1
|
Abd El-Salam MH, El-Shibiny S, Assem FM, El-Sayyad GS, Hasanien YA, Elfadil D, Soliman TN. Impact of Fermented Milk On Gut Microbiota And Human Health: A Comprehensive Review. Curr Microbiol 2025; 82:107. [PMID: 39888432 DOI: 10.1007/s00284-025-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
The beneficial impact of gut microbiota on human health has encouraged studies on factors modulating it. Among the different factors, diet plays a vital role in this area. Many studies on animals and humans have been concerned with the effects of fermented milk products on gut microbiota and how they relate to health benefits. Yoghurt, kefir, Koumiss, and fermented kinds of milk made using different probiotic strains were tested for their capability to modulate gut microbiota. It is apparent that the microflora present in fermented milk, specifically probiotics, are capable of enduring the gastrointestinal tract's adverse conditions primarily through transit microorganisms. Meanwhile, they can alter the gut microbiota in several ways that benefit human health. The present article gives a comprehensive overview of the modulation of gut microbiota by consumption of fermented milk, particularly those containing probiotics, and their impact on human health.
Collapse
Affiliation(s)
| | | | | | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Yasmeen A Hasanien
- Microbiology Laboratory, Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Dounia Elfadil
- Biology and Chemistry Department, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca, Morocco
| | | |
Collapse
|
2
|
Laghi L, Ortiz MÀ, Rossi G, Román E, Mengucci C, Cantó E, Biagini L, Sánchez E, Mulet M, García-Osuna Á, Urgell E, Kaur N, Poca M, Padrós J, Nadal MJ, Cuyàs B, Alvarado E, Vidal S, Juanes E, Ferrero-Gregori A, Escorsell À, Soriano G. Biomarkers of Frailty in Patients with Advanced Chronic Liver Disease Undergoing a Multifactorial Intervention Consisting of Home Exercise, Branched-Chain Amino Acids, and Probiotics. Biomolecules 2024; 14:1410. [PMID: 39595586 PMCID: PMC11592179 DOI: 10.3390/biom14111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Frailty in cirrhosis or advanced chronic liver disease (ACLD) is a relevant prognostic factor. In the present study, we aimed to analyze potential biomarkers associated with frailty and its improvement in patients with ACLD. We analyzed the serum of outpatients with ACLD who participated in a previous study (Román, Hepatol Commun 2024) in which frailty was assessed using the liver frailty index (LFI), and patients who were frail or prefrail were randomized to a multifactorial intervention (home exercise, branched-chain amino acids, and probiotics) or control for 12 months. We determined a biomarker battery of inflammation, bacterial translocation, and liver damage in blood and urine and blood metabolomics by 1H-NMR. Thirty-seven patients were included. According to the LFI, 32 patients were frail or prefrail, and 5 were robust. At baseline, LFI correlated with LBP, sCD163, mtDNA, FGF-21, urinary NGAL, urinary claudin-3, and the metabolites mannose, ethanol, and isoleucine. During the study, patients in the intervention group showed an improvement in LFI and a decrease in CRP, LBP, sCD163, and ccK18 compared to the control group. Metabolomics showed a decrease in dimethyl sulfone and creatinine and an increase in malonate, ornithine, isoleucine, and valine in the intervention group. We conclude that frailty in patients with ACLD is associated with biomarkers of systemic inflammation, bacterial translocation, and liver damage, and alterations of amino acid and short-chain fatty acid metabolism.
Collapse
Affiliation(s)
- Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| | - Maria Àngels Ortiz
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
| | - Giacomo Rossi
- School of Veterinary Medical Sciences, University of Camerino, 62032 Camerino, Italy; (G.R.); (L.B.)
| | - Eva Román
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
- University Nursing School EUI-Sant Pau, 08025 Barcelona, Spain
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
| | - Carlo Mengucci
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| | - Elisabet Cantó
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
| | - Lucia Biagini
- School of Veterinary Medical Sciences, University of Camerino, 62032 Camerino, Italy; (G.R.); (L.B.)
| | - Elisabet Sánchez
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
| | - Maria Mulet
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
| | - Álvaro García-Osuna
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (Á.G.-O.); (E.U.)
