1
|
Kolokouris D, Kalenderoglou IE, Duncan AL, Corey RA, Sansom MSP, Kolocouris A. The Role of Cholesterol in M2 Clustering and Viral Budding Explained. J Chem Theory Comput 2024. [PMID: 39494590 DOI: 10.1021/acs.jctc.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The influenza A M2 homotetrameric channel consists of four transmembrane (TM) and four amphipathic helices (AHs). This viral proton channel is suggested to form clusters in the catenoid budding neck areas in raft-like domains of the plasma membrane, resulting in cell membrane scission and viral release. The channel clustering environment is rich in cholesterol. Previous experiments have shown that cholesterol significantly contributes to lipid bilayer undulations in viral buds. However, a clear explanation of membrane curvature from the distribution of cholesterol around the M2TM-AH clusters is lacking. Using coarse-grained molecular dynamics simulations of M2TM-AH in bilayers, we observed that M2 channels form specific, C2-symmetric, clusters with conical shapes driven by the attraction of their AHs. We showed that cholesterol stabilized the formation of M2 channel clusters by filling and bridging the conical gap between M2 channels at specific sites in the N-termini of adjacent channels or via the C-terminal region of TM and AHs, with the latter sites displaying a longer interaction time and higher stability. The potential of mean force calculations showed that when cholesterols occupy the identified interfacial binding sites between two M2 channels, the dimer is stabilized by 11 kJ/mol. This translates to the cholesterol-bound dimer being populated by almost 2 orders of magnitude compared to a dimer lacking cholesterol. We demonstrated that the cholesterol-bridged M2 channels can exert a lateral force on the surrounding membrane to induce the necessary negative Gaussian curvature profile, which permits spontaneous scission of the catenoid membrane neck and leads to viral buds and scission.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Iris E Kalenderoglou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Robin A Corey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| |
Collapse
|
2
|
Georgiou K, Kolocouris A. Conformational heterogeneity and structural features for function of the prototype viroporin influenza AM2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1867:184387. [PMID: 39424094 DOI: 10.1016/j.bbamem.2024.184387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The 97-residue influenza A matrix 2 (ΑM2) protein, a prototype for viroporins, transports protons through water molecules and His37. We discuss structural biology and molecular biophysics experiments and some functional assays that have transformed over 40 years our understanding of the structure and function of AM2. The structural studies on ΑM2 have been performed with different conditions (pH, temperature, lipid, constructs) and using various protein constructs, e.g., AM2 transmembrane (AM2TM) domain, AM2 conductance domain (AM2CD), ectodomain-containing or ectodomain-truncated, AM2 full length (AM2FL) and aimed to describe the different conformations and structural details that are necessary for the stability and function of AM2. However, the conclusions from these experiments appeared sometimes ambiguous and caused exciting debates. This was not due to inaccurate measurements, but instead because of the different membrane mimetic environment used, e.g., detergent, micelles or phospholipid bilayer, the method (e.g., X-ray crystallography, solid state NMR, solution NMR, native mass spectrometry), the used protein construct (e.g., AM2TM or AM2CD), or the amino acids residues to follow observables (e.g., NMR chemical shifts). We present these results according to the different used biophysical methods, the research groups and often by keeping a chronological order for presenting the progress in the research. We discuss ideas for additional research on structural details of AM2 and how the present findings can be useful to explore new routes of influenza A inhibition. The AM2 research can provide inspiration to study other viroporins as drug targets.
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece.
| |
Collapse
|
3
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Volovik MV, Denieva ZG, Gifer PK, Rakitina MA, Batishchev OV. Membrane Activity and Viroporin Assembly for the SARS-CoV-2 E Protein Are Regulated by Cholesterol. Biomolecules 2024; 14:1061. [PMID: 39334828 PMCID: PMC11430671 DOI: 10.3390/biom14091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
The SARS-CoV-2 E protein is an enigmatic viral structural protein with reported viroporin activity associated with the acute respiratory symptoms of COVID-19, as well as the ability to deform cell membranes for viral budding. Like many viroporins, the E protein is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the structure of the protein complex have yielded inconclusive results, suggesting several possible oligomers, ranging from dimers to pentamers. Here, we combined patch-clamp, confocal fluorescence microscopy on giant unilamellar vesicles, and atomic force microscopy to show that E protein can exhibit two modes of membrane activity depending on membrane lipid composition. In the absence or the presence of a low content of cholesterol, the protein forms short-living transient pores, which are seen as semi-transmembrane defects in a membrane by atomic force microscopy. Approximately 30 mol% cholesterol is a threshold for the transition to the second mode of conductance, which could be a stable pentameric channel penetrating the entire lipid bilayer. Therefore, the E-protein has at least two different types of activity on membrane permeabilization, which are regulated by the amount of cholesterol in the membrane lipid composition and could be associated with different types of protein oligomers.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Zaret G Denieva
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Polina K Gifer
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Maria A Rakitina
- N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 1 Ostrovityanova Street, 117997 Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
5
|
Sanders G, Borbat PP, Georgieva ER. Conformations of influenza A M2 protein in DOPC/DOPS and E. coli native lipids and proteins. Biophys J 2024; 123:2584-2593. [PMID: 38932458 PMCID: PMC11365223 DOI: 10.1016/j.bpj.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IM2) protein reconstituted in 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPC/DOPS) bilayers to those in isolated Escherichia coli (E. coli) membranes, having preserved its native proteins and lipids. IM2 is a single-pass transmembrane protein known to assemble into a homo-tetrameric proton channel. To represent this channel, we made a construct containing the IM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitution, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the electron spin resonance (ESR) study. For this particular residue, we probed the conformations of the spin-labeled IM2 reconstituted in DOPC/DOPS and isolated E. coli membranes using continuous-wave ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400. The continuous-wave ESR spectra corresponded to very slow spin-label motion in both environments. In all cases, the DEER data were reconstructed into distance distributions with well-resolved peaks at 1.68 and 2.37 nm in distance and amplitude ratios of 1.41 ± 0.2 and 2:1, respectively. This suggests four nitroxide spin labels located at the corners of a square, indicative of an axially symmetric tetramer. The distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IM2 TMD tetramer in agreement with the model. Thus, we can conclude that, under conditions of pH 7.4 used in this study, IM2 TMD has similar conformations in model lipid bilayers and membranes made of native E. coli lipids and proteins of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Griffin Sanders
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, ACERT, Cornell University, Ithaca, New York
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
6
|
Lincoff J, Helsell CVM, Marcoline FV, Natale AM, Grabe M. Membrane curvature sensing and symmetry breaking of the M2 proton channel from Influenza A. eLife 2024; 13:e81571. [PMID: 39150863 PMCID: PMC11383528 DOI: 10.7554/elife.81571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/07/2024] [Indexed: 08/18/2024] Open
Abstract
The M2 proton channel aids in the exit of mature influenza viral particles from the host plasma membrane through its ability to stabilize regions of high negative Gaussian curvature (NGC) that occur at the neck of budding virions. The channels are homo-tetramers that contain a cytoplasm-facing amphipathic helix (AH) that is necessary and sufficient for NGC generation; however, constructs containing the transmembrane spanning helix, which facilitates tetramerization, exhibit enhanced curvature generation. Here, we used all-atom molecular dynamics (MD) simulations to explore the conformational dynamics of M2 channels in lipid bilayers revealing that the AH is dynamic, quickly breaking the fourfold symmetry observed in most structures. Next, we carried out MD simulations with the protein restrained in four- and twofold symmetric conformations to determine the impact on the membrane shape. While each pattern was distinct, all configurations induced pronounced curvature in the outer leaflet, while conversely, the inner leaflets showed minimal curvature and significant lipid tilt around the AHs. The MD-generated profiles at the protein-membrane interface were then extracted and used as boundary conditions in a continuum elastic membrane model to calculate the membrane-bending energy of each conformation embedded in different membrane surfaces characteristic of a budding virus. The calculations show that all three M2 conformations are stabilized in inward-budding, concave spherical caps and destabilized in outward-budding, convex spherical caps, the latter reminiscent of a budding virus. One of the C2-broken symmetry conformations is stabilized by 4 kT in NGC surfaces with the minimum energy conformation occurring at a curvature corresponding to 33 nm radii. In total, our work provides atomistic insight into the curvature sensing capabilities of M2 channels and how enrichment in the nascent viral particle depends on protein shape and membrane geometry.
