1
|
Nowak J, Aronin J, Beg F, O’Malley N, Ferrick M, Quattrin T, Pavlesen S, Hadjiargyrou M, Komatsu DE, Thanos PK. The Effects of Chronic Psychostimulant Administration on Bone Health: A Review. Biomedicines 2024; 12:1914. [PMID: 39200379 PMCID: PMC11351835 DOI: 10.3390/biomedicines12081914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
(1) Background: Methylphenidate (MP) and amphetamine (AMP) are psychostimulants that are widely prescribed to treat Attention Deficit Hyperactivity Disorder (ADHD) and narcolepsy. In recent years, 6.1 million children received an ADHD diagnosis, and nearly 2/3 of these children were prescribed psychostimulants for treatment. The purpose of this review is to summarize the current literature on psychostimulant use and the resulting effects on bone homeostasis, biomechanical properties, and functional integrity. (2) Methods: Literature searches were conducted from Medline/PubMed electronic databases utilizing the search terms "methylphenidate" OR "amphetamine" OR "methylphenidate" AND "bone health" AND "bone remodeling" AND "osteoclast" AND "osteoblast" AND "dopamine" from 01/1985 to 04/2023. (3) Results: Of the 550 publications found, 44 met the inclusion criteria. Data from identified studies demonstrate that the use of MP and AMP results in decreases in specific bone properties and biomechanical integrity via downstream effects on osteoblasts and osteoclast-related genes. (4) Conclusions: The chronic use of psychostimulants negatively affects bone integrity and strength as a result of increased osteoclast activity. These data support the need to take this into consideration when planning the treatment type and duration for bone fractures.
Collapse
Affiliation(s)
- Jessica Nowak
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jacob Aronin
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Faraaz Beg
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Natasha O’Malley
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael Ferrick
- Department of Orthopaedics, Jacobs School of Medicine, University at Buffalo, Buffalo, NY 14203, USA
| | - Teresa Quattrin
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA
| | - Sonja Pavlesen
- Clinical Research Center, UBMD Orthopaedics & Sports Medicine, 111 N Maplemere Rd., Suite 100, Buffalo, NY 14221, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Westbury, NY 11568, USA;
| | - David E. Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY 11794, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Hong JM, Gerard-O'Riley RL, Acton D, Alam I, Econs MJ, Bruzzaniti A. The PDE4 Inhibitors Roflumilast and Rolipram Rescue ADO2 Osteoclast Resorption Dysfunction. Calcif Tissue Int 2024; 114:430-443. [PMID: 38483547 PMCID: PMC11239147 DOI: 10.1007/s00223-024-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption caused by heterozygous missense mutations in the chloride channel 7 (CLCN7). Adenylate cyclase, which catalyzes the formation of cAMP, is critical for lysosomal acidification in osteoclasts. We found reduced cAMP levels in ADO2 osteoclasts compared to wild-type (WT) osteoclasts, leading us to examine whether regulating cAMP would improve ADO2 osteoclast activity. Although forskolin, a known activator of adenylate cyclase and cAMP levels, negatively affected osteoclast number, it led to an overall increase in ADO2 and WT osteoclast resorption activity in vitro. Next, we examined cAMP hydrolysis by the phosphodiesterase 4 (PDE4) proteins in ADO2 versus WT osteoclasts. QPCR analysis revealed higher expression of the three major PDE4 subtypes (4a, 4b, 4d) in ADO2 osteoclasts compared in WT, consistent with reduced cAMP levels in ADO2 osteoclasts. In addition, we found that the PDE4 antagonists, rolipram and roflumilast, stimulated ADO2 and WT osteoclast formation in a dose-dependent manner. Importantly, roflumilast and rolipram displayed a concentration-dependent increase in osteoclast resorption activity which was greater in ADO2 than WT osteoclasts. Moreover, treatment with roflumilast rescued cAMP levels in ADO2 OCLs. The key findings from our studies demonstrate that osteoclasts from ADO2 mice exhibit reduced cAMP levels and PDE4 inhibition rescues cAMP levels and ADO2 osteoclast activity dysfunction in vitro. The mechanism of action of PDE4 inhibitors and their ability to reduce the high bone mass of ADO2 mice in vivo are currently under investigation. Importantly, these studies advance the understanding of the mechanisms underlying the ADO2 osteoclast dysfunction which is critical for the development of therapeutic approaches to treat clinically affected ADO2 patients.