| | - Eulàlia Urgell
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (Á.G.-O.); (E.U.)
| | - Naujot Kaur
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
| | - Maria Poca
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
| | - Josep Padrós
- Department of Physical Medicine and Rehabilitation, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (J.P.); (M.J.N.)
| | - Maria Josep Nadal
- Department of Physical Medicine and Rehabilitation, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (J.P.); (M.J.N.)
| | - Berta Cuyàs
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
| | - Edilmar Alvarado
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
| | - Silvia Vidal
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Juanes
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Andreu Ferrero-Gregori
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (M.À.O.); (E.C.); (E.S.); (M.M.); (S.V.); (A.F.-G.)
| | - Àngels Escorsell
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
- Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - German Soriano
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.); (M.P.); (B.C.); (E.A.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (N.K.); (À.E.)
- Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Zhou SK, Xu JD, Gao XQ, Zhang RJ, Cheng FF, Yao WF, Zhang Y, Geng T, Zhang L. Fructus Jujubae cooperated with water-expelling members in Shizao decoction alleviated intestinal injury and malignant ascites by modulating gut microbiota and metabolic homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155895. [PMID: 39084184 DOI: 10.1016/j.phymed.2024.155895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Shizao decoction (SZD) consisted of Euphorbia kansui (EK), Euphorbia pekinensis (EP), Daphne genkwa (DG), and Fructus Jujubae (FJ) is a classic Chinese herbal medicine formula for treating malignant ascites, which is closely related to the modulation of gut microbiota by our previous study. For water-expelling members (WEM) including EK, EP, and DG may have side effects on the intestine, FJ is employed for detoxification and effectivity enhancement of WEM. However, the underlying mechanism for the compatibility of WEM and FJ is still unknown. PURPOSE To investigate the effect of the compatibility of WEM with FJ in SZD on malignant ascites and elucidate the potential mechanism from the perspective of the modulation of gut microbiota and related metabolic function. METHODS Qualitative and quantitative evaluation of main components was conducted for comprehensive characterization of SZD and WEM. The effect of WEM and SZD was compared on malignant ascites effusion (MAE) rats. The intestinal injury was evaluated by HE staining and oxidative damage. Ascites weight, urine amount, fecal water content, the expression of aquaporins, and cytokines in ascites (IL-6, VEGF, and TNF-α) were measured to estimate the water-expelling activity. The intestinal flora was detected by 16S rDNA sequencing and the content of fecal short-chain fatty acids (SCFAs) was analyzed using gas chromatography-mass spectrometry. Pseudo-germ-free (PGF) and fecal bacteria transplantation animal experiments were subsequently employed to validate this finding. The fecal metabolomics and correlation analysis were finally conducted to explore the related metabolic changes. RESULTS 51 and 33 components were identified in SZD and WEM, respectively. Compared to WEM alone, the compatibility with FJ remarkably reduced intestinal oxidative damage in MAE rats. Ascites was also relieved by downregulating the expression of AQP3 in the colon and decreasing the levels of IL-6, TNF-α and VEGF in ascites. The diversity of gut microbiota was reversed with an increase in Lactobacillus and Clostridia_UCG-014 while a decrease in Colidextribacter. Under the PGF condition, compatibility of WEM with FJ failed to reduce intestinal injury and alleviate MA significantly, but this effect was further enhanced after FMT. 23 potential fecal metabolites were finally identified. Correlation analysis further showed that Lactobacillus and Clostridia_UCG-014 were positively correlated with SCFAs and l-tryptophan. Colidextribacter was negatively correlated with thymidine but positively correlated with ursodeoxycholic acid and deoxycholic acid. CONCLUSION FJ cooperated with WEM reduced intestinal injury and alleviated malignant ascites by modulating gut microbiota, short-chain fatty and tryptophan metabolism. These findings provide a scientific basis for the clinical application of FJ from SZD and the safe usage of SZD.
