1
|
Wang H, Lin W, Zhang D, Yang R, Zhou W, Qi Z. Phytotoxicity of Chemical Compounds from Cinnamomum camphora Pruning Waste in Germination and Plant Cultivation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11617. [PMID: 36141889 PMCID: PMC9517094 DOI: 10.3390/ijerph191811617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Much previous research has indicated most composts of pruning waste are characterized by potential phytotoxicity, it is highly correlated with the chemical compounds of raw materials. Cinnamomum camphora, a common kind of pruning waste in Southeast Asia and East Asia, is characterized by intense bioactivities due to complex chemical components. This study investigated the potential phytotoxicity of C. camphora pruning waste in light of germination and higher plant growth. C. camphora extracted from leaves completely inhibited seed germination and still showed suppression of root elongation at an extremely low dosage. C. camphora extract also displayed significant inhibition of nutrient absorption in tomato seedlings, including moisture, available nutrients (N, P and K) and key microelements (Fe, Mn, Zn and S). The gene expression of aquaporins and transporters of nitrate and phosphate was significantly up-regulated in roots. This could be regarded as a positive response to C. camphora extract for enhancing nutrient absorption. Moreover, the severe damage to the plasma membrane in roots caused by C. camphora extract might seriously affect nutrient absorption. Camphor is the main component of the C. camphora extract that may induce the phytotoxicity of plasma membrane damage, resulting in the inhibition of nutrient absorption and low biomass accumulation. This study provided a new understanding of the ecotoxicological effects of C. camphora pruning waste, indicating that the harmless disposal of pruning waste requires much attention and exploration in the future.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Wei Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Dongdong Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Rui Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Wanlai Zhou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Zhiyong Qi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| |
Collapse
|
2
|
dos Santos ÉRQ, Maia JGS, Fontes-Júnior EA, Maia CDSF. Linalool as a Therapeutic and Medicinal Tool in Depression Treatment: A Review. Curr Neuropharmacol 2022; 20:1073-1092. [PMID: 34544345 PMCID: PMC9886818 DOI: 10.2174/1570159x19666210920094504] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Depression is a prevalent disease worldwide, limiting psychosocial functioning and thequality of life. Linalool is the main constituent of some essential oils from aromatic plants, representing about 70% of these volatile concentrates. Evidence of the linalool activity on the central nervous system, mainly acting as an antidepressant agent, is increasingly abundant. This review aimed to extend the knowledge of linalool's antidepressant action mechanisms, which is fundamental for future research, intending to highlight this natural compound as a new antidepressant phytomedication. A critical analysis is proposed here with probable hypotheses of the synergic mechanisms that support the evidence of antidepressant effects of the linalool. The literature search has been conducted in databases for published scientific articles before December 2020, using relevant keywords. Several pieces of evidence point to the anticonvulsant, sedative, and anxiolytic actions. In addition to these activities, other studies have revealed that linalool acts on the monoaminergic and neuroendocrine systems, inflammatory process, oxidative stress, and neurotrophic factors, such as BDNF, resulting in considerable advances in the knowledge of the etiology of depression. In this context, linalool emerges as a promising bioactive compound in the therapeutic arsenal, capable of interacting with numerous pathophysiological factors and acting on several targets. This review claims to contribute to future studies, highlighting the gaps in the linalool knowledge, such as its kinetics, doses, routes of administration, and multiple targets of interaction, to clarify its antidepressant activity.