Collapse
Affiliation(s)
- Jung Min Hong
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 1121 West Michigan Street, DS266, Indianapolis, IN, 46202, USA
| | - Rita L Gerard-O'Riley
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dena Acton
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Imranul Alam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael J Econs
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 1121 West Michigan Street, DS266, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Yang W, Zuo Y, Zhang N, Wang K, Zhang R, Chen Z, He Q. GNAS locus: bone related diseases and mouse models. Front Endocrinol (Lausanne) 2023; 14:1255864. [PMID: 37920253 PMCID: PMC10619756 DOI: 10.3389/fendo.2023.1255864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
GNASis a complex locus characterized by multiple transcripts and an imprinting effect. It orchestrates a variety of physiological processes via numerous signaling pathways. Human diseases associated with the GNAS gene encompass fibrous dysplasia (FD), Albright's Hereditary Osteodystrophy (AHO), parathyroid hormone(PTH) resistance, and Progressive Osseous Heteroplasia (POH), among others. To facilitate the study of the GNAS locus and its associated diseases, researchers have developed a range of mouse models. In this review, we will systematically explore the GNAS locus, its related signaling pathways, the bone diseases associated with it, and the mouse models pertinent to these bone diseases.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yiyi Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nuo Zhang
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kangning Wang
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Runze Zhang
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ziyi Chen
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qing He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Weerasinghe DK, Hodge JM, Pasco JA, Samarasinghe RM, Azimi Manavi B, Williams LJ. Antipsychotic-induced bone loss: the role of dopamine, serotonin and adrenergic receptor signalling. Front Cell Dev Biol 2023; 11:1184550. [PMID: 37305679 PMCID: PMC10248006 DOI: 10.3389/fcell.2023.1184550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Antipsychotics are commonly used in treating psychiatric disorders. These medications primarily target dopamine the serotonin receptors, they have some affinity to adrenergic, histamine, glutamate and muscarinic receptors. There is clinical evidence that antipsychotic use decreases BMD and increases fracture risk, with dopamine, serotonin and adrenergic receptor-signalling becoming an increasing area of focus where the presence of these receptors in osteoclasts and osteoblasts have been demonstrated. Osteoclasts and osteoblasts are the most important cells in the bone remodelling and the bone regeneration process where the activity of these cells determine the bone resorption and formation process in order to maintain healthy bone. However, an imbalance in osteoclast and osteoblast activity can lead to decreased BMD and increased fracture risk, which is also believed to be exacerbated by antipsychotics use. Therefore, the aim of this review is to provide an overview of the mechanisms of action of first, second and third generation antipsychotics and the expression profiles of dopamine, serotonin and adrenergic receptors during osteoclastogenesis and osteoblastogenesis.
Collapse
Affiliation(s)
- D. Kavindi Weerasinghe
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Jason M. Hodge
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Julie A. Pasco
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Medicine—Western Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Rasika M. Samarasinghe
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Behnaz Azimi Manavi
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Lana J. Williams
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| |
Collapse
|
5
|
Pharmacological Interventions Targeting Pain in Fibrous Dysplasia/McCune-Albright Syndrome. Int J Mol Sci 2023; 24:ijms24032550. [PMID: 36768871 PMCID: PMC9916440 DOI: 10.3390/ijms24032550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Fibrous dysplasia (FD) is a rare, non-inherited bone disease occurring following a somatic gain-of-function R201 missense mutation of the guanine-nucleotide binding protein alpha subunit stimulating activity polypeptide 1 (GNAS) gene. The spectrum of the disease ranges from a single FD lesion to a combination with extraskeletal features; an amalgamation with café-au-lait skin hyperpigmentation, precocious puberty, and other endocrinopathies defines McCune-Albright Syndrome (MAS). Pain in FD/MAS represents one of the most prominent aspects of the disease and one of the most challenging to treat-an outcome driven by (i) the heterogeneous nature of FD/MAS, (ii) the variable presentation of pain phenotypes (i.e., craniofacial vs. musculoskeletal pain), (iii) a lack of studies probing pain mechanisms, and (iv) a lack of rigorously validated analgesic strategies in FD/MAS. At present, a range of pharmacotherapies are prescribed to patients with FD/MAS to mitigate skeletal disease activity, as well as pain. We analyze evidence guiding the current use of bisphosphonates, denosumab, and other therapies in FD/MAS, and also discuss the potential underlying pharmacological mechanisms by which pain relief may be achieved. Furthermore, we highlight the range of presentation of pain in individual cases of FD/MAS to further describe the difficulties associated with employing effective pain treatment in FD/MAS. Potential next steps toward identifying and validating effective pain treatments in FD/MAS are discussed, such as employing randomized control trials and probing new pain pathways in this rare bone disease.
Collapse
|
6
|
Lemme JD, Tucker-Bartley A, Drubach LA, Shah N, Romo L, Cay M, Voss S, Kwatra N, Kaban LB, Hassan AS, Boyce AM, Upadhyay J. Case Report: A Neuro-Ophthalmological Assessment of Vision Loss in a Pediatric Case of McCune-Albright Syndrome. Front Med (Lausanne) 2022; 9:857079. [PMID: 35372387 PMCID: PMC8964938 DOI: 10.3389/fmed.2022.857079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Patients diagnosed with McCune-Albright Syndrome (MAS) frequently manifest craniofacial fibrous dysplasia (FD). Craniofacial FD can impinge nerve fibers causing visual loss as well as craniofacial pain. Surgical decompression of affected nerves is performed, with variable efficacy, in an attempt to restore function or alleviate symptoms. Here, we present a case of a 12-year-old MAS patient with visual deficits, particularly in the left eye (confirmed by enlarged blind spots on Goldmann visual field testing), and craniofacial pain. Decompression surgery of the left optic nerve mildly improved vision, while persistent visual deficits were noted at a 3-month follow-up assessment. An in-depth, imaging-based evaluation of the visual system, including the retinal nerve fiber layer, optic nerves, and central nervous system (CNS) visual pathways, revealed multiple abnormalities throughout the visual processing stream. In the current FD/MAS patient, a loss of white matter fiber density within the left optic radiation and functional changes involving the left primary visual cortex were observed. Aberrant structural and functional abnormalities embedded within central visual pathways may play a role in facilitating deficits in vision in FD/MAS and contribute to the variable outcome following peripheral nerve decompression surgery.