Collapse
Affiliation(s)
- Shi-Kang Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing 210023, PR China; Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical Sect, Changzhou Hospital of Chinese Medicinal Affiliated to Nanjing University of Chinese Medicine, No. 25 Heping North Road, Tianning District, Changzhou, 213003, PR China
| | - Jin-Di Xu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing 210023, PR China
| | - Xiao-Qin Gao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing 210023, PR China
| | - Ren-Jie Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing 210023, PR China
| | - Fang-Fang Cheng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing 210023, PR China
| | - Wei-Feng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing 210023, PR China; Taizhou Key Laboratory for Development of Traditional Chinese Medicine Health Products, Taizhou Engineering Research Center for Quality and Industrialization of Traditional Chinese Medicine, Nanjing University of Chinese Medicine Hanlin College, No.6, Kuangshi Road, Pharmaceutical High-tech District, Taizhou 225300, PR China
| | - Yi Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing 210023, PR China.
| | - Ting Geng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing 210023, PR China; Taizhou Key Laboratory for Development of Traditional Chinese Medicine Health Products, Taizhou Engineering Research Center for Quality and Industrialization of Traditional Chinese Medicine, Nanjing University of Chinese Medicine Hanlin College, No.6, Kuangshi Road, Pharmaceutical High-tech District, Taizhou 225300, PR China.
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Qixia District, Nanjing 210023, PR China; Taizhou Key Laboratory for Development of Traditional Chinese Medicine Health Products, Taizhou Engineering Research Center for Quality and Industrialization of Traditional Chinese Medicine, Nanjing University of Chinese Medicine Hanlin College, No.6, Kuangshi Road, Pharmaceutical High-tech District, Taizhou 225300, PR China.
| |
Collapse
|
4
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
5
|
Kaur H, Kaur G, Ali SA. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. FERMENTATION-BASEL 2022; 8:425. [DOI: 10.3390/fermentation8090425] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Numerous studies have shown a link between the consumption of fermented dairy foods and improved health outcomes. Since the early 2000s, especially probiotic-based fermented functional foods, have had a revival in popularity, mostly as a consequence of claims made about their health benefits. Among them, fermented dairy foods have been associated with obesity prevention and in other conditions such as chronic diarrhea, hypersensitivity, irritable bowel syndrome, Helicobacter pylori infection, lactose intolerance, and gastroenteritis which all are intimately linked with an unhealthy way of life. A malfunctioning inflammatory response may affect the intestinal epithelial barrier’s ability to function by interfering with the normal metabolic processes. In this regard, several studies have shown that fermented dairy probiotics products improve human health by stimulating the growth of good bacteria in the gut at the same time increasing the production of metabolic byproducts. The fermented functional food matrix around probiotic bacteria plays an important role in the survival of these strains by buffering and protecting them from intestinal conditions such as low pH, bile acids, and other harsh conditions. On average, cultured dairy products included higher concentrations of lactic acid bacteria, with some products having as much as 109/mL or g. The focus of this review is on fermented dairy foods and associated probiotic products and their mechanisms of action, including their impact on microbiota and regulation of the immune system. First, we discussed whey and whey-based fermented products, as well as the organisms associated with them. Followed by the role of probiotics, fermented-product-mediated modulation of dendritic cells, natural killer cells, neutrophils, cytokines, immunoglobulins, and reinforcement of gut barrier functions through tight junction. In turn, providing the ample evidence that supports their benefits for gastrointestinal health and related disorders.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, Indian Council of Agricultural Research-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Huang J, Yang Z, Li Y, Chai X, Liang Y, Lin B, Ye Z, Zhang S, Che Z, Zhang H, Zhang X, Zhang Z, Chen T, Yang W, Zeng J. Lactobacillus paracasei R3 protects against dextran sulfate sodium (DSS)-induced colitis in mice via regulating Th17/Treg cell balance. J Transl Med 2021; 19:356. [PMID: 34407839 PMCID: PMC8371868 DOI: 10.1186/s12967-021-02943-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis (UC) and Crohn's Disease, are most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. Strategies that target the microbiota have emerged as potential therapies and, of these, probiotics have gained the greatest attention. Herein, we isolated a strain of Lactobacillus paracasei R3 (L.p R3) with strong biofilm formation ability from infant feces. Interestingly, we also found L.p R3 strain can ameliorate the general symptoms of murine colitis, alleviate inflammatory cell infiltration and inhibit Th17 while promote Treg function in murine dextran sulfate sodium (DSS)-induced colitis. Overall, this study suggested that L.p R3 strain significantly improves the symptoms and the pathological damage of mice with colitis and influences the immune function by regulating Th17/Treg cell balance in DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Juan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Provincial Experimental Teaching Centre, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Ziyan Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Department of Clinical Laboratories, Xi'an Daxing Hospital, Xi'an 710000, China