Collapse
Affiliation(s)
- James Lincoff
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Cole V M Helsell
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, United States
| | - Frank V Marcoline
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Andrew M Natale
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, United States
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
7
|
Hashimoto S, Matsuo K. Dynamic Observation of the Membrane Interaction Processes of β-Lactoglobulin by Time-Resolved Vacuum-Ultraviolet Circular Dichroism. Anal Chem 2024; 96:10524-10533. [PMID: 38907695 DOI: 10.1021/acs.analchem.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The elucidation of protein-membrane interactions is pivotal for comprehending the mechanisms underlying diverse biological phenomena and membrane-related diseases. In this investigation, vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy, utilizing synchrotron radiation (SR), was employed to dynamically observe membrane interaction processes involving water-soluble proteins at the secondary-structure level. The study utilized a time-resolved (TR) T-shaped microfluidic cell, facilitating the rapid and efficient mixing of protein and membrane solutions. This system was instrumental in acquiring measurements of the time-resolved circular dichroism (TRCD) spectra of β-lactoglobulin (bLG) during its interaction with lysoDMPG micelles. The results indicate that bLG undergoes a β-α conformation change, leading to the formation of the membrane-interacting state (M-state), with structural alterations occurring in more than two steps. Global fitting analysis, employing biexponential functions with all of the TRCD spectral data sets, yielded two distinct rate constants (0.18 ± 0.01 and 0.06 ± 0.003/s) and revealed a unique spectrum corresponding to an intermediate state (I-state). Secondary-structure analysis of bLG in its native (N-, I-, and M-states) highlighted that structural changes from the N- to I-states predominantly occurred in the N- and C-terminal regions, which were prominently exposed to the membrane. Meanwhile, transitions from the I- to M-states extended into the inner barrel regions of bLG. Further examination of the physical properties of α-helical segments, such as effective charge and hydrophobicity, revealed that the N- to I- and I- to M-state transitions, which are ascribed to first- and second-rate constants, respectively, are primarily driven by electrostatic and hydrophobic interactions, respectively. These findings underscore the capability of the TR-VUVCD system as a robust tool for characterizing protein-membrane interactions at the molecular level.
Collapse
Affiliation(s)
- Satoshi Hashimoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Koichi Matsuo
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Research Institute for Synchrotron Radiation Science, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
8
|
Sanders G, Borbat PP, Georgieva ER. A comparative study of influenza A M2 protein conformations in DOPC/DOPS liposomes and in native E. coli membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574681. [PMID: 38260371 PMCID: PMC10802500 DOI: 10.1101/2024.01.08.574681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IAM2) protein reconstituted at pH 7.4 in DOPC/DOPS bilayers to those in isolated E. coli membranes, having preserved its native proteins and lipids. IAM2 is a single-pass transmembrane protein known to assemble into homo-tetrameric proton channel. To represent this channel, we made a construct containing the IAM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitute, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the ESR (electron spin resonance) study. We compared the conformations of the spin-labeled IAM2 residing in DOPC/DOPS and native E. coli membranes using continuous-wave (CW) ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400⩦ The CW ESR spectra corresponded to a nearly rigid limit spin label dynamics in both environments. In all cases, the DEER data were reconstructed into the distance distributions showing well-resolved peaks at 1.68 nm and 2.37 nm. The peak distance ratio was 1.41±0.2 and the amplitude ratio was 2:1. This is what one expects from four nitroxide spin-labels located at the corners of a square, indicative of an axially symmetric tetramer. Distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IAM2 tetramer in agreement with the NMR model. Thus, we can conclude that IAM2 TMD has similar conformations in model and native E. coli membranes of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Griffin Sanders
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca NY 14853
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| |
Collapse
|
9
|
Has C, Das SL. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation. J Membr Biol 2023; 256:343-372. [PMID: 37650909 DOI: 10.1007/s00232-023-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Proteins and peptides with hydrophobic and amphiphilic segments are responsible for many biological functions. The sensing and generation of membrane curvature are the functions of several protein domains or motifs. While some specific membrane proteins play an essential role in controlling the curvature of distinct intracellular membranes, others participate in various cellular processes such as clathrin-mediated endocytosis, where several proteins sort themselves at the neck of the membrane bud. A few membrane-inserting proteins form nanopores that permeate selective ions and water to cross the membrane. In addition, many natural and synthetic small peptides and protein toxins disrupt the membrane by inducing nonspecific pores in the membrane. The pore formation causes cell death through the uncontrolled exchange between interior and exterior cellular contents. In this article, we discuss the insertion depth and orientation of protein/peptide helices, and their role as a sensor and inducer of membrane curvature as well as a pore former in the membrane. We anticipate that this extensive review will assist biophysicists to gain insight into curvature sensing, generation, and pore formation by membrane insertion.
Collapse
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, GSFC University, Vadodara, 391750, Gujarat, India.
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory and Department of Mechanical Engineering, Indian Institute of Technology, Palakkad, 678623, Kerala, India
| |
Collapse
|
10
|
Meng X, Templeton C, Clementi C, Veit M. The role of an amphiphilic helix and transmembrane region in the efficient acylation of the M2 protein from influenza virus. Sci Rep 2023; 13:18928. [PMID: 37919373 PMCID: PMC10622425 DOI: 10.1038/s41598-023-45945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Protein palmitoylation, a cellular process occurring at the membrane-cytosol interface, is orchestrated by members of the DHHC enzyme family and plays a pivotal role in regulating various cellular functions. The M2 protein of the influenza virus, which is acylated at a membrane-near amphiphilic helix serves as a model for studying the intricate signals governing acylation and its interaction with the cognate enzyme, DHHC20. We investigate it here using both experimental and computational assays. We report that altering the biophysical properties of the amphiphilic helix, particularly by shortening or disrupting it, results in a substantial reduction in M2 palmitoylation, but does not entirely abolish the process. Intriguingly, DHHC20 exhibits an augmented affinity for some M2 mutants compared to the wildtype M2. Molecular dynamics simulations unveil interactions between amino acids of the helix and the catalytically significant DHHC and TTXE motifs of DHHC20. Our findings suggest that the binding of M2 to DHHC20, while not highly specific, is mediated by requisite contacts, possibly instigating the transfer of fatty acids. A comprehensive comprehension of protein palmitoylation mechanisms is imperative for the development of DHHC-specific inhibitors, holding promise for the treatment of diverse human diseases.
Collapse
Affiliation(s)
- Xiaorong Meng
- Institute of Virology, Veterinary Faculty, Freie Universität Berlin, Berlin, Germany
| | - Clark Templeton
- Theoretical and Computational Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Cecilia Clementi
- Theoretical and Computational Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Michael Veit
- Institute of Virology, Veterinary Faculty, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Zhou S, Lv P, Li M, Chen Z, Xin H, Reilly S, Zhang X. SARS-CoV-2 E protein: Pathogenesis and potential therapeutic development. Biomed Pharmacother 2023; 159:114242. [PMID: 36652729 PMCID: PMC9832061 DOI: 10.1016/j.biopha.2023.114242] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, which has seriously affected human health worldwide. The discovery of therapeutic agents is extremely urgent, and the viral structural proteins are particularly important as potential drug targets. SARS-CoV-2 envelope (E) protein is one of the main structural proteins of the virus, which is involved in multiple processes of the virus life cycle and is directly related to pathogenesis process. In this review, we present the amino acid sequence of the E protein and compare it with other two human coronaviruses. We then explored the role of E protein in the viral life cycle and discussed the pathogenic mechanisms that E protein may be involved in. Next, we summarize the potential drugs against E protein discovered in the current studies. Finally, we described the possible effects of E protein mutation on virus and host. This established a knowledge system of E protein to date, aiming to provide theoretical insights for mitigating the current COVID-19 pandemic and potential future coronavirus outbreaks.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Panpan Lv
- Clinical Laboratory, Minhang Hospital, Fudan University, Shanghai, China.
| | - Mingxue Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Zihui Chen
- School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Apolipoprotein E4 has extensive conformational heterogeneity in lipid-free and lipid-bound forms. Proc Natl Acad Sci U S A 2023; 120:e2215371120. [PMID: 36749730 PMCID: PMC9963066 DOI: 10.1073/pnas.2215371120] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ε4-allele variant of apolipoprotein E (ApoE4) is the strongest genetic risk factor for Alzheimer's disease, although it only differs from its neutral counterpart ApoE3 by a single amino acid substitution. While ApoE4 influences the formation of plaques and neurofibrillary tangles, the structural determinants of pathogenicity remain undetermined due to limited structural information. Previous studies have led to conflicting models of the C-terminal region positioning with respect to the N-terminal domain across isoforms largely because the data are potentially confounded by the presence of heterogeneous oligomers. Here, we apply a combination of single-molecule spectroscopy and molecular dynamics simulations to construct an atomically detailed model of monomeric ApoE4 and probe the effect of lipid association. Importantly, our approach overcomes previous limitations by allowing us to work at picomolar concentrations where only the monomer is present. Our data reveal that ApoE4 is far more disordered and extended than previously thought and retains significant conformational heterogeneity after binding lipids. Comparing the proximity of the N- and C-terminal domains across the three major isoforms (ApoE4, ApoE3, and ApoE2) suggests that all maintain heterogeneous conformations in their monomeric form, with ApoE2 adopting a slightly more compact ensemble. Overall, these data provide a foundation for understanding how ApoE4 differs from nonpathogenic and protective variants of the protein.