Collapse
Affiliation(s)
- Jordan D Lemme
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Tucker-Bartley
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Laura A Drubach
- Department of Radiology, Boston Children's Hospital, Hospital and Harvard School, Boston, MA, United States
| | - Nehal Shah
- Department of Radiology, Brigham and Women's Hospital, Hospital and Harvard School, Boston, MA, United States
| | - Laura Romo
- Head and Neck Imaging, Department of Radiology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Mariesa Cay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Stephan Voss
- Department of Radiology, Boston Children's Hospital, Hospital and Harvard School, Boston, MA, United States
| | - Neha Kwatra
- Department of Radiology, Boston Children's Hospital, Hospital and Harvard School, Boston, MA, United States
| | - Leonard B Kaban
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, United States
| | - Adam S Hassan
- Eye Plastic and Facial Cosmetic Surgery, Grand Rapids, MI, United States
| | - Alison M Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
7
|
Golden E, Zhang F, Selen DJ, Ebb D, Romo L, Drubach LA, Shah N, O'Donnell LJ, Lemme JD, Myers R, Cay M, Kronenberg HM, Westin CF, Boyce AM, Kaban LB, Upadhyay J. Case Report: The Imperfect Association Between Craniofacial Lesion Burden and Pain in Fibrous Dysplasia. Front Neurol 2022; 13:855157. [PMID: 35370900 PMCID: PMC8966612 DOI: 10.3389/fneur.2022.855157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Patients with fibrous dysplasia (FD) often present with craniofacial lesions that affect the trigeminal nerve system. Debilitating pain, headache, and migraine are frequently experienced by FD patients with poor prognosis, while some individuals with similar bone lesions are asymptomatic. The clinical and biological factors that contribute to the etiopathogenesis of pain in craniofacial FD are largely unknown. We present two adult females with comparable craniofacial FD lesion size and location, as measured by 18F-sodium fluoride positron emission tomography/computed tomography (PET/CT), yet their respective pain phenotypes differed significantly. Over 4 weeks, the average pain reported by Patient A was 0.4/0–10 scale. Patient B reported average pain of 7.8/0–10 scale distributed across the entire skull and left facial region. Patient B did not experience pain relief from analgesics or more aggressive treatments (denosumab). In both patients, evaluation of trigeminal nerve divisions (V1, V2, and V3) with CT and magnetic resonance imaging (MRI) revealed nerve compression and displacement with more involvement of the left trigeminal branches relative to the right. First-time employment of diffusion MRI and tractography suggested reduced apparent fiber density within the cisternal segment of the trigeminal nerve, particularly for Patient B and in the left hemisphere. These cases highlight heterogeneous clinical presentation and neurobiological properties in craniofacial FD and also, the disconnect between peripheral pathology and pain severity. We hypothesize that a detailed phenotypic characterization of patients that incorporates an advanced imaging approach probing the trigeminal system may provide enhanced insights into the variable experiences with pain in craniofacial FD.
Collapse
Affiliation(s)
- Emma Golden
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Daryl J Selen
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - David Ebb
- Department of Pediatric Hematology Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Laura Romo
- Head and Neck Imaging, Department of Radiology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Laura A Drubach
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Nehal Shah
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jordan D Lemme
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Rachel Myers
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mariesa Cay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Henry M Kronenberg
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Alison M Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Leonard B Kaban
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, United States
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
8
|
Chen Y, Huang C, Chen X, Cai Y, Li W, Fang X, Zhang W. Bone protein analysis via label-free quantitative proteomics in patients with periprosthetic joint infection. J Proteomics 2022; 252:104448. [PMID: 34883267 DOI: 10.1016/j.jprot.2021.104448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Periprosthetic joint infection (PJI) is a catastrophic complication of arthroplasty. The treatment of PJI often requires multiple operations and long-term use of antibiotics, making PJI a substantial health and economic burden for patients. Therefore, there is an urgent need to elucidate the pathological mechanism of PJI to explore new therapeutic methods. This study aimed to explore proteomics changes in bone tissue around the prosthesis during PJI development, to explain the pathological mechanism and to provide new treatment ideas. Ten patients who underwent revision surgery at our institution were included: 5 patients with Staphylococcus aureus PJI and 5 patients with aseptic failure. The proteomics changes in bone tissues after PJI were investigated by label-free quantitative proteomics, and the pathways affected by the differential proteins were analyzed by GO annotation, GO enrichment analysis, KEGG enrichment analysis and protein-protein interaction network analysis. We identified 435 differentially expressed proteins (DEPs), with 213 upregulated and 222 downregulated proteins. Analysis revealed activation of immune-related pathways, such as complement and coagulation cascades, phagocytosis, and neutrophil activation, and inhibition of energy metabolism pathways represented by the TCA cycle. We also observed an altered balance between osteoblasts and osteoclasts during S. aureus PJI. We hope that these processes will reveal new treatment ideas. SIGNIFICANCE: PJI is a catastrophic complication of arthroplasty. When infection occurs, bacteria may invade periprosthetic bone tissue to escape immunity and cause damage. So far, only few studies focused on the changes of proteomics associated to PJI. This is the first study to describe the proteomics changes of periprosthetic bone tissue of patients with PJI. We found that the pathological process of S. aureus PJI mainly involves activation of the immune system, decreased energy metabolism, and an altered balance of osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Changyu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoqing Chen
- Department of Orthopedic Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yuanqing Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wenbo Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyu Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Wenming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
9
|
McMullan P, Germain-Lee EL. Aberrant Bone Regulation in Albright Hereditary Osteodystrophy dueto Gnas Inactivation: Mechanisms and Translational Implications. Curr Osteoporos Rep 2022; 20:78-89. [PMID: 35226254 DOI: 10.1007/s11914-022-00719-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW This review highlights the impact of Gnas inactivation on both bone remodeling and the development of heterotopic subcutaneous ossifications in Albright hereditary osteodystrophy (AHO). Here we discuss recent advancements in understanding the pathophysiologic mechanisms of the aberrant bone development in AHO as well as potential translational implications. RECENT FINDINGS Gnas inactivation can regulate the differentiation and function of not only osteoblasts but also osteoclasts and osteocytes. Investigations utilizing a mouse model of AHO generated by targeted disruption of Gnas have revealed that bone formation and resorption are differentially affected based upon the parental origin of the Gnas mutation. Data suggest that Gnas inactivation leads to heterotopic bone formation within subcutaneous tissue by changing the connective tissue microenvironment, thereby promoting osteogenic differentiation of tissue-resident mesenchymal progenitors. Observed variations in bone formation and resorption based upon the parental origin of the Gnas mutation warrant future investigations and may have implications in the management and treatment of AHO and related conditions. Additionally, studies of heterotopic bone formation due to Gnas inactivation have identified an essential role of sonic hedgehog signaling, which could have therapeutic implications not only for AHO and related conditions but also for heterotopic bone formation in a wide variety of settings in which aberrant bone formation is a cause of significant morbidity.