| | - Yanyun Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Xingxing Chai
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated To Medical College of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, 523905, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Shaobing Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Hailiang Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Zhao Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535, Guangdong, China
| | - Tao Chen
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535, Guangdong, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Department of Clinical Microbiology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
7
|
Huang J, Yang Z, Li Y, Chai X, Liang Y, Lin B, Ye Z, Zhang S, Che Z, Zhang H, Zhang X, Zhang Z, Chen T, Yang W, Zeng J. Lactobacillus paracasei R3 protects against dextran sulfate sodium (DSS)-induced colitis in mice via regulating Th17/Treg cell balance. J Transl Med 2021; 19:356. [PMID: 34407839 PMCID: PMC8371868 DOI: 10.1186/s12967-021-02943-x 10.1186/s12967-021-02943-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis (UC) and Crohn's Disease, are most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. Strategies that target the microbiota have emerged as potential therapies and, of these, probiotics have gained the greatest attention. Herein, we isolated a strain of Lactobacillus paracasei R3 (L.p R3) with strong biofilm formation ability from infant feces. Interestingly, we also found L.p R3 strain can ameliorate the general symptoms of murine colitis, alleviate inflammatory cell infiltration and inhibit Th17 while promote Treg function in murine dextran sulfate sodium (DSS)-induced colitis. Overall, this study suggested that L.p R3 strain significantly improves the symptoms and the pathological damage of mice with colitis and influences the immune function by regulating Th17/Treg cell balance in DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Juan Huang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China ,grid.410560.60000 0004 1760 3078Provincial Experimental Teaching Centre, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808 China
| | - Ziyan Yang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China ,Department of Clinical Laboratories, Xi’an Daxing Hospital, Xi’an 710000, China
| | - Yanyun Li
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Xingxing Chai
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Yanfang Liang
- grid.258164.c0000 0004 1790 3548Department of Pathology, Dongguan Hospital Affiliated To Medical College of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, 523905 China
| | - Bihua Lin
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Ziyu Ye
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Shaobing Zhang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Zhengping Che
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Hailiang Zhang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Xueying Zhang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Zhao Zhang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China ,Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535 Guangdong China
| | - Tao Chen
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China ,Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535 Guangdong China
| | - Weiqing Yang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China ,grid.410560.60000 0004 1760 3078Department of Clinical Microbiology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808 China
| | - Jincheng Zeng
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| |
Collapse
|
8
|
Huang J, Yang Z, Li Y, Chai X, Liang Y, Lin B, Ye Z, Zhang S, Che Z, Zhang H, Zhang X, Zhang Z, Chen T, Yang W, Zeng J. Lactobacillus paracasei R3 protects against dextran sulfate sodium (DSS)-induced colitis in mice via regulating Th17/Treg cell balance. J Transl Med 2021; 19:356. [PMID: 34407839 PMCID: PMC8371868 DOI: 10.1186/s12967-021-02943-x+10.1186/s12967-021-02943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/13/2021] [Indexed: 01/20/2024] Open
Abstract
Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis (UC) and Crohn's Disease, are most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. Strategies that target the microbiota have emerged as potential therapies and, of these, probiotics have gained the greatest attention. Herein, we isolated a strain of Lactobacillus paracasei R3 (L.p R3) with strong biofilm formation ability from infant feces. Interestingly, we also found L.p R3 strain can ameliorate the general symptoms of murine colitis, alleviate inflammatory cell infiltration and inhibit Th17 while promote Treg function in murine dextran sulfate sodium (DSS)-induced colitis. Overall, this study suggested that L.p R3 strain significantly improves the symptoms and the pathological damage of mice with colitis and influences the immune function by regulating Th17/Treg cell balance in DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Juan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
