1
|
Quintero‐Galvis JF, Saenz‐Agudelo P, D'Elía G, Nespolo RF. Local adaptation of Dromiciops marsupials (Microbiotheriidae) from southern South America: Implications for species management facing climate change. Ecol Evol 2024; 14:e70355. [PMID: 39371267 PMCID: PMC11450259 DOI: 10.1002/ece3.70355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The two species of the microbiotheriid marsupial genus Dromiciops (Dromiciops bozinovici: "Panchos's monito del monte" and Dromiciops gliroides: "monito del monte") exhibit a marked latitudinal genetic differentiation. Nevertheless, it is unclear whether this differentiation results from neutral processes or can be explained, to some extent, by local adaptation to different environmental conditions. Here, we used an SNP panel gathered by Rad-seq and searched for footprints of local adaptation (putative loci under selection) by exploring genetic associations with environmental variables in the two species of Dromiciops in Chilean and Argentinean populations. We applied three methods for detecting outlier SNPs and two genotype-environment associations approaches to quantify associations between allelic frequencies and environmental variables. Both species display strong genetic structure. D. bozinovici exhibited three distinct genetic groups, marking the first report of such structuring in this species using SNPs. In contrast, D. gliroides displayed four genetic clusters, consistent with previous studies. Both species exhibited an association of their genetic structure with environmental variables. D. bozinovici exhibited significant associations of allelic frequencies with elevation, precipitation during the warmest periods, and seasonality in the thermal regime. For D. gliroides, genetic variation appeared to be associated with more variables than D. bozinovici, including precipitation and temperature-related variables, isothermality, and elevation. All the outlier SNPs were mapped to the D. gliroides reference genome to explore if they fell within functionally known genes. These results represent a necessary first step toward identifying the genome regions that harbor genes associated with climate adaptations in Dromiciops. Notably, we identified genes involved in various functions, including carbohydrate synthesis (ALG8), muscle and neuronal regulation (MEF2D), and stress responses (PTGES3). Ultimately, this study contributes valuable insights that can inform targeted conservation strategies aimed at preserving the genetic diversity of Dromiciops in the face of environmental challenges.
Collapse
Affiliation(s)
- Julian F. Quintero‐Galvis
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)ValdiviaChile
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME)Las CrucesChile
| | - Guillermo D'Elía
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Colección de MamíferosUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)ValdiviaChile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
2
|
Palacio FX, Ordano M. Urbanization shapes phenotypic selection of fruit traits in a seed-dispersal mutualism. Evolution 2023; 77:1769-1779. [PMID: 37128948 DOI: 10.1093/evolut/qpad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Urbanization is currently one of the trademarks of the Anthropocene, accelerating evolutionary processes and reshaping ecological interactions over short time scales. Species interactions represent a fundamental pillar of diversity that is being altered globally by anthropogenic change. Urban environments, despite their potential impact, have seldom been studied in relation to how they shape natural selection of phenotypic traits in multispecies interactions. Using a seed-dispersal mutualism as a study system, we estimated the regime and magnitude of phenotypic selection exerted by frugivores on fruit and seed traits across three plant populations with different degrees of urbanization (urban, semiurban, and rural). Urbanization weakened phenotypic selection via an indirect positive impact on fruit production and fitness and, to a lesser extent, through a direct positive effect on species visitation rates. Our results show that urban ecosystems may affect multifarious selection of traits in the short term and highlight the role of humans in shaping eco-evolutionary dynamics of multispecies interactions.
Collapse
Affiliation(s)
- Facundo X Palacio
- Sección Ornitología, División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Mariano Ordano
- Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
- Instituto de Ecología Regional, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas, Yerba Buena, Argentina
| |
Collapse
|
3
|
Fontúrbel FE, Franco LM, Bozinovic F, Quintero‐Galvis JF, Mejías C, Amico GC, Vazquez MS, Sabat P, Sánchez‐Hernández JC, Watson DM, Saenz‐Agudelo P, Nespolo RF. The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests. Ecol Evol 2022; 12:e8645. [PMID: 35261741 PMCID: PMC8888251 DOI: 10.1002/ece3.8645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.