Collapse
Affiliation(s)
- Patrick McMullan
- Department of Pediatrics, Division of Pediatric Endocrinology & Diabetes, University of Connecticut School of Medicine, 505 Farmington Ave, 2nd floor, Farmington, CT, 06032, USA
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Emily L Germain-Lee
- Department of Pediatrics, Division of Pediatric Endocrinology & Diabetes, University of Connecticut School of Medicine, 505 Farmington Ave, 2nd floor, Farmington, CT, 06032, USA.
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA.
- Albright Center, Connecticut Children's, Farmington, CT, USA.
| |
Collapse
|
10
|
McMullan P, Maye P, Yang Q, Rowe DW, Germain‐Lee EL. Parental Origin of
Gsα
Inactivation Differentially Affects Bone Remodeling in a Mouse Model of Albright Hereditary Osteodystrophy. JBMR Plus 2021; 6:e10570. [PMID: 35079678 PMCID: PMC8771002 DOI: 10.1002/jbm4.10570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
Albright hereditary osteodystrophy (AHO) is caused by heterozygous inactivation of GNAS, a complex locus that encodes the alpha‐stimulatory subunit of heterotrimeric G proteins (Gsα) in addition to NESP55 and XLαs due to alternative first exons. AHO skeletal manifestations include brachydactyly, brachymetacarpia, compromised adult stature, and subcutaneous ossifications. AHO patients with maternally‐inherited GNAS mutations develop pseudohypoparathyroidism type 1A (PHP1A) with resistance to multiple hormones that mediate their actions through G protein‐coupled receptors (GPCRs) requiring Gsα (eg, parathyroid hormone [PTH], thyroid‐stimulating hormone [TSH], growth hormone–releasing hormone [GHRH], calcitonin) and severe obesity. Paternally‐inherited GNAS mutations cause pseudopseudohypoparathyroidism (PPHP), in which patients have AHO skeletal features but do not develop hormonal resistance or marked obesity. These differences between PHP1A and PPHP are caused by tissue‐specific reduction of paternal Gsα expression. Previous reports in mice have shown loss of Gsα causes osteopenia due to impaired osteoblast number and function and suggest that AHO patients could display evidence of reduced bone mineral density (BMD). However, we previously demonstrated PHP1A patients display normal‐increased BMD measurements without any correlation to body mass index or serum PTH. Due to these observed differences between PHP1A and PPHP, we utilized our laboratory's AHO mouse model to address whether Gsα heterozygous inactivation differentially affects bone remodeling based on the parental inheritance of the mutation. We identified fundamental distinctions in bone remodeling between mice with paternally‐inherited (GnasE1+/−p) versus maternally‐inherited (GnasE1+/−m) mutations, and these findings were observed predominantly in female mice. Specifically, GnasE1+/−p mice exhibited reduced bone parameters due to impaired bone formation and enhanced bone resorption. GnasE1+/−m mice, however, displayed enhanced bone parameters due to both increased osteoblast activity and normal bone resorption. These in vivo distinctions in bone remodeling between GnasE1+/−p and GnasE1+/−m mice could potentially be related to changes in the bone microenvironment driven by calcitonin‐resistance within GnasE1+/−m osteoclasts. Further studies are warranted to assess how Gsα influences osteoblast–osteoclast coupling. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Patrick McMullan
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - Peter Maye
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - Qingfen Yang
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - David W. Rowe
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - Emily L. Germain‐Lee
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
- Albright Center, Division of Pediatric Endocrinology Connecticut Children's Farmington CT USA
| |
Collapse
|
11
|
Han L, Du M, Ren F, Mao X. Milk Polar Lipids Supplementation to Obese Rats During Pregnancy and Lactation Benefited Skeletal Outcomes of Male Offspring. Mol Nutr Food Res 2021; 65:e2001208. [PMID: 34008920 DOI: 10.1002/mnfr.202001208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/17/2021] [Indexed: 01/14/2023]
Abstract
SCOPE Dietary intervention to obese dams during pregnancy and lactation period provides avenues for improving metabolic profiles of the offspring. In the current study, the effects of polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to obese dams during pregnancy and lactation on the skeletal outcomes of male offspring are investigated. METHODS AND RESULTS MFGM-PL is supplemented to obese rats induced by high-fat diet during pregnancy and lactation at a dose of 400 mg kg-1 body weight. Results show that maternal MFGM-PL supplementation significantly ameliorates the stunted skeletal growth of male offspring at weaning. In adulthood offspring, maternal MFGM-PL supplementation protects against high-fat diet (HFD)-induced bone microstructure degeneration and bone marrow adipocyte accumulation. Further investigation shows that maternal supplementation of MFGM-PL significantly ameliorates insulin resistance and increases the mRNA expression of growth hormone releasing hormone (GHRH) in the hypothalamus of HFD offspring. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is subsequently enhanced in MFGM-PL + HFD offspring, contributing to the beneficial skeletal outcomes. CONCLUSION The findings suggest that maternal MFGM-PL supplementation of HFD dam during pregnancy and lactation shows desirable effects on fetal skeletal development, with lasting beneficial programming impacts on skeletal outcomes of offspring.