Collapse
|
13
|
Madsen JJ, Rossman JS. Cholesterol and M2 Rendezvous in Budding and Scission of Influenza A Virus. Subcell Biochem 2023; 106:441-459. [PMID: 38159237 DOI: 10.1007/978-3-031-40086-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The cholesterol of the host cell plasma membrane and viral M2 protein plays a crucial role in multiple stages of infection and replication of the influenza A virus. Cholesterol is required for the formation of heterogeneous membrane microdomains (or rafts) in the budozone of the host cell that serves as assembly sites for the viral components. The raft microstructures act as scaffolds for several proteins. Cholesterol may further contribute to the mechanical forces necessary for membrane scission in the last stage of budding and help to maintain the stability of the virus envelope. The M2 protein has been shown to cause membrane scission in model systems by promoting the formation of curved lipid bilayer structures that, in turn, can lead to membrane vesicles budding off or scission intermediates. Membrane remodeling by M2 is intimately linked with cholesterol as it affects local lipid composition, fluidity, and stability of the membrane. Thus, both cholesterol and M2 protein contribute to the efficient and proper release of newly formed influenza viruses from the virus-infected cells.
Collapse
Affiliation(s)
- Jesper J Madsen
- Global and Planetary Health, Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Jeremy S Rossman
- School of Biosciences, University of Kent, Canterbury, Kent, UK
- Research-Aid Networks, Chicago, IL, USA
| |
Collapse
|
14
|
Kozlov MM, Taraska JW. Generation of nanoscopic membrane curvature for membrane trafficking. Nat Rev Mol Cell Biol 2023; 24:63-78. [PMID: 35918535 DOI: 10.1038/s41580-022-00511-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.
Collapse
Affiliation(s)
- Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Strength in numbers: effect of protein crowding on the shape of cell membranes. Biochem Soc Trans 2022; 50:1257-1267. [PMID: 36214373 DOI: 10.1042/bst20210883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Continuous reshaping of the plasma membrane into pleomorphic shapes is critical for a plethora of cellular functions. How the cell carries out this enigmatic control of membrane remodeling has remained an active research field for decades and several molecular and biophysical mechanisms have shown to be involved in overcoming the energy barrier associated with membrane bending. The reported mechanisms behind membrane bending have been largely concerned with structural protein features, however, in the last decade, reports on the ability of densely packed proteins to bend membranes by protein-protein crowding, have challenged prevailing mechanistic views. Crowding has now been shown to generate spontaneous vesicle formation and tubular morphologies on cell- and model membranes, demonstrating crowding as a relevant player involved in the bending of membranes. Still, current research is largely based on unnatural overexpression of proteins in non-native domains, and together with efforts in modeling, this has led to questioning the in vivo impact of crowding. In this review, we examine this previously overlooked mechanism by summarizing recent advances in the understanding of protein-protein crowding and its prevalence in cellular membrane-shaping processes.
Collapse
|
16
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
17
|
A Glu-Glu-Tyr Sequence in the Cytoplasmic Tail of the M2 Protein Renders Influenza A Virus Susceptible to Restriction of the Hemagglutinin-M2 Association in Primary Human Macrophages. J Virol 2022; 96:e0071622. [PMID: 36098511 PMCID: PMC9517718 DOI: 10.1128/jvi.00716-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) assembly at the plasma membrane is orchestrated by at least five viral components, including hemagglutinin (HA), neuraminidase (NA), matrix (M1), the ion channel M2, and viral ribonucleoprotein (vRNP) complexes, although particle formation is observed with expression of only HA and/or NA. While these five viral components are expressed efficiently in primary human monocyte-derived macrophages (MDMs) upon IAV infection, this cell type does not support efficient HA-M2 association and IAV particle assembly at the plasma membrane. Both defects are specific to MDMs and can be reversed upon disruption of F-actin. However, the relationship between the two defects is unclear. Here, we examined whether M2 contributes to particle assembly in MDMs and if so, which region of M2 determines the susceptibility to the MDM-specific and actin-dependent suppression. An analysis using correlative fluorescence and scanning electron microscopy showed that an M2-deficient virus failed to form budding structures at the cell surface even after F-actin was disrupted, indicating that M2 is essential for virus particle formation at the MDM surface. Notably, proximity ligation analysis revealed that a single amino acid substitution in a Glu-Glu-Tyr sequence (residues 74 to 76) in the M2 cytoplasmic tail allowed the HA-M2 association to occur efficiently even in MDMs with intact actin cytoskeleton. This phenotype did not correlate with known phenotypes of the M2 substitution mutants regarding M1 interaction or vRNP packaging in epithelial cells. Overall, our study identified M2 as a target of MDM-specific restriction of IAV assembly, which requires the Glu-Glu-Tyr sequence in the cytoplasmic tail. IMPORTANCE Human MDMs represent a cell type that is nonpermissive to particle formation of influenza A virus (IAV). We previously showed that close proximity association between viral HA and M2 proteins is blocked in MDMs. However, whether MDMs express a restriction factor against IAV assembly or whether they lack a dependency factor promoting assembly remained unknown. In the current study, we determined that the M2 protein is necessary for particle formation in MDMs but is also a molecular target of the MDM-specific suppression of assembly. Substitutions in the M2 cytoplasmic tail alleviated the block in both the HA-M2 association and particle production in MDMs. These findings suggest that MDMs express dependency factors necessary for assembly but also express a factor(s) that inhibits HA-M2 association and particle formation. High conservation of the M2 sequence rendering the susceptibility to the assembly block highlights the potential for M2 as a target of antiviral strategies.
Collapse
|
18
|
Schoeman D, Cloete R, Fielding BC. The Flexible, Extended Coil of the PDZ-Binding Motif of the Three Deadly Human Coronavirus E Proteins Plays a Role in Pathogenicity. Viruses 2022; 14:v14081707. [PMID: 36016329 PMCID: PMC9416557 DOI: 10.3390/v14081707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The less virulent human (h) coronaviruses (CoVs) 229E, NL63, OC43, and HKU1 cause mild, self-limiting respiratory tract infections, while the more virulent SARS-CoV-1, MERS-CoV, and SARS-CoV-2 have caused severe outbreaks. The CoV envelope (E) protein, an important contributor to the pathogenesis of severe hCoV infections, may provide insight into this disparate severity of the disease. We, therefore, generated full-length E protein models for SARS-CoV-1 and -2, MERS-CoV, HCoV-229E, and HCoV-NL63 and docked C-terminal peptides of each model to the PDZ domain of the human PALS1 protein. The PDZ-binding motif (PBM) of the SARS-CoV-1 and -2 and MERS-CoV models adopted a more flexible, extended coil, while the HCoV-229E and HCoV-NL63 models adopted a less flexible alpha helix. All the E peptides docked to PALS1 occupied the same binding site and the more virulent hCoV E peptides generally interacted more stably with PALS1 than the less virulent ones. We hypothesize that the increased flexibility of the PBM in the more virulent hCoVs facilitates more stable binding to various host proteins, thereby contributing to more severe disease. This is the first paper to model full-length 3D structures for both the more virulent and less virulent hCoV E proteins, providing novel insights for possible drug and/or vaccine development.
Collapse
Affiliation(s)
- Dewald Schoeman
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa;
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa;
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa;
- Correspondence:
| |
Collapse
|
19
|
Lázaro-Berenguer M, Paredes-Martínez F, Bel Y, Núñez-Ramírez R, Arias-Palomo E, Casino P, Ferré J. Structural and functional role of Domain I for the insecticidal activity of the Vip3Aa protein from Bacillus thuringiensis. Microb Biotechnol 2022; 15:2607-2618. [PMID: 35830334 PMCID: PMC9518980 DOI: 10.1111/1751-7915.14110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Vip3 proteins are produced by Bacillus thuringiensis and are toxic against lepidopterans, reason why the vip3Aa gene has been introduced into cotton and corn to control agricultural pests. Recently, the structure of Vip3 proteins has been determined and consists of a tetramer where each monomer is composed of five structural domains. The transition from protoxin to the trypsin‐activated form involves a major conformational change of the N‐terminal Domain I, which is remodelled into a tetrameric coiled‐coil structure that is thought to insert into the apical membrane of the midgut cells. To better understand the relevance of this major change in Domain I for the insecticidal activity, we have generated several mutants aimed to alter the activity and remodelling capacity of this central region to understand its function. These mutants have been characterized by proteolytic processing, negative staining electron microscopy, and toxicity bioassays against Spodoptera exigua. The results show the crucial role of helix α1 for the insecticidal activity and in restraining the Domain I in the protoxin conformation, the importance of the remodelling of helices α2 and α3, the proteolytic processing that takes place between Domains I and II, and the role of the C‐t Domains IV and V to sustain the conformational change necessary for toxicity.