Collapse
Affiliation(s)
- Francisco E. Fontúrbel
- Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
| | - Lida M. Franco
- Facultad de Ciencias Naturales y MatemáticasUniversidad de IbaguéIbaguéColombia
| | - Francisco Bozinovic
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | | | - Carlos Mejías
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | | | | | - Pablo Sabat
- Departamento de Ciencias EcológicasFacultad de CienciasUniversidad de ChileSantiagoChile
| | | | - David M. Watson
- School of Agricultural, Environmental and Veterinary SciencesCharles Sturt UniversityAlburyNSWAustralia
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
4
|
Fontúrbel FE, Rodríguez-Gómez GB, Orellana JI, Cortés-Miranda J, Rojas-Hernández N, Vega-Retter C. Geographical context outweighs habitat disturbance effects in explaining mistletoe population genetic differentiation at a regional scale. Mol Ecol 2022; 31:1389-1402. [PMID: 34995392 DOI: 10.1111/mec.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
Genetic differentiation depends on ecological and evolutionary processes that operate at different spatial and temporal scales. While the geographical context is likely to determine large-scale genetic variation patterns, habitat disturbance events will probably influence small-scale genetic diversity and gene flow patterns. Therefore, the genetic diversity patterns that we observe today result from the combination of both processes, but they are rarely assessed simultaneously. We determined the population structure and genetic diversity of a hemiparasitic mistletoe (Tristerix corymbosus) from the temperate rainforests of southern Chile to determine the effects of geographical context and habitat disturbance at a regional scale and if it is affected by the abundance and occurrence of its seed disperser mutualist (the arboreal marsupial Dromiciops gliroides). We genotyped 359 individuals from 12 populations using single nucleotide polymorphisms, across three different geographical contexts and four disturbance conditions. We also used camera traps to estimate the abundance and occurrence of the seed disperser. Our results suggest that genetic differences among populations are related more to geographical context than to habitat disturbance. However, as disturbance increased, D. gliroides abundance and occurrence decreased, and mistletoe inbreeding index (FIS ) increased. We also found highly uneven gene flow among study sites. Despite the high levels of disturbance that these temperate rainforests are facing, our results suggest that mistletoe genetic differentiation at a regional scale was more influenced by historical events. However, habitat disturbance can indirectly affect mistletoe population genetic differentiation via the seed dispersal process, which may increase levels of inbreeding.
Collapse
Affiliation(s)
- Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Nucleus of Patagonian Limit of Life (LiLi)
| | - Gloria B Rodríguez-Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José I Orellana
- Laboratorio de Vida Silvestre, Universidad de Los Lagos, Osorno, Chile
| | - Jorge Cortés-Miranda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Noemí Rojas-Hernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Caren Vega-Retter
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Intermediate levels of wood extraction may facilitate coexistence of an endemic arboreal marsupial and Indigenous communities. ORYX 2021. [DOI: 10.1017/s003060532000109x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractLand-use change is a major driver of biodiversity loss. Large-scale disturbances such as habitat loss, fragmentation and degradation are known to have negative consequences for native biota, but the effects of small-scale disturbances such as selective logging are less well known. We compared three sites with different regimes of selective logging performed by Indigenous communities in the South American temperate rainforest, to assess effects on the density and habitat selection patterns of the Near Threatened endemic arboreal marsupial Dromiciops gliroides. We used structured interviews to identify patterns of wood extraction, which was 0.22–2.55 m3 per ha per year. In the less disturbed site only two tree species were logged, in the intermediately disturbed sites eight species were logged at low intensity, and in the most disturbed site seven species were logged intensively. The site with intermediate disturbance had the highest fleshy-fruited plant diversity and fruit biomass values as a result of the proliferation of shade-intolerant plants. This site also had the highest density of D. gliroides. These findings are consistent with Connell's intermediate disturbance hypothesis, suggesting that coexistence of people with nature is possible if wood extraction volumes are moderate, increasing plant diversity. Indigenous communities have sustainably used natural resources for centuries, but current rates of land-use change are becoming a significant threat to both them and their natural resources.