Collapse
Affiliation(s)
- Lihua Han
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Fazheng Ren
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xueying Mao
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
12
|
von Kaeppler EP, Wang Q, Raghu H, Bloom MS, Wong H, Robinson WH. Interleukin 4 promotes anti-inflammatory macrophages that clear cartilage debris and inhibits osteoclast development to protect against osteoarthritis. Clin Immunol 2021; 229:108784. [PMID: 34126239 DOI: 10.1016/j.clim.2021.108784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Osteoarthritis (OA), the leading cause of joint failure, is characterized by breakdown of articular cartilage and remodeling of subchondral bone in synovial joints. Despite the high prevalence and debilitating effects of OA, no disease-modifying drugs exist. Increasing evidence, including genetic variants of the interleukin 4 (IL-4) and IL-4 receptor genes, implicates a role for IL-4 in OA, however, the mechanism underlying IL-4 function in OA remains unknown. Here, we investigated the role of IL-4 in OA pathogenesis. METHODS Il4-, myeloid-specific-Il4ra-, and Stat6-deficient and control mice were subjected to destabilization of the medial meniscus to induce OA. Macrophages, osteoclasts, and synovial explants were stimulated with IL-4 in vitro, and their function and expression profiles characterized. RESULTS Mice lacking IL-4, IL-4Ra in myeloid cells, or STAT6 developed exacerbated cartilage damage and osteophyte formation relative to WT controls. In vitro analyses revealed that IL-4 downregulates osteoarthritis-associated genes, enhances macrophage phagocytosis of cartilage debris, and inhibits osteoclast differentiation and activation via the type I receptor. CONCLUSION Our findings demonstrate that IL-4 protects against osteoarthritis in a myeloid and STAT6-dependent manner. Further, IL-4 can promote an immunomodulatory microenvironment in which joint-resident macrophages polarize towards an M2 phenotype and efficiently clear pro-inflammatory debris, and osteoclasts maintain a homeostatic level of activity in subchondral bone. These findings support a role for IL-4 modulation of myeloid cell types in maintenance of joint health and identify a pathway that could provide therapeutic benefit for osteoarthritis.
Collapse
Affiliation(s)
- Ericka P von Kaeppler
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Qian Wang
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - Harini Raghu
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - Michelle S Bloom
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - Heidi Wong
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - William H Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America.
| |
Collapse
|
13
|
Daley EJ, Trackman PC. β-Catenin mediates glucose-dependent insulinotropic polypeptide increases in lysyl oxidase expression in osteoblasts. Bone Rep 2021; 14:101063. [PMID: 33981809 PMCID: PMC8081922 DOI: 10.1016/j.bonr.2021.101063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoblast lysyl oxidase (LOX) is a strongly up-regulated mRNA and protein by the glucose-dependent insulinotropic polypeptide (GIP). LOX is critically required for collagen maturation, and was shown to be dramatically down-regulated in a mouse model of type 1 diabetes, consistent with known low collagen cross-linking and poor bone quality in diabetic bone disease in humans and in mouse models. GIP is a gastric hormone released by the gut upon consumption of nutrients, which then stimulates insulin release from β-cells in the pancreas. GIP is directly anabolic to osteoblasts and to bone, while gut-derived dopamine attenuates effects of GIP on osteoblast anabolic pathways, including LOX expression. GIP-stimulation of LOX expression was shown to be dependent on increased cAMP levels and protein kinase A activity, consistent with the fact that GIP receptors are G protein coupled receptors. Downstream signaling events resulting in increased LOX expression remain, however, unexplored. Here we provide evidence for β-catenin mediation of signaling from GIP to increase LOX expression. Moreover, we have identified a TCF/LEF element in the Lox promoter that is required for GIP-upregulation of LOX. These findings will be of importance in designing potential therapeutic approaches to address deficient LOX production in diabetic bone disease by pointing to the importance of exploring strategies to stimulate β-catenin signaling in osteoblasts under diabetic conditions as potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Philip C. Trackman
- Corresponding author at: Forsyth Institute, Department of Applied Oral Sciences, 250 First Street, Cambridge, MA 02118, United States of America.
| |
Collapse
|
14
|
Monostotic Fibrous Dysplasia of the Mandible in a 9-Year-Old Male Patient Treated with a Conservative Surgical Treatment: A Case Report and 15-Year Follow-Up. Case Rep Dent 2021; 2021:9963478. [PMID: 34007492 PMCID: PMC8110395 DOI: 10.1155/2021/9963478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Fibrous dysplasia is a developmental disorder of the bone that originates from a genetic defect disturbing the osteogenesis leading to the replacement of normal bone with the excess proliferation of fibrous tissue. It can be associated with hyperpigmentation of the skin and endocrine disorders. Fibrous dysplasia can manifest in a monostotic form affecting one bone or in a polyostotic form involving several bones. Approximately 30% of monostotic forms are observed in the maxilla and the mandible. It frequently appears in the posterior region and is usually unilateral. It is found in teenagers and could become static after adulthood. Patients can present with swelling, facial asymmetry, pain, or numbness on the affected side. Treatment modalities vary between conservative surgical treatment, radical surgical approach, and medical treatment based on bisphosphonates. Here, we present a case of a monostotic form of fibrous dysplasia affecting the posterior left region of the mandible in a 9-year-old male complaining of gradually increased swelling on the left mandibular side of one-year duration. The diagnosis of fibrous dysplasia is established based on clinical, radiographical, and histopathological features. Conservative surgery is implemented with surgical shaving and reencountering of the bone excess to reduce the facial asymmetry. Recurrence is reported 10 years later and is also treated with a localized osteoplasty and remodeling of the bone contours. Five years later, the lesion remains stable. In conclusion, a conservative approach should be adopted as the first line of treatment for young patients suffering from monostotic fibrous dysplasia.