Collapse
Affiliation(s)
- Maria Lázaro-Berenguer
- Department of Genetics, Universitat de València, Burjassot, Spain.,Institut Universitari de Biotecnologia i Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain
| | - Francisco Paredes-Martínez
- Institut Universitari de Biotecnologia i Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain.,Department of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
| | - Yolanda Bel
- Department of Genetics, Universitat de València, Burjassot, Spain.,Institut Universitari de Biotecnologia i Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain
| | | | | | - Patricia Casino
- Institut Universitari de Biotecnologia i Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain.,Department of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain.,CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Juan Ferré
- Department of Genetics, Universitat de València, Burjassot, Spain.,Institut Universitari de Biotecnologia i Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain
| |
Collapse
|
20
|
Sutherland M, Tran N, Hong M. Clustering of tetrameric influenza M2 peptides in lipid bilayers investigated by 19F solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183909. [PMID: 35276226 DOI: 10.1016/j.bbamem.2022.183909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/19/2022]
Abstract
The influenza M2 protein forms a drug-targeted tetrameric proton channel to mediate virus uncoating, and carries out membrane scission to enable virus release. While the proton channel function of M2 has been extensively studied, the mechanism by which M2 catalyzes membrane scission is still not well understood. Previous fluorescence and electron microscopy studies indicated that M2 tetramers concentrate at the neck of the budding virus in the host plasma membrane. However, molecular evidence for this clustering is scarce. Here, we use 19F solid-state NMR to investigate M2 clustering in phospholipid bilayers. By mixing equimolar amounts of 4F-Phe47 labeled M2 peptide and CF3-Phe47 labeled M2 peptide and measuring F-CF3 cross peaks in 2D 19F19F correlation spectra, we show that M2 tetramers form nanometer-scale clusters in lipid bilayers. This clustering is stronger in cholesterol-containing membranes and phosphatidylethanolamine (PE) membranes than in cholesterol-free phosphatidylcholine and phosphatidylglycerol membranes. The observed correlation peaks indicate that Phe47 sidechains from different tetramers are less than ~2 nm apart. 1H19F correlation peaks between lipid chain protons and fluorinated Phe47 indicate that Phe47 is more deeply inserted into the lipid bilayer in the presence of cholesterol than in its absence, suggesting that Phe47 preferentially interacts with cholesterol. Static 31P NMR spectra indicate that M2 induces negative Gaussian curvature in the PE membrane. These results suggest that M2 tetramers cluster at cholesterol- and PE-rich regions of cell membranes to cause membrane curvature, which in turn can facilitate membrane scission in the last step of virus budding and release.
Collapse
Affiliation(s)
- Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America.
| |
Collapse
|
21
|
Bashkirov PV, Kuzmin PI, Vera Lillo J, Frolov VA. Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes. Annu Rev Biophys 2022; 51:473-497. [PMID: 35239417 PMCID: PMC10787580 DOI: 10.1146/annurev-biophys-011422-100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular membranes self-assemble from and interact with various molecular species. Each molecule locally shapes the lipid bilayer, the soft elastic core of cellular membranes. The dynamic architecture of intracellular membrane systems is based on elastic transformations and lateral redistribution of these elementary shapes, driven by chemical and curvature stress gradients. The minimization of the total elastic stress by such redistribution composes the most basic, primordial mechanism of membrane curvature-composition coupling (CCC). Although CCC is generally considered in the context of dynamic compositional heterogeneity of cellular membrane systems, in this article we discuss a broader involvement of CCC in controlling membrane deformations. We focus specifically on the mesoscale membrane transformations in open, reservoir-governed systems, such as membrane budding, tubulation, and the emergence of highly curved sites of membrane fusion and fission. We reveal that the reshuffling of molecular shapes constitutes an independent deformation mode with complex rheological properties.This mode controls effective elasticity of local deformations as well as stationary elastic stress, thus emerging as a major regulator of intracellular membrane remodeling.
Collapse
Affiliation(s)
- Pavel V Bashkirov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Javier Vera Lillo
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain;
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
22
|
Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. J Membr Biol 2022; 255:237-259. [PMID: 35451616 PMCID: PMC9028910 DOI: 10.1007/s00232-022-00237-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, membrane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and generation by ordered/disordered proteins.
Collapse
|
23
|
Wright AK, Paulino J, Cross TA. Emulating Membrane Protein Environments─How Much Lipid Is Required for a Native Structure: Influenza S31N M2. J Am Chem Soc 2022; 144:2137-2148. [PMID: 35089701 DOI: 10.1021/jacs.1c10174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This report investigates the homotetrameric membrane protein structure of the S31N M2 protein from Influenza A virus in the presence of a high molar ratio of lipid. The structured regions of this protein include a single transmembrane helix and an amphipathic helix. Two structures of the S31N M2 conductance domain from Influenza A virus have been deposited in the Protein Data Bank (PDB). These structures present different symmetries about the channel main axis. We present new magic angle spinning and oriented sample solid-state NMR spectroscopic data for S31N M2 in liquid crystalline lipid bilayers using protein tetramer:lipid molar ratios ranging from 1:120 to 1:240. The data is consistent with an essentially 4-fold-symmetric structure very similar to the M2 WT structure that also has a single conformation for the four monomers, except at the His37 and Trp41 functional sites when characterized in samples with a high molar ratio of lipid. While detergent solubilization is well recognized today as a nonideal environment for small membrane proteins, here we discuss the influence of a high lipid to protein ratio for samples of the S31N M2 protein to stabilize an essentially 4-fold-symmetric conformation of the M2 membrane protein. While it is generally accepted that the chemical and physical properties of the native environment of membrane proteins needs to be reproduced judiciously to achieve the native protein structure, here we show that not only the character of the emulated membrane environment is important but also the abundance of the environment is important for achieving the native structure. This is a critical finding as a membrane protein spectroscopist's goal is always to generate a sample with the highest possible protein sensitivity while obtaining spectra of the native-like structure.
Collapse
Affiliation(s)
- Anna K Wright
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joana Paulino
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Timothy A Cross
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
24
|
Aledavood E, Selmi B, Estarellas C, Masetti M, Luque FJ. From Acid Activation Mechanisms of Proton Conduction to Design of Inhibitors of the M2 Proton Channel of Influenza A Virus. Front Mol Biosci 2022; 8:796229. [PMID: 35096969 PMCID: PMC8795881 DOI: 10.3389/fmolb.2021.796229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022] Open
Abstract
With an estimated 1 billion people affected across the globe, influenza is one of the most serious health concerns worldwide. Therapeutic treatments have encompassed a number of key functional viral proteins, mainly focused on the M2 proton channel and neuraminidase. This review highlights the efforts spent in targeting the M2 proton channel, which mediates the proton transport toward the interior of the viral particle as a preliminary step leading to the release of the fusion peptide in hemagglutinin and the fusion of the viral and endosomal membranes. Besides the structural and mechanistic aspects of the M2 proton channel, attention is paid to the challenges posed by the development of efficient small molecule inhibitors and the evolution toward novel ligands and scaffolds motivated by the emergence of resistant strains.
Collapse
Affiliation(s)
- Elnaz Aledavood
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Beatrice Selmi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Carolina Estarellas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - F. Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| |
Collapse
|
25
|
Bassereau P. Concluding remarks: peptide-membrane interactions. Faraday Discuss 2021; 232:482-493. [PMID: 34825682 DOI: 10.1039/d1fd00077b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article is based on the concluding remarks lecture given at the Faraday Discussion meeting on peptide-membrane interactions, held online, 8-10th September 2021.