- Provincial Experimental Teaching Centre, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808 China
| | - Ziyan Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
- Department of Clinical Laboratories, Xi’an Daxing Hospital, Xi’an 710000, China
| | - Yanyun Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Xingxing Chai
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated To Medical College of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, 523905 China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Shaobing Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Hailiang Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Zhao Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535 Guangdong China
| | - Tao Chen
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535 Guangdong China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
- Department of Clinical Microbiology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808 China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| |
Collapse
|
9
|
Li H, Shi J, Zhao L, Guan J, Liu F, Huo G, Li B. Lactobacillus plantarum KLDS1.0344 and Lactobacillus acidophilus KLDS1.0901 Mixture Prevents Chronic Alcoholic Liver Injury in Mice by Protecting the Intestinal Barrier and Regulating Gut Microbiota and Liver-Related Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:183-197. [PMID: 33353302 DOI: 10.1021/acs.jafc.0c06346] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Health and wellbeing are significantly impaired by alcoholic liver disease (ALD), and although some lactic acid bacteria strains have been shown previously to relieve ALD symptoms, the mechanisms behind these effects are still unclear. Here, the Lieber-DeCarli liquid diet containing alcohol was fed to C57BL/6J mice for 6 weeks to build a chronic alcoholic liver lesion model to study the protective effects and possible mechanisms of Lactobacillus mixture (Lactobacillus plantarum KLDS1.0344 and Lactobacillus acidophilus KLDS1.0901). The results showed that Lactobacillus mixture improved intestinal epithelial permeability and reduced the serum lipopolysaccharide (LPS) levels. Furthermore, Lactobacillus mixture inhibited liver lipid accumulation, oxidative stress, and inflammation by regulating AMPK, Nrf-2, and TLR4/NF-κB pathways. Importantly, the Lactobacillus mixture modulated the gut microbiota, resulting in increased short-chain fatty acid (SCFA) producers and decreased Gram-negative bacteria. Taken together, these findings indicated that the Lactobacillus mixture could positively regulate the gut microbiota, causing increased levels of SCFAs, which inhibited alcohol-induced liver lipid accumulation and oxidative stress through the gut-liver axis. Moreover, following administration of the Lactobacillus mixture, the improvement of intestinal epithelial permeability and the reduction of Gram-negative bacteria led to the decrease of LPS entering the portal vein, thereby inhibiting alcohol-induced liver inflammation.
Collapse
Affiliation(s)
- Huizhen Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jialu Shi
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Li Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jiaqi Guan
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Fei Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Guicheng Huo
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| |
Collapse
|
10
|
Bioactive Compounds Produced by the Accompanying Microflora in Bulgarian Yoghurt. Processes (Basel) 2021. [DOI: 10.3390/pr9010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bulgarian yoghurt is associated with health benefits and longevity of consumers. The specific microflora producing bioactive metabolites is responsible for this effect. The present study examines the biodiversity in four homemade yoghurts from regions containing endemic microflora. Metagenome sequencing indicated Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus were predominant in all samples. In addition, yoghurts contained accompanying lactic acid bacteria (LAB) including Lacticaseibacillus paracasei, Lb. helveticus, Limosilactobacillus fermentum, Lb. rhamnosus, Lactococcus lactis, Pediococcus acidilactici, Leuconostoc mesenteroides, and Leuc. pseudomesenteroides. A negligible amount of pollutant strains was found. Twenty-four LAB strains were isolated from the yoghurts and identified. Lb. delbrueckii subsp. bulgaricus strains were genotyped by randomly amplified polymorphic DNA–PCR (RAPD), multi-locus sequence typing (MLST), and pulse field gel electrophoresis (PFGE), which demonstrated their uniqueness and non-commercial origin. To estimate the bioactive metabolites produced by the accompanying microflora, yoghurts fermented by single LAB strains were analyzed using liquid chromatography and mass spectrometry (LC-MS). The fermented samples contained large amounts of free essential amino acids (arginine, citrulline, tryptophan, lysine, and histidine), the neuroprotector indole-3-propionic acid (IPA), and significant quantities of the cyclic antimicrobial peptides cyclo(phenylalanyl-prolyl) and cyclo(leucyloprolyl). The disclosure of these special qualities draws attention to the accompanying microflora as a source of potential probiotic strains that can fortify the yoghurts’ content with bioactive compounds.