Collapse
|
15
|
Tucker-Bartley A, Lemme J, Gomez-Morad A, Shah N, Veliu M, Birklein F, Storz C, Rutkove S, Kronn D, Boyce AM, Kraft E, Upadhyay J. Pain Phenotypes in Rare Musculoskeletal and Neuromuscular Diseases. Neurosci Biobehav Rev 2021; 124:267-290. [PMID: 33581222 PMCID: PMC9521731 DOI: 10.1016/j.neubiorev.2021.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
For patients diagnosed with a rare musculoskeletal or neuromuscular disease, pain may transition from acute to chronic; the latter yielding additional challenges for both patients and care providers. We assessed the present understanding of pain across a set of ten rare, noninfectious, noncancerous disorders; Osteogenesis Imperfecta, Ehlers-Danlos Syndrome, Achondroplasia, Fibrodysplasia Ossificans Progressiva, Fibrous Dysplasia/McCune-Albright Syndrome, Complex Regional Pain Syndrome, Duchenne Muscular Dystrophy, Infantile- and Late-Onset Pompe disease, Charcot-Marie-Tooth Disease, and Amyotrophic Lateral Sclerosis. Through the integration of natural history, cross-sectional, retrospective, clinical trials, & case studies we described pathologic and genetic factors, pain sources, phenotypes, and lastly, existing therapeutic approaches. We highlight that while rare diseases possess distinct core pathologic features, there are a number of shared pain phenotypes and mechanisms that may be prospectively examined and therapeutically targeted in a parallel manner. Finally, we describe clinical and research approaches that may facilitate more accurate diagnosis, monitoring, and treatment of pain as well as elucidation of the evolving nature of pain phenotypes in rare musculoskeletal or neuromuscular illnesses.
Collapse
Affiliation(s)
- Anthony Tucker-Bartley
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jordan Lemme
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea Gomez-Morad
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nehal Shah
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Miranda Veliu
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, 55131, Germany
| | - Claudia Storz
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital LMU Munich, Munich, Bavaria, 80539, Germany
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - David Kronn
- Department of Pathology and Pediatrics, New York Medical College, Valhalla, NY, 10595, USA; Medical Genetics, Inherited Metabolic & Lysosomal Storage Disorders Center, Boston Children's Health Physicians, Westchester, NY, 10532, USA
| | - Alison M Boyce
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eduard Kraft
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital LMU Munich, Munich, Bavaria, 80539, Germany; Interdisciplinary Pain Unit, University Hospital LMU Munich, Munich, 80539, Germany
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
16
|
Brewer N, Fong JT, Zhang D, Ramaswamy G, Shore EM. Gnas Inactivation Alters Subcutaneous Tissues in Progression to Heterotopic Ossification. Front Genet 2021; 12:633206. [PMID: 33574833 PMCID: PMC7870717 DOI: 10.3389/fgene.2021.633206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Heterotopic ossification (HO), the formation of bone outside of the skeleton, occurs in response to severe trauma and in rare genetic diseases such as progressive osseous heteroplasia (POH). In POH, which is caused by inactivation of GNAS, a gene that encodes the alpha stimulatory subunit of G proteins (Gsα), HO typically initiates within subcutaneous soft tissues before progressing to deeper connective tissues. To mimic POH, we used conditional Gnas-null mice which form HO in subcutaneous tissues upon Gnas inactivation. In response to Gnas inactivation, we determined that prior to detection of heterotopic bone, dermal adipose tissue changed dramatically, with progressively decreased adipose tissue volume and increased density of extracellular matrix over time. Upon depletion of the adipose tissue, heterotopic bone progressively formed in those locations. To investigate the potential relevance of the tissue microenvironment for HO formation, we implanted Gnas-null or control mesenchymal progenitor cells into Gnas-null or control host subcutaneous tissues. We found that mutant cells in a Gnas-null tissue environment induced a robust HO response while little/no HO was detected in control hosts. Additionally, a Gnas-null tissue environment appeared to support the recruitment of control cells to heterotopic bone, although control cell implants were associated with less HO formation compared to mutant cells. Our data support that Gnas inactivation alters the tissue microenvironment to influence mutant and wild-type progenitor cells to contribute to HO formation.