Collapse
Affiliation(s)
- Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France.
| |
Collapse
|
26
|
Kolokouris D, Kalenderoglou IE, Kolocouris A. Inside and Out of the Pore: Comparing Interactions and Molecular Dynamics of Influenza A M2 Viroporin Complexes in Standard Lipid Bilayers. J Chem Inf Model 2021; 61:5550-5568. [PMID: 34714655 DOI: 10.1021/acs.jcim.1c00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion channels located at viral envelopes (viroporins) have a critical function for the replication of infectious viruses and are important drug targets. Over the last decade, the number and duration of molecular dynamics (MD) simulations of the influenza A M2 ion channel owing to the increased computational efficiency. Here, we aimed to define the system setup and simulation conditions for the correct description of the protein-pore and the protein-lipid interactions for influenza A M2 in comparison with experimental data. We performed numerous MD simulations of the influenza A M2 protein in complex with adamantane blockers in standard lipid bilayers using OPLS2005 and CHARMM36 (C36) force fields. We explored the effect of varying the M2 construct (M2(22-46) and M2(22-62)), the lipid buffer size and type (stiffer DMPC or softer POPC with or without 20% cholesterol), the simulation time, the H37 protonation site (Nδ or Νε), the conformational state of the W41 channel gate, and M2's cholesterol binding sites (BSs). We report that the 200 ns MD with M2(22-62) (having Nε Η37) in the 20 Å lipid buffer with the C36 force field accurately describe: (a) the M2 pore structure and interactions inside the pore, that is, adamantane channel blocker location, water clathrate structure, and water or chloride anion blockage/passage from the M2 pore in the presence of a channel blocker and (b) interactions between M2 and the membrane environment as reflected by the calculation of the M2 bundle tilt, folding of amphipathic helices, and cholesterol BSs. Strikingly, we also observed that the C36 1 μs MD simulations using M2(22-62) embedded in a 20 Å POPC:cholesterol (5:1) scrambled membrane produced frequent interactions with cholesterol, which when combined with computational kinetic analysis, revealed the experimentally observed BSs of cholesterol and suggested three similarly long-interacting positions in the top leaflet that have previously not been observed experimentally. These findings promise to be useful for other viroporin systems.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Iris E Kalenderoglou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| |
Collapse
|
27
|
Galibert L, Hyvönen A, Eriksson RAE, Mattola S, Aho V, Salminen S, Albers JD, Peltola SK, Weman S, Nieminen T, Ylä-Herttuala S, Lesch HP, Vihinen-Ranta M, Airenne KJ. Functional roles of the membrane-associated AAV protein MAAP. Sci Rep 2021; 11:21698. [PMID: 34737404 PMCID: PMC8568889 DOI: 10.1038/s41598-021-01220-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
With a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclear envelope by co-transfecting with plasmids encoding the wild-type AAV (wt-AAV) genome and adenovirus (Ad) helper genes. While keeping VP1/2 protein sequence identical, both inactivation and truncation of MAAP translation affected the emergence and intracellular distribution of the AAV capsid proteins. We have demonstrated that MAAP facilitates AAV replication and has a role in controlling Ad infection. Additionally, we were able to improve virus production and capsid integrity through a C-terminal truncation of MAAP while other modifications led to increased packaging of contaminating, non-viral DNA. Our results show that MAAP plays a significant role in AAV infection, with profound implications for the production of therapeutic AAV vectors.
Collapse
Affiliation(s)
| | - Amira Hyvönen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.511728.8FinVector, Kuopio, Finland
| | - Reetta A. E. Eriksson
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Salla Mattola
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Vesa Aho
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Sami Salminen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | | | | | - Saija Weman
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Tiina Nieminen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland ,grid.410705.70000 0004 0628 207XGene Therapy Unit and Research Center, Kuopio University Hospital, Kuopio, Finland
| | - Hanna P. Lesch
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Maija Vihinen-Ranta
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | | |
Collapse
|
28
|
Bracquemond D, Muriaux D. Betacoronavirus Assembly: Clues and Perspectives for Elucidating SARS-CoV-2 Particle Formation and Egress. mBio 2021; 12:e0237121. [PMID: 34579570 PMCID: PMC8546641 DOI: 10.1128/mbio.02371-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In 2019, a new pandemic virus belonging to the betacoronavirus family emerged, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This new coronavirus appeared in Wuhan, China, and is responsible for severe respiratory pneumonia in humans, namely, coronavirus disease 2019 (COVID-19). Having infected almost 200 million people worldwide and caused more than 4.1 million deaths as of today, this new disease has raised a significant number of questions about its molecular mechanism of replication and, in particular, how infectious viral particles are produced. Although viral entry is well characterized, the full assembly steps of SARS-CoV-2 have still not been fully described. Coronaviruses, including SARS-CoV-2, have four main structural proteins, namely, the spike glycoprotein (S), the membrane glycoprotein (M), the envelope protein (E), and the nucleocapsid protein (N). All these proteins have key roles in the process of coronavirus assembly and budding. In this review, we gathered the current knowledge about betacoronavirus structural proteins involved in viral particle assembly, membrane curvature and scission, and then egress in order to suggest and question a coherent model for SARS-CoV-2 particle production and release.
Collapse
Affiliation(s)
- David Bracquemond
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Delphine Muriaux
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR9004, Montpellier, France
| |
Collapse
|
29
|
Guo X, Steinkühler J, Marin M, Li X, Lu W, Dimova R, Melikyan GB. Interferon-Induced Transmembrane Protein 3 Blocks Fusion of Diverse Enveloped Viruses by Altering Mechanical Properties of Cell Membranes. ACS NANO 2021; 15:8155-8170. [PMID: 33656312 PMCID: PMC8159881 DOI: 10.1021/acsnano.0c10567] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) potently inhibits entry of diverse enveloped viruses by trapping the viral fusion at a hemifusion stage, but the underlying mechanism remains unclear. Here, we show that recombinant IFITM3 reconstituted into lipid vesicles induces negative membrane curvature and that this effect maps to its small amphipathic helix (AH). We demonstrate that AH (i) partitions into lipid-disordered domains where IAV fusion occurs, (ii) induces negative membrane curvature, and (iii) increases lipid order and membrane stiffness. These effects on membrane properties correlate with the fusion-inhibitory activity, as targeting the ectopically expressed AH peptide to the cytoplasmic leaflet of the cell plasma membrane diminishes IAV-cell surface fusion induced by exposure to acidic pH. Our results thus imply that IFITM3 inhibits the transition from hemifusion to full fusion by imposing an unfavorable membrane curvature and increasing the order and stiffness of the cytoplasmic leaflet of endosomal membranes. Our findings reveal a universal mechanism by which cells block entry of diverse enveloped viruses.
Collapse
Affiliation(s)
- Xiangyang Guo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mariana Marin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Corresponding author: Gregory B. Melikyan,
| |
Collapse
|
30
|
Yang Y, Margam NN. Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens. Cells 2021; 10:cells10010160. [PMID: 33467484 PMCID: PMC7830690 DOI: 10.3390/cells10010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/30/2022] Open
Abstract
From lifeless viral particles to complex multicellular organisms, membrane fusion is inarguably the important fundamental biological phenomena. Sitting at the heart of membrane fusion are protein mediators known as fusogens. Despite the extensive functional and structural characterization of these proteins in recent years, scientists are still grappling with the fundamental mechanisms underlying membrane fusion. From an evolutionary perspective, fusogens follow divergent evolutionary principles in that they are functionally independent and do not share any sequence identity; however, they possess structural similarity, raising the possibility that membrane fusion is mediated by essential motifs ubiquitous to all. In this review, we particularly emphasize structural characteristics of small-molecular-weight fusogens in the hope of uncovering the most fundamental aspects mediating membrane–membrane interactions. By identifying and elucidating fusion-dependent functional domains, this review paves the way for future research exploring novel fusogens in health and disease.
Collapse
|
31
|
A Novel Mechanism Underlying Antiviral Activity of an Influenza Virus M2-Specific Antibody. J Virol 2020; 95:JVI.01277-20. [PMID: 33055251 DOI: 10.1128/jvi.01277-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022] Open
Abstract
Protective immunity against influenza A viruses (IAVs) generally depends on antibodies to the major envelope glycoprotein, hemagglutinin (HA), whose antigenicity is distinctive among IAV subtypes. On the other hand, the matrix 2 (M2) protein is antigenically highly conserved and has been studied as an attractive vaccine antigen to confer cross-protective immunity against multiple subtypes of IAVs. However, antiviral mechanisms of M2-specific antibodies are not fully understood. Here, we report the molecular basis of antiviral activity of an M2-specific monoclonal antibody (MAb), rM2ss23. We first found that rM2ss23 inhibited A/Aichi/2/1968 (H3N2) (Aichi) but not A/PR/8/1934 (H1N1) (PR8) replication. rM2ss23 altered the cell surface distribution of M2, likely by cross-linking the molecules, and interfered with the colocalization of HA and M2, resulting in reduced budding of progeny viruses. However, these effects were not observed for another strain, PR8, despite the binding capacity of rM2ss23 to PR8 M2. Interestingly, HA was also involved in the resistance of PR8 to rM2ss23. We also found that two amino acid residues at positions 54 and 57 in the M2 cytoplasmic tail were critical for the insensitivity of PR8 to rM2ss2. These findings suggest that the disruption of the M2-HA colocalization on infected cells and subsequent reduction of virus budding is one of the principal mechanisms of antiviral activity of M2-specific antibodies and that anti-M2 antibody-sensitive and -resistant IAVs have different properties in the interaction between M2 and HA.IMPORTANCE Although the IAV HA is the major target of neutralizing antibodies, most of the antibodies are HA subtype specific, restricting the potential of HA-based vaccines. On the contrary, the IAV M2 protein has been studied as a vaccine antigen to confer cross-protective immunity against IAVs with multiple HA subtypes, since M2 is antigenically conserved. Although a number of studies highlight the protective role of anti-HA neutralizing and nonneutralizing antibodies, precise information on the molecular mechanism of action of M2-specific antibodies is still obscure. In this study, we found that an anti-M2 antibody interfered with the HA-M2 association, which is important for efficient budding of progeny virus particles from infected cells. The antiviral activity was IAV strain dependent despite the similar binding capacity of the antibody to M2, and, interestingly, HA was involved in susceptibility to the antibody. Our data provide a novel mechanism underlying antiviral activity of M2-specific antibodies.