Collapse
Affiliation(s)
- Éverton Renan Quaresma dos Santos
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil;
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, 65080-805 São Luís, MA, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil;
| | - Cristiane do Socorro Ferraz Maia
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; ,Address correspondence to this author at the Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Rua Augusto Corrêa 1, Campus do Guamá, Belém-Pará 66075-900, Brazil; Tel: +55 (91) 3201-7202; E-mails: ;
| |
Collapse
|
3
|
Wan N, Li Y, Huang X, Li Y, Zheng Q, Wu Z. A comparative evaluation of chemical composition and antimicrobial activities of essential oils extracted from different chemotypes of Cinnamomum camphora (L.) Presl. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.1014202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this study is to determine the chemical composition of the essential oils of Cinnamomum camphora (L.) Presl leaves (CCPL) from 5 different habitats in China by GC-MS, and to evaluate their antimicrobial activities against 3 foodborne pathogens, using a paper disc diffusion method. A total of 30 compounds were identified with a predominance of oxygenated monoterpenes, including linalool (42.65%-96.47%), eucalyptol (39.07%-55.35%) and camphor (26.08%) as well as monoterpene hydrocarbons such as sabinene (6.18%-12.93%) and α-terpineol (8.19%-13.81%). Through cluster analysis, CCPL from 5 different habitats can be well divided into 2 categories. Combining with principal component analysis, the habitats can be better correlated with the chemical constituents of the essential oils. The antimicrobial activities of 5 extracted essential oils against 2 gram-negative bacteria and one gram-positive bacteria were assessed. It showed that the essential oil extracted from the CCPL harvested in Jinxi had the strongest antibacterial property. The results of this study provided basis for resource identification of CCPL and quality difference identification of essential oils. Research on the antibacterial properties of several pathogenic strains has proved its application value as a natural food preservative.
Collapse
|
4
|
Yang Z, Xie C, Zhan T, Li L, Liu S, Huang Y, An W, Zheng X, Huang S. Genome-Wide Identification and Functional Characterization of the Trans-Isopentenyl Diphosphate Synthases Gene Family in Cinnamomum camphora. FRONTIERS IN PLANT SCIENCE 2021; 12:708697. [PMID: 34589098 PMCID: PMC8475955 DOI: 10.3389/fpls.2021.708697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 05/28/2023]
Abstract
Trans-isopentenyl diphosphate synthases (TIDSs) genes are known to be important determinants for terpene diversity and the accumulation of terpenoids. The essential oil of Cinnamomum camphora, which is rich in monoterpenes, sesquiterpenes, and other aromatic compounds, has a wide range of pharmacological activities and has therefore attracted considerable interest. However, the TIDS gene family, and its relationship to the camphor tree (C. camphora L. Presl.), has not yet been characterized. In this study, we identified 10 TIDS genes in the genome of the C. camphora borneol chemotype that were unevenly distributed on chromosomes. Synteny analysis revealed that the TIDS gene family in this species likely expanded through segmental duplication events. Furthermore, cis-element analyses demonstrated that C. camphora TIDS (CcTIDS) genes can respond to multiple abiotic stresses. Finally, functional characterization of eight putative short-chain TIDS proteins revealed that CcTIDS3 and CcTIDS9 exhibit farnesyl diphosphate synthase (FPPS) activity, while CcTIDS1 and CcTIDS2 encode geranylgeranyl diphosphate synthases (GGPPS). Although, CcTIDS8 and CcTIDS10 were found to be catalytically inactive alone, they were able to bind to each other to form a heterodimeric functional geranyl diphosphate synthase (GPPS) in vitro, and this interaction was confirmed using a yeast two-hybrid assay. Furthermore, transcriptome analysis revealed that the CcTIDS3, CcTIDS8, CcTIDS9, and CcTIDS10 genes were found to be more active in C. camphora roots as compared to stems and leaves, which were verified by quantitative real-time PCR (qRT-PCR). These novel results provide a foundation for further exploration of the role of the TIDS gene family in camphor trees, and also provide a potential mechanism by which the production of camphor tree essential oil could be increased for pharmacological purposes through metabolic engineering.