Collapse
|
11
|
Chen D, Le TH, Shahidipour H, Read SA, Ahlenstiel G. The Role of Gut-Derived Microbial Antigens on Liver Fibrosis Initiation and Progression. Cells 2019; 8:E1324. [PMID: 31717860 PMCID: PMC6912265 DOI: 10.3390/cells8111324] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal dysbiosis has recently become known as an important driver of gastrointestinal and liver disease. It remains poorly understood, however, how gastrointestinal microbes bypass the intestinal mucosa and enter systemic circulation to enact an inflammatory immune response. In the context of chronic liver disease (CLD), insults that drive hepatic inflammation and fibrogenesis (alcohol, fat) can drastically increase intestinal permeability, hence flooding the liver with gut-derived microbiota. Consequently, this may result in exacerbated liver inflammation and fibrosis through activation of liver-resident Kupffer and stellate cells by bacterial, viral, and fungal antigens transported to the liver via the portal vein. This review summarizes the current understanding of microbial translocation in CLD, the cell-specific hepatic response to intestinal antigens, and how this drives the development and progression of hepatic inflammation and fibrosis. Further, we reviewed current and future therapies targeting intestinal permeability and the associated, potentially harmful anti-microbial immune response with respect to their potential in terms of limiting the development and progression of liver fibrosis and end-stage cirrhosis.
Collapse
Affiliation(s)
- Dishen Chen
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
| | - Thanh H. Le
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- School of Medicine, Western Sydney University, Campbelltown 2560, NSW, Australia
| | - Haleh Shahidipour
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
| | - Scott A. Read
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
- Blacktown Hospital, Blacktown 2148, NSW, Australia
| |
Collapse
|
12
|
Román E, Nieto JC, Gely C, Vidal S, Pozuelo M, Poca M, Juárez C, Guarner C, Manichanh C, Soriano G. Effect of a Multistrain Probiotic on Cognitive Function and Risk of Falls in Patients With Cirrhosis: A Randomized Trial. Hepatol Commun 2019; 3:632-645. [PMID: 31061952 PMCID: PMC6492476 DOI: 10.1002/hep4.1325] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Probiotics can modulate gut microbiota, intestinal permeability, and immune response and could therefore improve cognitive dysfunction and help avoid potential consequences, such as falls, in patients with cirrhosis. The aim of this study was to evaluate the effect of a multistrain probiotic on cognitive function, risk of falls, and inflammatory response in patients with cirrhosis. Consecutive outpatients with cirrhosis and cognitive dysfunction (defined by a Psychometric Hepatic Encephalopathy Score [PHES] < -4) and/or falls in the previous year were randomized to receive either a sachet of a high-concentration multistrain probiotic containing 450 billion bacteria twice daily for 12 weeks or placebo. We evaluated the changes in cognitive function (PHES); risk of falls (Timed Up and Go [TUG] test, gait speed, and incidence of falls); systemic inflammatory response; neutrophil oxidative burst; intestinal barrier integrity (serum fatty acid-binding protein 6 [FABP-6] and 2 [FABP-2] and zonulin and urinary claudin-3); bacterial translocation (lipopolysaccharide-binding protein [LBP]); and fecal microbiota. Thirty-six patients were included. Patients treated with the probiotic (n = 18) showed an improvement in the PHES (P = 0.006), TUG time (P = 0.015) and gait speed (P = 0.02), and a trend toward a lower incidence of falls during follow-up (0% compared with 22.2% in the placebo group [n = 18]; P = 0.10). In the probiotic group, we observed a decrease in C-reactive protein (P = 0.01), tumor necrosis factor alpha (P = 0.01), FABP-6 (P = 0.009), and claudin-3 (P = 0.002), and an increase in poststimulation neutrophil oxidative burst (P = 0.002). Conclusion: The multistrain probiotic improved cognitive function, risk of falls, and inflammatory response in patients with cirrhosis and cognitive dysfunction and/or previous falls.