Collapse
|
32
|
Serris A, Stass R, Bignon EA, Muena NA, Manuguerra JC, Jangra RK, Li S, Chandran K, Tischler ND, Huiskonen JT, Rey FA, Guardado-Calvo P. The Hantavirus Surface Glycoprotein Lattice and Its Fusion Control Mechanism. Cell 2020; 183:442-456.e16. [PMID: 32937107 DOI: 10.1016/j.cell.2020.08.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Hantaviruses are rodent-borne viruses causing serious zoonotic outbreaks worldwide for which no treatment is available. Hantavirus particles are pleomorphic and display a characteristic square surface lattice. The envelope glycoproteins Gn and Gc form heterodimers that further assemble into tetrameric spikes, the lattice building blocks. The glycoproteins, which are the sole targets of neutralizing antibodies, drive virus entry via receptor-mediated endocytosis and endosomal membrane fusion. Here we describe the high-resolution X-ray structures of the heterodimer of Gc and the Gn head and of the homotetrameric Gn base. Docking them into an 11.4-Å-resolution cryoelectron tomography map of the hantavirus surface accounted for the complete extramembrane portion of the viral glycoprotein shell and allowed a detailed description of the surface organization of these pleomorphic virions. Our results, which further revealed a built-in mechanism controlling Gc membrane insertion for fusion, pave the way for immunogen design to protect against pathogenic hantaviruses.
Collapse
Affiliation(s)
- Alexandra Serris
- Institut Pasteur, Structural Virology Unit, and CNRS UMR 3569, Paris, France
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eduardo A Bignon
- Fundación Ciencia & Vida, Molecular Virology Laboratory, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Nicolás A Muena
- Fundación Ciencia & Vida, Molecular Virology Laboratory, Santiago, Chile
| | - Jean-Claude Manuguerra
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), Paris, France
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sai Li
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nicole D Tischler
- Fundación Ciencia & Vida, Molecular Virology Laboratory, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Helsinki Institute of Life Science HiLIFE, Viikinkaari 1, 00014 University of Helsinki, Finland; Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, Viikinkaari 1, 00014 University of Helsinki, Finland
| | - Felix A Rey
- Institut Pasteur, Structural Virology Unit, and CNRS UMR 3569, Paris, France.
| | | |
Collapse
|
33
|
Martyna A, Bahsoun B, Madsen JJ, Jackson FSJS, Badham MD, Voth GA, Rossman JS. Cholesterol Alters the Orientation and Activity of the Influenza Virus M2 Amphipathic Helix in the Membrane. J Phys Chem B 2020; 124:6738-6747. [PMID: 32644803 PMCID: PMC7515559 DOI: 10.1021/acs.jpcb.0c03331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The
influenza virus M2 amphipathic helix (M2AH) alters membrane
curvature in a cholesterol-dependent manner, mediating viral membrane
scission during influenza virus budding. Here, we have investigated
the biophysical effects of cholesterol on the ability of an M2AH peptide
to manipulate membrane properties. We see that the ability of the
M2AH to interact with membranes and form an α-helix is independent
of membrane cholesterol concentration; however, cholesterol affects
the angle of the M2AH peptide within the membrane. This change in
membrane orientation affects the ability of the M2AH to alter lipid
order. In low-cholesterol membranes, the M2AH is inserted near the
level of the lipid head groups, increasing lipid order, which may
contribute to generation of the membrane curvature. As the cholesterol
content increases, the M2AH insertion becomes flatter and slightly
deeper in the membrane below the lipid headgroups, where the polar
face can continue to interact with the headgroups while the hydrophobic
face binds cholesterol. This changed orientation minimizes lipid packing
defects and lipid order changes, likely reducing the generation of
membrane curvature. Thus, cholesterol regulates M2 membrane scission
by precisely modulating M2AH positioning within the membrane. This
has implications for the understanding of many of amphipathic-helix-driven
cellular budding processes that occur in specific lipid environments.
Collapse
Affiliation(s)
- Agnieszka Martyna
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Basma Bahsoun
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Jesper J Madsen
- Department of Chemistry and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
| | | | - Matthew D Badham
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Gregory A Voth
- Department of Chemistry and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jeremy S Rossman
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| |
Collapse
|
34
|
Masuda T, Hirose H, Baba K, Walrant A, Sagan S, Inagaki N, Fujimoto T, Futaki S. An Artificial Amphiphilic Peptide Promotes Endocytic Uptake by Inducing Membrane Curvature. Bioconjug Chem 2020; 31:1611-1615. [DOI: 10.1021/acs.bioconjchem.0c00239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshihiro Masuda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kentarou Baba
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Astrid Walrant
- Sorbonne Université, École Normale Supérieure,
PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure,
PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Naoyuki Inagaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Toyoshi Fujimoto
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 113-8421 Tokyo, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
35
|
Claridge JK, Mohd-Kipli F, Florea A, Gate T, Schnell JR. pH-dependent secondary structure propensity of the influenza A virus M2 cytoplasmic tail. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:157-161. [PMID: 32157574 PMCID: PMC7069904 DOI: 10.1007/s12104-020-09937-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The cytoplasmic C-terminal tail of the matrix protein 2 (M2) from influenza A virus has a well conserved sequence and is involved in interactions with several host proteins as well as the influenza matrix protein 1 (M1). Whereas the transmembrane domain of M2 has been well characterised structurally and functionally, high resolution information about the distal cytoplasmic tail is lacking. Here we report the chemical shifts of the cytoplasmic tail of M2 and the chemical shift perturbations at low pH and in the presence of membrane mimetics. The cytoplasmic tail residues are mostly disordered but an extended backbone conformation is adopted by the LC3 binding motif and the putative M1 interaction site has partial helical content with a small pH-dependence. The chemical shift assignments provide a basis for further investigations into interactions of the M2 cytoplasmic tail with viral and host cell factors.
Collapse
Affiliation(s)
- Jolyon K Claridge
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Faiz Mohd-Kipli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Andrei Florea
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Thomas Gate
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jason R Schnell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
36
|
Amphipathic Helices of Cellular Proteins Can Replace the Helix in M2 of Influenza A Virus with Only Small Effects on Virus Replication. J Virol 2020; 94:JVI.01605-19. [PMID: 31694941 DOI: 10.1128/jvi.01605-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
M2 of influenza virus functions as a proton channel during virus entry. In addition, an amphipathic helix in its cytoplasmic tail plays a role during budding. It targets M2 to the assembly site where it inserts into the inner membrane leaflet to induce curvature that causes virus scission. Since vesicularization of membranes can be performed by a variety of amphiphilic peptides, we used reverse genetics to investigate whether the peptides can substitute for M2's helix. Virus could not be generated if M2's helix was deleted or replaced by a peptide predicted not to form an amphiphilic helix. In contrast, viruses could be rescued if the M2 helix was exchanged by helices known to induce membrane curvature. Infectious virus titers were marginally reduced if M2 contains the helix of the amphipathic lipid packing sensor from the Epsin N-terminal homology domain or the nonnatural membrane inducer RW16. Transmission electron microscopy of infected cells did not reveal unequivocal evidence that virus budding or membrane scission was disturbed in any of the mutants. Instead, individual virus mutants exhibit other defects in M2, such as reduced surface expression, incorporation into virus particles, and ion channel activity. The protein composition and specific infectivity were also altered for mutant virions. We conclude that the presence of an amphiphilic helix in M2 is essential for virus replication but that other helices can replace its basic (curvature-inducing) function.IMPORTANCE Influenza virus is unique among enveloped viruses since it does not rely on the cellular ESCRT machinery for budding. Instead, viruses encode their own scission machine, the M2 protein. M2 is targeted to the edge of the viral assembly site, where it inserts an amphiphilic helix into the membrane to induce curvature. Cellular proteins utilize a similar mechanism for scission of vesicles. We show that the helix of M2 can be replaced by helices from cellular proteins with only small effects on virus replication. No evidence was obtained that budding is disturbed, but individual mutants exhibit other defects in M2 that explain the reduced virus titers. In contrast, no virus could be generated if the helix of M2 is deleted or replaced by irrelevant sequences. These experiments support the concept that M2 requires an amphiphilic helix to induce membrane curvature, but its biophysical properties are more important than the amino acid sequence.