Collapse
Affiliation(s)
- Zerui Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Medicine and Health, Guangdong Academy of Sciences, Guangzhou, China,
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhu Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linhuan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shanshan Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuying Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenli An
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiasheng Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Yang Z, Xie C, Huang Y, An W, Liu S, Huang S, Zheng X. Metabolism and transcriptome profiling provides insight into the genes and transcription factors involved in monoterpene biosynthesis of borneol chemotype of Cinnamomum camphora induced by mechanical damage. PeerJ 2021; 9:e11465. [PMID: 34249483 PMCID: PMC8255067 DOI: 10.7717/peerj.11465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Background The borneol chemotype of Cinnamomum camphora (BCC), a monoterpene-rich woody plant species, is the sole source prescribed by the Chinese Pharmacopoeia for the production of natural D-borneol, a major monoterpene in BCC used for millennia as a topical analgesic in China. Nevertheless, the possible gene-regulatory roles of transcription factors (TFs) in BCC’s monoterpenoid biosynthesis remained unknown. Here, a joint analysis of the transcriptome and terpenoid metabolome of BCC induced by mechanical damage (MD) was used to comprehensively explore the interaction between TFs and terpene synthase (TPS) unigenes that might participate in monoterpene biosynthesis in BCC. Results Gas chromatography–mass spectrometry analysis detected 14 monoterpenes and seven sesquiterpenes. All but two monoterpenes underwent a significantly increased accumulation after the MD treatment. RNA sequencing data revealed that 10 TPS, 82 MYB, 70 AP2/ERF, 38 BHLH, 31 WRKY, and 29 bZIP unigenes responded to the MD treatment. A correlation analysis revealed that three monoterpene synthase genes (CcTPS1, CcTPS3, CcTPS4) highly correlated with multiple monoterpenes, namely D-borneol, camphor, and bornyl acetate, which could be responsible for monoterpenoid biosynthesis in BCC. Furthermore, five WRKY, 15 MYB, 10 ERF/AP2, five bZIP, and two BHLH genes had strong, positive correlations with CcTPS1 or CcTPS4, judging by their high coefficient values (R2 > 0.8). The bioinformatics results were verified by quantitative real-time PCR. Conclusion This study provides insight into the genes involved in the biosynthesis and regulation of monoterpene in BCC and thus provides a pool of candidate genes for future mechanistic analyses of how monoterpenes accumulate in BCC.
Collapse
Affiliation(s)
- Zerui Yang
- School of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunzhu Xie
- School of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuying Huang
- School of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenli An
- School of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shanshan Liu
- School of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Song Huang
- School of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiasheng Zheng
- School of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Fumigant activity of essential oils from Cinnamomum and Citrus spp. and pure compounds against Dermanyssus gallinae (De Geer) (Acari: Dermanyssidae) and toxicity toward the nontarget organism Beauveria bassiana (Vuill.). Vet Parasitol 2021; 290:109341. [PMID: 33472157 DOI: 10.1016/j.vetpar.2021.109341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 11/22/2022]
Abstract
Dermanyssus gallinae(De Geer) (Acari: Dermanyssidae) is the main ectoparasite associated with laying poultry. This mite is commonly controlled by the application of synthetic chemical insecticides, wich lead to the selection of resistant populations and formation of residues in eggs. Thus, new molecules must be developed to control D. gallinae. This work evaluated the toxicity of essential oils (EOs) from Cinnamomum cassia, Cinnamomum camphora, Cinnamomum camphora var. linalooliferum, Citrus aurantium, Citrus aurantium var. bergamia, Citrus aurantifolia and Citrus reticulata var. tangerine against D. gallinae. Additionally, the chemical profiles of the most bioactive EOs were analyzed by gas chromatography coupled with mass spectrometry (GC-MS) and the major compounds were subjected to new tests using D. gallinae. The most toxic EOs against D. gallinae were evaluated for the nontarget entomopathogenic fungus Beauveria bassiana (Unioeste 88). The EOs from C. cassia (LC50 = 25.43 ± 1.0423 μg/cm3) and C. camphora var. linalooliferum (LC50 = 39.84 ± 1.9635 μg/cm3) were the most active in the fumigant bioassay and caused mortality rates of 96 and 61%, respectively. The GC-MS analysis revealed that the major constituents of EOs from C. cassia and C. camphora var. linalooliferum were trans-cinnamaldehyde and linalool, respectively. The pure compounds, trans-cinnamaldehyde (LC50 = 68.89 ± 3.1391 μg/cm3) and linalool (LC50 = 51.45 ± 1.1967 μg/cm3), were tested on D. gallinae and showed lower toxicity than the EOs. Thus, the compounds were not the only active substances produced by C. cassia and C. camphora var. linalooliferum; moreover synergism may have occurred between the substances. The EOs from C. cassia and C. camphora var. linalooliferum were also toxic to B. bassiana (Unioeste 88). Thus, EOs from C. cassia and C. camphora var. linalooliferum are promising candidates for use in D. gallinae control, but cannot be used in conjunction with the fungus B. bassiana.