Collapse
|
6
|
Lara C, Xicohténcatl-Lara L, Ornelas JF. Differential reproductive responses to contrasting host species and localities in Psittacanthus calyculatus (Loranthaceae) mistletoes. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:603-611. [PMID: 33819386 DOI: 10.1111/plb.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Host trees are immediate environments for multi-host mistletoes, so parasitizing different hosts implies exposure to varying environmental conditions between mistletoe generations. Therefore, to maximize reproductive fitness in heterogeneous environments (host species) mistletoes should adjust its reproductive responses in relation to circumstances. Here, we ask how reproductive traits of Psittacanthus calyculatus mistletoes vary on two host tree species (Crataegus mexicana, Prunus serotina) at three different localities. We followed individual mistletoes on each host species and at three localities through the flowering season to quantify traits related to reproductive effort and success, e.g. total number of buds, flowers and fruits produced. In buds about to open, we measured two anthers and quantified the number of pollen grains and their viability. Individual flowers were marked to obtain flower longevity data and were followed until fruit formation. At which time we measured and weighed the fruits and the seeds. Mistletoes from one locality produced more buds, flowers and fruits, and the flowers lasted longer, had larger anthers and produced more pollen as compared to the other two localities. However, mistletoes on Prunus serotina produced fewer floral buds, but their fruits were heaviest, longest and widest and ripened fastest across localities. The probability of fruit formation, percentage of fruits formed, and pollen viability were similar among the mistletoes, regardless of host species or locality. We propose that the observed differences in reproductive effort and success associated with host species or locality are plastic or adaptive in this mistletoe in response to varying conditions.
Collapse
Affiliation(s)
- C Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - L Xicohténcatl-Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - J F Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Veracruz, Mexico
| |
Collapse
|
7
|
Accounting for relatedness and spatial structure to improve plant phenotypic selection in the wild. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Palacio FX, Siepielski AM, Lacoretz MV, Ordano M. Selection on fruit traits is mediated by the interplay between frugivorous birds, fruit flies, parasitoid wasps and seed‐dispersing ants. J Evol Biol 2020; 33:874-886. [DOI: 10.1111/jeb.13656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Facundo X. Palacio
- Fundación Miguel Lillo and Consejo Nacional de Investigaciones Científicas y Técnicas Tucumán Argentina
| | - Adam M. Siepielski
- Department of Biological Sciences University of Arkansas Fayetteville AR USA
| | - Mariela V. Lacoretz
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires Argentina
| | - Mariano Ordano
- Fundación Miguel Lillo and Consejo Nacional de Investigaciones Científicas y Técnicas Tucumán Argentina
| |
Collapse
|
9
|
Armenta-Méndez L, Gallo-Reynoso JP, Wilder BT, Gardea AA, Ortega-Nieblas MM, Barba-Acuña I. The role of wild canids in the seed dispersal of Washingtonia robusta (Arecaceae) in Sonoran Desert oases. REV MEX BIODIVERS 2020. [DOI: 10.22201/ib.20078706e.2020.91.3129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Snell RS, Beckman NG, Fricke E, Loiselle BA, Carvalho CS, Jones LR, Lichti NI, Lustenhouwer N, Schreiber SJ, Strickland C, Sullivan LL, Cavazos BR, Giladi I, Hastings A, Holbrook KM, Jongejans E, Kogan O, Montaño-Centellas F, Rudolph J, Rogers HS, Zwolak R, Schupp EW. Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AOB PLANTS 2019; 11:plz016. [PMID: 31346404 PMCID: PMC6644487 DOI: 10.1093/aobpla/plz016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/20/2019] [Indexed: 05/22/2023]
Abstract
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward.