Collapse
|
37
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Front Cell Dev Biol 2019; 7:291. [PMID: 31921835 PMCID: PMC6914677 DOI: 10.3389/fcell.2019.00291] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental features of biomembranes is the ability to fuse or to separate. These processes called respectively membrane fusion and fission are central in the homeostasis of events such as those related to intracellular membrane traffic. Proteins that contain amphipathic helices (AHs) were suggested to mediate membrane fission via shallow insertion of these helices into the lipid bilayer. Here we analyze the AH-containing proteins that have been identified as essential for membrane fission and categorize them in few subfamilies, including small GTPases, Atg proteins, and proteins containing either the ENTH/ANTH- or the BAR-domain. AH-containing fission-inducing proteins may require cofactors such as additional proteins (e.g., lipid-modifying enzymes), or lipids (e.g., phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidic acid [PA], or cardiolipin). Both PA and cardiolipin possess a cone shape and a negative charge (-2) that favor the recruitment of the AHs of fission-inducing proteins. Instead, PtdIns(4,5)P2 is characterized by an high negative charge able to recruit basic residues of the AHs of fission-inducing proteins. Here we propose that the AHs of fission-inducing proteins contain sequence motifs that bind lipid cofactors; accordingly (K/R/H)(K/R/H)xx(K/R/H) is a PtdIns(4,5)P2-binding motif, (K/R)x6(F/Y) is a cardiolipin-binding motif, whereas KxK is a PA-binding motif. Following our analysis, we show that the AHs of many fission-inducing proteins possess five properties: (a) at least three basic residues on the hydrophilic side, (b) ability to oligomerize, (c) optimal (shallow) depth of insertion into the membrane, (d) positive cooperativity in membrane curvature generation, and (e) specific interaction with one of the lipids mentioned above. These lipid cofactors favor correct conformation, oligomeric state and optimal insertion depth. The most abundant lipid in a given organelle possessing high negative charge (more negative than -1) is usually the lipid cofactor in the fission event. Interestingly, naturally occurring mutations have been reported in AH-containing fission-inducing proteins and related to diseases such as centronuclear myopathy (amphiphysin 2), Charcot-Marie-Tooth disease (GDAP1), Parkinson's disease (α-synuclein). These findings add to the interest of the membrane fission process whose complete understanding will be instrumental for the elucidation of the pathogenesis of diseases involving mutations in the protein AHs.
Collapse
Affiliation(s)
- Mikhail A. Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
38
|
Kim G, Raymond HE, Herneisen AL, Wong-Rolle A, Howard KP. The distal cytoplasmic tail of the influenza A M2 protein dynamically extends from the membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2019; 1861:1421-1427. [PMID: 31153909 PMCID: PMC6625909 DOI: 10.1016/j.bbamem.2019.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
The influenza A M2 protein is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle. The monomeric subunits of the M2 homotetramer consist of an N-terminal ectodomain, a transmembrane domain, and a C-terminal cytoplasmic domain. The transmembrane domain forms a four-helix proton channel that promotes uncoating of virions upon host cell entry. The membrane-proximal region of the C-terminal domain forms a surface-associated amphipathic helix necessary for viral budding. The structure of the remaining ~34 residues of the distal cytoplasmic tail has yet to be fully characterized despite the functional significance of this region for influenza infectivity. Here, we extend structural and dynamic studies of the poorly characterized M2 cytoplasmic tail. We used SDSL-EPR to collect site-specific information on the mobility, solvent accessibility, and conformational properties of residues 61-70 of the full-length, cell-expressed M2 protein reconstituted into liposomes. Our analysis is consistent with the predominant population of the C-terminal tail dynamically extending away from the membranes surface into the aqueous medium. These findings provide insight into the hypothesis that the C-terminal domain serves as a sensor that regulates how M2 protein participates in critical events in the viral infection cycle.
Collapse
Affiliation(s)
- Grace Kim
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Hayley E Raymond
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Alice L Herneisen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Abigail Wong-Rolle
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kathleen P Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America.
| |
Collapse
|
39
|
Jung Y, Kong B, Moon S, Yu SH, Chung J, Ban C, Chung WJ, Kim SG, Kweon DH. Envelope-deforming antiviral peptide derived from influenza virus M2 protein. Biochem Biophys Res Commun 2019; 517:507-512. [PMID: 31375212 DOI: 10.1016/j.bbrc.2019.07.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 01/09/2023]
Abstract
Molecules interfering with lipid bilayer function exhibit strong antiviral activity against a broad range of enveloped viruses, with a lower risk of resistance development than that for viral protein-targeting drugs. Amphipathic peptides are rich sources of such membrane-interacting antivirals. Here, we report that influenza viruses were effectively inactivated by M2 AH, an amphipathic peptide derived from the M2 protein of the influenza virus. Although overall hydrophobicity (<H>) of M2 AH was not related to antiviral activity, modification of the hydrophobic moment (<μH>) of M2 AH dramatically altered the antiviral activity of this peptide. M2 MH, a derivative of M2 AH with a <μH> of 0.874, showed a half maximal inhibitory concentration (IC50) of 53.3 nM against the A/PR/8/34 strain (H1N1), which is 16-times lower than that of M2 AH. The selectivity index (IC50/CC50), where CC50 is the half maximal cytotoxic concentration, was 360 for M2 MH and 81 for M2 AH. Dynamic light scattering spectroscopy and electron microscopy revealed that M2 AH-derived peptides did not disrupt liposomes but altered the shape of viruses. This result suggests that the shape of virus envelope was closely related to its activity. Thus, we propose that deforming without rupturing the membranes may achieve a high selectivity index for peptide antivirals.
Collapse
Affiliation(s)
- Younghun Jung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Byoungjae Kong
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Hyeon Yu
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jinhyo Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choongjin Ban
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung-Gun Kim
- Department of Biomedical Science, U1 University, Yeongdong, 29131, Republic of Korea.
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
40
|
Zhang Y, Zhao X, Zou J, Yuan Z, Yi Z. Dual role of the amphipathic helix of hepatitis C virus NS5A in the viral polyprotein cleavage and replicase assembly. Virology 2019; 535:283-296. [PMID: 31369938 DOI: 10.1016/j.virol.2019.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Assembling a viral replicase on host intracellular membranes is a common strategy for viral replication of almost all of the positive-strand RNA viruses. Understanding how the key modules of the replicase are involved in the replicase assembly may provide insights into the pathway of the replicase assembly. Herein, by using HCV as a model, we dissect the roles of the amphipathic helix (AH) of NS5A, a key repilcase component, in the viral replicase assembly. The results show that the AH is dispensable for membrane anchoring of NS5A. Instead, AH plays a dual role in the viral replicase assembly: positions a replicase module properly for efficient polyprotein processing and participates in protein-protein interactions within the replicase. This property of AH may serve as an attractive direct anti-viral target.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomin Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Zou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China; Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Masuda T, Baba K, Nomura T, Tsujita K, Murayama T, Itoh T, Takatani-Nakase T, Sokabe M, Inagaki N, Futaki S. An influenza-derived membrane tension-modulating peptide regulates cell movement and morphology via actin remodeling. Commun Biol 2019; 2:243. [PMID: 31263787 PMCID: PMC6594980 DOI: 10.1038/s42003-019-0486-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/23/2019] [Indexed: 01/01/2023] Open
Abstract
Tension in cell membranes is closely related to various cellular events, including cell movement and morphogenesis. Therefore, modulation of membrane tension can be a new approach for manipulating cellular events. Here, we show that an amphipathic peptide derived from the influenza M2 protein (M2[45-62]) yields lamellipodia at multiple sites in the cell. Effect of M2[45-62] on cell membrane tension was evaluated by optical tweezer. The membrane tension sensor protein FBP17 was involved in M2[45-62]-driven lamellipodium formation. Lysine-to-arginine substitution in M2[45-62] further enhanced its activity of lamellipodium formation. M2[45-62] had an ability to reduce cell motility, evaluated by scratch wound migration and transwell migration assays. An increase in neurite outgrowth was also observed after treatment with M2[45-62]. The above results suggest the potential of M2[45-62] to modulate cell movement and morphology by modulating cell membrane tension.