Collapse
Affiliation(s)
- Niambi Brewer
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John T Fong
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Deyu Zhang
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Girish Ramaswamy
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Wang L, Han L, Xue P, Hu X, Wong SW, Deng M, Tseng HC, Huang BW, Ko CC. Dopamine suppresses osteoclast differentiation via cAMP/PKA/CREB pathway. Cell Signal 2020; 78:109847. [PMID: 33242564 DOI: 10.1016/j.cellsig.2020.109847] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023]
Abstract
How the nervous system regulates bone remodeling is an exciting area of emerging research in bone biology. Accumulating evidence suggest that neurotransmitter-mediated inputs from neurons may act directly on osteoclasts. Dopamine is a neurotransmitter that can be released by hypothalamic neurons to regulate bone metabolism through the hypothalamic-pituitary-gonadal axis. Dopamine is also present in sympathetic nerves that penetrate skeletal structures throughout the body. It has been shown that dopamine suppresses osteoclast differentiation via a D2-like receptors (D2R)-dependent manner, but the intracellular secondary signaling pathway has not been elucidated. In this study, we found that cAMP-response element binding protein (CREB) activity responds to dopamine treatment during osteoclastogenesis. Considering the critical role of CREB in osteoclastogenesis, we hypothesize that CREB may be a critical target in dopamine's regulation of osteoclast differentiation. We confirmed that D2R is also present in RAW cells and activated by dopamine. Binding of dopamine to D2R inhibits the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway which ultimately decreases CREB phosphorylation during osteoclastogenesis. This was also associated with diminished expression of osteoclast markers that are downstream of CREB. Pharmacological activation of adenylate cyclase (to increase cAMP production) and PKA reverses the effect of dopamine on CREB activity and osteoclastogenesis. Therefore, we have identified D2R/cAMP/PKA/CREB as a candidate pathway that mediates dopamine's inhibition of osteoclast differentiation. These findings will contribute to our understanding of how the nervous and skeletal systems interact to regulate bone remodeling. This will enable future work toward elucidating the role of the nervous system in bone development, repair, aging, and degenerative disease.
Collapse
Affiliation(s)
- Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Lichi Han
- Department of Oral Medicine, Medical College, Dalian University, Dalian, China
| | - Peng Xue
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Xiangxiang Hu
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Sing-Wai Wong
- Division of Comprehensive Oral Health, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Meng Deng
- Division of Craniofacial and Surgical Care, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| | - Bo-Wen Huang
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States.
| |
Collapse
|
18
|
Abstract
Fibrous dysplasia is a benign intraosseous tumor, which can occur as a monostotic or polyostotic disease. As a combination of dermatological and endocrinological features it is known as McCune-Albright syndrome, in conjunction with intramuscular myxoma as Mazabraud's syndrome. Fibrous dysplasia originates from a genetic defect, a postzygotic mutation of the GNAS gene, leading to incorrect regulation of the osteogenesis of the affected area of the bone. The weakening of the bone causes a variety of symptoms ranging from isolated local pain, acute fractures up to severe deformation of the bones. In the latter case the patients may lose the capability of walking. The orthopedic treatment provides suitable methods to set and stabilize fractures, to strengthen weakened bones and to straighten out and stabilize deformed long bones. This can help many patients return to a high level of pain-free mobility and even allow the most badly affected patients to lead a better life with a restricted mobility.
Collapse
Affiliation(s)
- Thomas Wirth
- Klinik für Orthopädie, Klinikum Stuttgart, Olgahospital, Kriegsbergstr. 62, 70176, Stuttgart, Deutschland.
| |
Collapse
|
19
|
Qiu C, Yu F, Su K, Zhao Q, Zhang L, Xu C, Hu W, Wang Z, Zhao L, Tian Q, Wang Y, Deng H, Shen H. Multi-omics Data Integration for Identifying Osteoporosis Biomarkers and Their Biological Interaction and Causal Mechanisms. iScience 2020; 23:100847. [PMID: 32058959 PMCID: PMC6997862 DOI: 10.1016/j.isci.2020.100847] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is characterized by low bone mineral density (BMD). The advancement of high-throughput technologies and integrative approaches provided an opportunity for deciphering the mechanisms underlying osteoporosis. Here, we generated genomic, transcriptomic, methylomic, and metabolomic datasets from 119 subjects with high (n = 61) and low (n = 58) BMDs. By adopting sparse multiple discriminative canonical correlation analysis, we identified an optimal multi-omics biomarker panel with 74 differentially expressed genes (DEGs), 75 differentially methylated CpG sites (DMCs), and 23 differential metabolic products (DMPs). By linking genetic data, we identified 199 targeted BMD-associated expression/methylation/metabolite quantitative trait loci (eQTLs/meQTLs/metaQTLs). The reconstructed networks/pathways showed extensive biomarker interactions, and a substantial proportion of these biomarkers were enriched in RANK/RANKL, MAPK/TGF-β, and WNT/β-catenin pathways and G-protein-coupled receptor, GTP-binding/GTPase, telomere/mitochondrial activities that are essential for bone metabolism. Five biomarkers (FADS2, ADRA2A, FMN1, RABL2A, SPRY1) revealed causal effects on BMD variation. Our study provided an innovative framework and insights into the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Chuan Qiu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Fangtang Yu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Kuanjui Su
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis 38163, TN, USA
| | - Lan Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, OK, USA
| | - Wenxing Hu
- Department of Biomedical Engineering, Tulane University, New Orleans 70118, LA, USA
| | - Zun Wang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA; Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Lanjuan Zhao
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Yuping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans 70118, LA, USA
| | - Hongwen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA; School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA.
| |
Collapse
|
20
|
Ostertag H, Glombitza S. [The activating GNAS mutation : A survey of fibrous dysplasia, its associated syndromes, and other skeletal and extraskeletal lesions]. DER PATHOLOGE 2019; 39:146-153. [PMID: 29488004 DOI: 10.1007/s00292-018-0417-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fibrous dysplasia of bone is a connatal but not hereditary disease with monostotic or polyostotic manifestations and may be associated either with the extraskeletal disease McCune-Albright syndrome or with myxoma of the skeletal muscle, termed Mazabraud syndrome.The confirmation of recurrent chromosomal aberrations may lead to the conclusion that fibrous dysplasia is a neoplasia rather than a dysplastic skeletal disease.The primary cause of all forms of the described diseases is the activating GNAS mutation, which is detectable in almost all lesions. Research into the impact of this mutation has increased the understanding of these up to now solely descriptively defined diseases and also allowed easier discrimination of various fibro-osseous skeletal lesions. Current insights suggest that this mutation may also play a pivotal role in other extraskeletal neoplasias.