Collapse
Affiliation(s)
- Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
| | - Evan Fricke
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Bette A Loiselle
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- Center for Latin American Studies, University of Florida, Gainsville, FL, USA
| | | | - Landon R Jones
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | | | - Nicky Lustenhouwer
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA, USA
| | - Christopher Strickland
- Department of Mathematics and Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Lauren L Sullivan
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Brittany R Cavazos
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Itamar Giladi
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | | | - Eelke Jongejans
- Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Javiera Rudolph
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Rafal Zwolak
- Department of Systematic Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Eugene W Schupp
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
11
|
Fontúrbel FE, Bruford MW, Salazar DA, Cortés-Miranda J, Vega-Retter C. The hidden costs of living in a transformed habitat: Ecological and evolutionary consequences in a tripartite mutualistic system with a keystone mistletoe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2740-2748. [PMID: 30463128 DOI: 10.1016/j.scitotenv.2018.10.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 06/09/2023]
Abstract
Land use change is one of the most important anthropogenic drivers of biodiversity loss. Nevertheless, the ecological and evolutionary consequences of habitat transformation remain less understood than those from habitat fragmentation. Transformed habitats are structurally simpler, altering species composition and their ecological interactions, potentially compromising gene flow and genetic diversity. We focused on a tripartite mutualistic system composed of a mistletoe (Tristerix corymbosus), its pollinator (Sephanoides sephaniodes) and its seed disperser (Dromiciops gliroides) to assess changes in their ecological and evolutionary dynamics as a result of habitat transformation. We used eight microsatellite markers to compare genetic diversity, relatedness and gene flow among five mistletoe groups inhabiting native and transformed habitats (abandoned Eucalyptus globulus plantations). We found that these groups were genetically structured, with greater allelic richness and genetic diversity in their native habitat. Also, we found higher relatedness among mistletoe individuals in transformed habitats, which varied as a function of the geographic distance among plants, probably as a result of larger resource availability, which influenced mutualist visitation rates. We did not find differences in the current migration patterns, which suggests that Tristerix corymbosus may be resilient to habitat transformation. Yet, its highly specialized interactions along with changes in its spatial configuration depict a more complex scenario, which probably impose a cost in terms of lower genetic diversity and increased relatedness that might compromise its long-term viability.
Collapse
Affiliation(s)
- Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaíso 2373223, Chile
| | - Michael W Bruford
- School of Biosciences and Sustainable Places Research Institute, Cardiff University, 33 Park Place, Cardiff CF10 3BA, United Kingdom
| | - Daniela A Salazar
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa 7800024, Santiago, Chile
| | - Jorge Cortés-Miranda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa 7800024, Santiago, Chile
| | - Caren Vega-Retter
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa 7800024, Santiago, Chile.
| |
Collapse
|
12
|
Genome re-sequencing reveals the evolutionary history of peach fruit edibility. Nat Commun 2018; 9:5404. [PMID: 30573726 PMCID: PMC6302090 DOI: 10.1038/s41467-018-07744-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022] Open
Abstract
Peach (Prunus persica) is an economically important fruit crop and a well-characterized model for studying Prunus species. Here we explore the evolutionary history of peach using a large-scale SNP data set generated from 58 high-coverage genomes of cultivated peach and closely related relatives, including 44 newly re-sequenced accessions and 14 accessions from a previous study. Our analyses suggest that peach originated about 2.47 Mya in southwest China in glacial refugia generated by the uplift of the Tibetan plateau. Our exploration of genomic selection signatures and demographic history supports the hypothesis that frugivore-mediated selection occurred several million years before the eventual human-mediated domestication of peach. We also identify a large set of SNPs and/or CNVs, and candidate genes associated with fruit texture, taste, size, and skin color, with implications for genomic-selection breeding in peach. Collectively, this study provides valuable information for understanding the evolution and domestication of perennial fruit tree crops. Peach is an economically important fruit crop. Here, the authors carry out a large-scale population genomics analysis of peach, describing its demographic history as well as genes associated with domestication and edibility traits.
Collapse
|