Collapse
Affiliation(s)
- Toshihiro Masuda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Kentarou Baba
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 Japan
| | - Takeshi Nomura
- Department of Agro-environmental Sciences, Kyushu University, Fukuoka, 819-0395 Japan
| | - Kazuya Tsujita
- Division of Membrane Biology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Tomo Murayama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Toshiki Itoh
- Division of Membrane Biology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Tomoka Takatani-Nakase
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550 Japan
| | - Masahiro Sokabe
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya, Hyogo 663-8179 Japan
| | - Naoyuki Inagaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 Japan
| |
Collapse
|
42
|
Bedi S, Ono A. Friend or Foe: The Role of the Cytoskeleton in Influenza A Virus Assembly. Viruses 2019; 11:v11010046. [PMID: 30634554 PMCID: PMC6356976 DOI: 10.3390/v11010046] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A Virus (IAV) is a respiratory virus that causes seasonal outbreaks annually and pandemics occasionally. The main targets of the virus are epithelial cells in the respiratory tract. Like many other viruses, IAV employs the host cell’s machinery to enter cells, synthesize new genomes and viral proteins, and assemble new virus particles. The cytoskeletal system is a major cellular machinery, which IAV exploits for its entry to and exit from the cell. However, in some cases, the cytoskeleton has a negative impact on efficient IAV growth. In this review, we highlight the role of cytoskeletal elements in cellular processes that are utilized by IAV in the host cell. We further provide an in-depth summary of the current literature on the roles the cytoskeleton plays in regulating specific steps during the assembly of progeny IAV particles.
Collapse
Affiliation(s)
- Sukhmani Bedi
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
43
|
Elkins MR, Sergeyev IV, Hong M. Determining Cholesterol Binding to Membrane Proteins by Cholesterol 13C Labeling in Yeast and Dynamic Nuclear Polarization NMR. J Am Chem Soc 2018; 140:15437-15449. [PMID: 30338997 PMCID: PMC6361393 DOI: 10.1021/jacs.8b09658] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a general strategy for determining the cholesterol-binding site of eukaryotic membrane proteins in native-like lipid membranes by NMR spectroscopy. The strategy combines yeast biosynthetic 13C enrichment of cholesterol with detection of protein-cholesterol 13C-13C cross peaks in 2D correlation NMR spectra under the dynamic nuclear polarization (DNP) condition. Low-temperature DNP not only allows high-sensitivity detection of weak protein-cholesterol cross peaks in 2D spectra but also immobilizes cholesterol and protein to enable intermolecular distance measurements. We demonstrate this approach on the influenza M2 protein, which utilizes cholesterol to conduct membrane scission in the last step of virus budding and release from the host cell plasma membrane. A 13C-13C double-quantum filter was employed to significantly simplify the 2D 13C-13C correlation spectra and facilitate the identification of protein-cholesterol cross peaks. A number of cross peaks between the M2 transmembrane residues' side chains and the cholesterol sterol group were detected, which complement recently measured protein contacts to the isooctyl tail of cholesterol to define an extended binding interface. These results provide atomic-level evidence of M2-cholesterol interaction to cause membrane curvature and scission, and the approach is generally applicable to other eukaryotic membrane proteins for understanding the influence of cholesterol on membrane protein function.
Collapse
Affiliation(s)
- Matthew R. Elkins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
44
|
Entropic forces drive clustering and spatial localization of influenza A M2 during viral budding. Proc Natl Acad Sci U S A 2018; 115:E8595-E8603. [PMID: 30150411 DOI: 10.1073/pnas.1805443115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influenza A matrix 2 (M2) transmembrane protein facilitates virion release from the infected host cell. In particular, M2 plays a role in the induction of membrane curvature and/or in the scission process whereby the envelope is cut upon virion release. Here we show using coarse-grained computer simulations that various M2 assembly geometries emerge due to an entropic driving force, resulting in compact clusters or linearly extended aggregates as a direct consequence of the lateral membrane stresses. Conditions under which these protein assemblies will cause the lipid membrane to curve are explored, and we predict that a critical cluster size is required for this to happen. We go on to demonstrate that under the stress conditions taking place in the cellular membrane as it undergoes large-scale membrane remodeling, the M2 protein will, in principle, be able to both contribute to curvature induction and sense curvature to line up in manifolds where local membrane line tension is high. M2 is found to exhibit linactant behavior in liquid-disordered-liquid-ordered phase-separated lipid mixtures and to be excluded from the liquid-ordered phase, in near-quantitative agreement with experimental observations. Our findings support a role for M2 in membrane remodeling during influenza viral budding both as an inducer and a sensor of membrane curvature, and they suggest a mechanism by which localization of M2 can occur as the virion assembles and releases from the host cell, independent of how the membrane curvature is produced.
Collapse
|
45
|
Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:201-209. [PMID: 30071193 DOI: 10.1016/j.bbamem.2018.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
Membrane curvature remodeling induced by amphipathic helices (AHs) is essential in many biological processes. Here we studied a model amphipathic peptide, M2AH, derived from influenza A M2. We are interested in how M2AH may promote membrane curvature by altering membrane physical properties. We used atomic force microscopy (AFM) to examine changes in membrane topographic and mechanical properties. We used electron paramagnetic resonance (EPR) spectroscopy to explore changes in lipid chain mobility and chain orientational order. We found that M2AH perturbed lipid bilayers by generating nanoscale pits. The structural data are consistent with lateral expansion of lipid chain packing, resulting in a mechanically weaker bilayer. Our EPR spectroscopy showed that M2AH reduced lipid chain mobility and had a minimal effect on lipid chain orientational order. The EPR data are consistent with the surface-bound state of M2AH that acts as a chain mobility inhibitor. By comparing results from different lipid bilayers, we found that cholesterol enhanced the activity of M2AH in inducing bilayer pits and altering lipid chain mobility. The results were explained by considering specific M2AH-cholesterol recognition and/or cholesterol-induced expansion of interlipid distance. Both AFM and EPR experiments revealed a modest effect of anionic lipids. This highlights that membrane interaction of M2AH is mainly driven by hydrophobic forces. Lastly, we found that phosphatidylethanolamine (PE) lipids inhibited the activity of M2AH. We explained our data by considering interlipid hydrogen-bonding that can stabilize bilayer organization. Our results of lipid-dependent membrane modulations are likely relevant to M2AH-induced membrane restructuring.
Collapse
|
46
|
Kordyukova LV, Shtykova EV, Baratova LA, Svergun DI, Batishchev OV. Matrix proteins of enveloped viruses: a case study of Influenza A virus M1 protein. J Biomol Struct Dyn 2018; 37:671-690. [PMID: 29388479 DOI: 10.1080/07391102.2018.1436089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Eleonora V Shtykova
- b Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences , Moscow , Russian Federation.,c Semenov Institute of Chemical Physics , Russian Academy of Sciences , Moscow , Russian Federation
| | - Lyudmila A Baratova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | | | - Oleg V Batishchev
- e Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Moscow , Russian Federation.,f Moscow Institute of Physics and Technology , Dolgoprudniy , Russian Federation
| |
Collapse
|
47
|
Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci 2017; 18:ijms18122649. [PMID: 29215568 PMCID: PMC5751251 DOI: 10.3390/ijms18122649] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.
Collapse
|
48
|
Herneisen AL, Sahu ID, McCarrick RM, Feix JB, Lorigan GA, Howard KP. A Budding-Defective M2 Mutant Exhibits Reduced Membrane Interaction, Insensitivity to Cholesterol, and Perturbed Interdomain Coupling. Biochemistry 2017; 56:5955-5963. [PMID: 29034683 PMCID: PMC6112238 DOI: 10.1021/acs.biochem.7b00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Influenza A M2 is a membrane-associated protein with a C-terminal amphipathic helix that plays a cholesterol-dependent role in viral budding. An M2 mutant with alanine substitutions in the C-terminal amphipathic helix is deficient in viral scission. With the goal of providing atomic-level understanding of how the wild-type protein functions, we used a multipronged site-directed spin labeling electron paramagnetic resonance spectroscopy (SDSL-EPR) approach to characterize the conformational properties of the alanine mutant. We spin-labeled sites in the transmembrane (TM) domain and the C-terminal amphipathic helix (AH) of wild-type (WT) and mutant M2, and collected information on line shapes, relaxation rates, membrane topology, and distances within the homotetramer in membranes with and without cholesterol. Our results identify marked differences in the conformation and dynamics between the WT and the alanine mutant. Compared to WT, the dominant population of the mutant AH is more dynamic, shallower in the membrane, and has altered quaternary arrangement of the C-terminal domain. While the AH becomes more dynamic, the dominant population of the TM domain of the mutant is immobilized. The presence of cholesterol changes the conformation and dynamics of the WT protein, while the alanine mutant is insensitive to cholesterol. These findings provide new insight into how M2 may facilitate budding. We propose the AH-membrane interaction modulates the arrangement of the TM helices, effectively stabilizing a conformational state that enables M2 to facilitate viral budding. Antagonizing the properties of the AH that enable interdomain coupling within M2 may therefore present a novel strategy for anti-influenza drug design.
Collapse
Affiliation(s)
- Alice L. Herneisen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert M. McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Jimmy B. Feix
- Department of Biophysics, National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kathleen P. Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|