we used high-throughput sequencing of 16S rRNA gene amplicons, to investigate the spatio-temporal variation in bacterial communities in surface-waters collected from eight major outlets of the Pearl River Estuary, South China. Betaproteobacteria were the most abundant class among the communities, followed by Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Acidimicrobiia. Generally, alpha-diversity increased in winter communities and the taxonomic diversity of bacterial communities differed with seasonal and spatial differences. Temperature, conductivity, salinity, pH and nutrients were the crucial environmental factors associated with shifts in the bacterial community composition. Furthermore, inferred community functions that were associated with amino acid, carbohydrate and energy metabolisms were lower in winter, whereas the relative abundance of inferred functions associated with membrane transport, bacterial motility proteins, and xenobiotics biodegradation and metabolism, were enriched in winter. These results provide new insights into the dynamics of bacterial communities within estuarine ecosystems.
Collapse
Affiliation(s)
- Yong-Zhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zi-Ni Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Xin-Hui Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Song-Yao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
7
|
Hahn MW, Koll U, Schmidt J, Huymann LR, Karbon G, Lang E. Polynucleobacter hirudinilacicola sp. nov. and Polynucleobacter campilacus sp. nov., both isolated from freshwater systems. Int J Syst Evol Microbiol 2018; 68:2593-2601. [PMID: 29939120 DOI: 10.1099/ijsem.0.002880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains MWH-EgelM1-30-B4T and MWH-Feld-100T were isolated from the water columns of two freshwater systems. Both strains represent delicate bacteria not easy to work with in laboratory experiments. Phylogenetic analyses of the 16S rRNA genes suggested that both strains were affiliated with the genus Polynucleobacter. Both strains share 16S rRNA gene sequence similarities of >99 % with eight free-living Polynucleobacter type strains, all affiliated with the cryptic species complex PnecC. The full-length 16S rRNA gene sequences of the two strains differ only in two and three positions, respectively, from the sequence of the closest related Polynucleobacter type strain. Genome sequencing of both strains revealed relatively small genome sizes of 2.0 Mbp and G+C contents of 45 mol%. Phylogenetic analyses based on nucleotide sequences of 319 shared protein-encoding genes consistently placed the two strains in taxon PnecC but did not suggest an affiliation with one of the previously described species. Pairwise analyses of whole genome average nucleotide identities (gANI) with representatives of all previously described Polynucleobacter species resulted in both cases throughout in values <80 %. Pairwise comparison of the genomes of the two new strains resulted in gANI values of 83.3 %. All gANI analyses clearly suggested that strains MWH-EgelM1-30-B4T and MWH-Feld-100T represent two novel Polynucleobacter species. We propose for these novel species the names Polynucleobacter hirudinilacicola sp. nov. and Polynucleobacter campilacus sp. nov. and strains MWH-EgelM1-30-B4T (=DSM 23911T=LMG 30144T) and MWH-Feld-100T (=DSM 24007T=LMG 29705T) as the type strains, respectively.
Collapse
Affiliation(s)
- Martin W Hahn
- 1Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Ulrike Koll
- 1Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Johanna Schmidt
- 1Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Lesley R Huymann
- 1Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Gerlinde Karbon
- 1Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Elke Lang
- 2Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, D-38124 Braunschweig, Germany
| |
Collapse
|