Collapse
Affiliation(s)
- Eva Román
- Department of GastroenterologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- Escola Universitària d’Infermeria EUI‐Sant PauBarcelonaSpain
- Institut de Recerca IIB‐Sant PauBarcelonaSpain
- CIBERehdInstituto de Salud Carlos IIIMadridSpain
| | | | | | - Sílvia Vidal
- Institut de Recerca IIB‐Sant PauBarcelonaSpain
- Department of ImmunologyHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Marta Pozuelo
- Fundació Hospital Universitari Vall d’Hebron‐Institut de RecercaBarcelonaSpain
| | - Maria Poca
- Department of GastroenterologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERehdInstituto de Salud Carlos IIIMadridSpain
| | - Cándido Juárez
- Institut de Recerca IIB‐Sant PauBarcelonaSpain
- Department of ImmunologyHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Carlos Guarner
- Department of GastroenterologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERehdInstituto de Salud Carlos IIIMadridSpain
| | - Chaysavanh Manichanh
- Fundació Hospital Universitari Vall d’Hebron‐Institut de RecercaBarcelonaSpain
- CIBERehdInstituto de Salud Carlos IIIMadridSpain
| | - Germán Soriano
- Department of GastroenterologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERehdInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
13
|
Santiago A, Sanchez E, Clark A, Pozuelo M, Calvo M, Yañez F, Sarrabayrouse G, Perea L, Vidal S, Gallardo A, Guarner C, Soriano G, Manichanh C. Sequential Changes in the Mesenteric Lymph Node Microbiome and Immune Response during Cirrhosis Induction in Rats. mSystems 2019; 4:e00278-18. [PMID: 30801032 PMCID: PMC6381228 DOI: 10.1128/msystems.00278-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Whether the interaction between the gut microbiota and the immune response influences the evolution of cirrhosis is poorly understood. We aimed to investigate modifications of the microbiome and the immune response during the progression of cirrhosis. Rats were treated with carbon tetrachloride (CCl4) to induce cirrhosis. We then assessed microbiome load and composition in stool, ileocecal contents (ICCs), mesenteric lymph nodes (MLNs), blood, and ascitic fluids (AFs) at 6, 8, and 10 weeks or ascites production and measured cytokine production in MLNs and blood. The microbiome of MLN, blood, and AF showed a distinct composition compared to that of stool and ICCs. Betaproteobacteria (Sutterella) were found associated with the appearance of a decompensated state of cirrhosis. Microbial load increased and showed a positive correlation with the relative abundance of pathobionts in the MLN of decompensated rats. Among several genera, Escherichia and "Candidatus Arthromitus" positively correlated with elevated levels of systemic proinflammatory cytokines. "Candidatus Arthromitus," a segmented filamentous bacteria, was detected in ICC, MLN, and AF samples, suggesting a possible translocation from the gut to the AF through the lymphatic system, whereas Escherichia was detected in ICC, MLN, AF, and blood, suggesting a possible translocation from the gut to the AF through the bloodstream. In the present study, we demonstrate that microbiome changes in distinct intestinal sites are associated with microbial shifts in the MLNs as well as an increase in cytokine production, providing further evidence of the role the gut-liver-immunity axis plays in the progression of cirrhosis. IMPORTANCE Cirrhosis severity in patients was previously shown to be associated with progressive changes in the fecal microbiome in a longitudinal setting. Recent evidence shows that bacterial translocation from the gut to the extraintestinal sites could play a major role in poor disease outcome and patient survival. However, the underlying mechanisms involving the microbiota in the disease progression are not well understood. Here, using an animal model of cirrhosis in a longitudinal and multibody sites setting, we showed the presence of a distinct composition of the microbiome in mesenteric lymph nodes, blood, and ascitic fluid compared to that in feces and ileocecal content, suggesting compartmentalization of the gut microbiome. We also demonstrate that microbiome changes in intestinal sites are associated with shifts in specific microbial groups in the mesenteric lymph nodes as well as an increase in systemic cytokine production, linking inflammation to decompensated cirrhosis in the gut-liver-immunity axis.
Collapse
Affiliation(s)
- Alba Santiago
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Elisabet Sanchez
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Allison Clark
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Marta Pozuelo
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Calvo
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Francisca Yañez
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Lidia Perea
- Department of Immunology, IIB-Sant Pau Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Vidal
- Department of Immunology, IIB-Sant Pau Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Guarner
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - German Soriano
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Chaysavanh Manichanh
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|