Collapse
Affiliation(s)
- H Ostertag
- Pathologisches Institut, Klinikum Region Hannover, Haltenhoffstraße 41, 30167, Hannover, Deutschland.
| | - S Glombitza
- Pathologisches Institut, Klinikum Region Hannover, Haltenhoffstraße 41, 30167, Hannover, Deutschland
| |
Collapse
|
21
|
Abstract
Skeletal development is exquisitely controlled both spatially and temporally by cell signaling networks. Gαs is the stimulatory α-subunit in a heterotrimeric G protein complex transducing the signaling of G-protein-coupled receptors (GPCRs), responsible for controlling both skeletal development and homeostasis. Gαs, encoded by the GNAS gene in humans, plays critical roles in skeletal development and homeostasis by regulating commitment, differentiation and maturation of skeletal cells. Gαs-mediated signaling interacts with the Wnt and Hedgehog signaling pathways, both crucial regulators of skeletal development, remodeling and injury repair. Genetic mutations that disrupt Gαs functions cause human disorders with severe skeletal defects, such as fibrous dysplasia of bone and heterotopic bone formation. This chapter focuses on the crucial roles of Gαs signaling during skeletal development and homeostasis, and the pathological mechanisms underlying skeletal diseases caused by GNAS mutations.
Collapse
Affiliation(s)
- Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States.
| |
Collapse
|
22
|
Xiao T, Fu Y, Zhu W, Xu R, Xu L, Zhang P, Du Y, Cheng J, Jiang H. HDAC8, A Potential Therapeutic Target, Regulates Proliferation and Differentiation of Bone Marrow Stromal Cells in Fibrous Dysplasia. Stem Cells Transl Med 2018; 8:148-161. [PMID: 30426726 PMCID: PMC6344909 DOI: 10.1002/sctm.18-0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Fibrous dysplasia (FD) is a disease of postnatal skeletal stem cells caused by activating mutations of guanine nucleotide-binding protein alpha-stimulating activity polypeptide (GNAS). FD is characterized by high proliferation and osteogenesis disorder of bone marrow stromal cells (BMSCs), resulting in bone pain, deformities, and fractures. The cAMP-CREB pathway, which is activated by GNAS mutations, is known to be closely associated with the occurrence of FD. However, so far there is no available targeted therapeutic strategy for FD, as a critical issue that remains largely unknown is how this pathway is involved in FD. Our previous study revealed that histone deacetylase 8 (HDAC8) inhibited the osteogenic differentiation of BMSCs via epigenetic regulation. Here, compared with normal BMSCs, FD BMSCs exhibited significantly high proliferation and weak osteogenic capacity in response to HDAC8 upregulation and tumor protein 53 (TP53) downregulation. Moreover, inhibition of cAMP reduced HDAC8 expression, increased TP53 expression and resulted in the improvement of FD phenotype. Importantly, HDAC8 inhibition prevented cAMP-induced cell phenotype and promoted osteogenesis in nude mice that were implanted with FD BMSCs. Mechanistically, HDAC8 was identified as a transcriptional target gene of CREB1 and its transcription was directly activated by CREB1 in FD BMSCs. In summary, our study reveals that HDAC8 associates with FD phenotype and demonstrates the mechanisms regulated by cAMP-CREB1-HDAC8 pathway. These results provide insights into the molecular regulation of FD pathogenesis, and offer novel clues that small molecule inhibitors targeting HDAC8 are promising clinical treatment for FD. Stem Cells Translational Medicine 2019;8:148&14.
Collapse
Affiliation(s)
- Tao Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Weiwen Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ling Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ping Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Ramaswamy G, Fong J, Brewer N, Kim H, Zhang D, Choi Y, Kaplan FS, Shore EM. Ablation of Gsα signaling in osteoclast progenitor cells adversely affects skeletal bone maintenance. Bone 2018; 109:86-90. [PMID: 29183785 PMCID: PMC5866199 DOI: 10.1016/j.bone.2017.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 01/18/2023]
Abstract
Gsα, the alpha stimulatory subunit of heterotrimeric G proteins that activates downstream signaling through the adenylyl cyclase and cAMP/PKA pathway, plays an important role in bone development and remodeling. The role of Gsα in mesenchymal stem cell (MSC) differentiation to osteoblasts has been demonstrated in several mouse models of Gsα inactivation. Previously, using mice with heterozygous germline deletion of Gsα (Gnas+/p-), we identified a novel additional role for Gsα in bone remodeling, and showed the importance of Gnas in maintaining bone quality by regulating osteoclast differentiation and function. In this study, we show that postnatal deletion of Gsα (CreERT2;Gnasfl/fl) leads to reduction in trabecular bone quality parameters and increased trabecular osteoclast numbers. Furthermore, mice with deletion of Gsα specifically in cells of the macrophage/osteoclast lineage (LysM-Cre;Gnasfl/fl) showed reduced trabecular bone quality and increased trabecular osteoclasts, but to a reduced extent compared to the CreERT2;Gnasfl/fl global knockout. This demonstrates that while Gsα has a cell autonomous role in osteclasts in regulating bone quality, Gsα expression in other cell types additionally contribute. In both of these mouse models, cortical bone was more subtly affected than trabecular bone. Our results support that Gsα is required postnatally to maintain trabecular bone quality and that Gsα function to maintain trabecular bone is regulated in part through a specific activity in osteoclasts.
Collapse
Affiliation(s)
- Girish Ramaswamy
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Fong
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Niambi Brewer
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|