Collapse
|
7
|
Martinelli T, Fulvio F, Pietrella M, Focacci M, Lauria M, Paris R. In Silybum marianum Italian wild populations the variability of silymarin profiles results from the combination of only two stable chemotypes. Fitoterapia 2021; 148:104797. [PMID: 33271258 DOI: 10.1016/j.fitote.2020.104797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022]
Abstract
Silybum marianum (L.) Gaertn. is an important medicinal plant belonging to Mediterranean flora. The medicinal properties of the species are mainly due to silymarin, a combination of different flavonolignans contained in the fruit. As for silymarin, so far a wide variability of possible S. marianum chemotypes has been described. In the present study the flavonolignan profile of 40 different S. marianum wild accessions was analysed at both population and single plant level, further extending the analysis to progenies derived from crosses between parental lines with different chemotypes. The results of this work indicate that S. marianum wild populations can be composed either of individuals with the same chemotype, or heterogeneous mixtures of individuals characterized by different chemotypes. Only three chemotypes (A, B and C) have been identified among Italian wild populations. Based on data collected we furthermore propose that chemotype C is the result of the hybridization between A and B chemotypes. If assessed at single plant level, chemotypes are extremely stable therefore evidencing a strong genetic control of silymarin biosynthetic pathway. Chemotypes A and B are present in all the analysed regions and no clear correlation between chemotypes and geographic features has been found. In conclusion, this work provides a general procedure for the characterization of different and stable chemotypes, for a deeper understanding of silymarin biosynthetic pathway, and in order to implement S. marianum breeding programmes aiming to improve silymarin quality.
Collapse
Affiliation(s)
- Tommaso Martinelli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification (CREA - DC), Loc. Cascine del Riccio, Via di Lanciola 12/A; 50125, Firenze, Italy.
| | - Flavia Fulvio
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA - CI), Via di Corticella 133, 40128 Bologna, Italy
| | - Marco Pietrella
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops (CREA - OFA), via la Canapona 1 bis, 47121 Forli, Italy
| | - Marco Focacci
- Agenzia Italiana per la Cooperazione allo Sviluppo, Largo Louis Braille 4; 50131, Firenze, Italy
| | - Massimiliano Lauria
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council (IBBA - CNR), Via A. Corti 12, 20133 Milano, Italy
| | - Roberta Paris
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA - CI), Via di Corticella 133, 40128 Bologna, Italy
| |
Collapse
|
8
|
Hou J, Zhang J, Zhang B, Jin X, Zhang H, Jin Z. Transcriptional Analysis of Metabolic Pathways and Regulatory Mechanisms of Essential Oil Biosynthesis in the Leaves of Cinnamomum camphora (L.) Presl. Front Genet 2020; 11:598714. [PMID: 33281883 PMCID: PMC7689033 DOI: 10.3389/fgene.2020.598714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
The roots, bark, and leaves of Cinnamomum camphora are rich in essential oils, which mainly comprised monoterpenes and sesquiterpenes. Although the essential oils obtained from C. camphora have been widely used in pharmaceutical, medicinal, perfume, and food industries, the molecular mechanisms underlying terpenoid biosynthesis are poorly understood. To address this lack of knowledge, we performed transcriptome analysis to investigate the key regulatory genes involved in terpenoid biosynthesis in C. camphora. High-oil-yield trees of linalool type and low-oil-yield trees were used to assemble a de novo transcriptome of C. camphora. A total of 121,285 unigenes were assembled, and the total length, average length, N50, and GC content of unigenes were 87,869,987, 724, 1,063, and 41.1%, respectively. Comparison of the transcriptome profiles of linalool-type C. camphora with trees of low oil yield resulted in a total of 3,689 differentially expressed unigenes, among them 31 candidate genes had annotations associated with metabolism of terpenoids and polyketides, including four in the monoterpenoid biosynthesis pathway and three in the terpenoid backbone biosynthesis pathway. Collectively, this genome-wide transcriptome provides a valuable tool for future identification of genes related to essential oil biosynthesis. Additionally, the identification of a cohort of genes in the biosynthetic pathways of terpenoids provides a theoretical basis for metabolic engineering of essential oils in C. camphora.
Collapse
Affiliation(s)
- Jiexi Hou
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, The School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Jie Zhang
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, The School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Beihong Zhang
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, The School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China.,Key Laboratory of Silviculture, Co-Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xiaofang Jin
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, The School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Haiyan Zhang
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, The School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Zhinong Jin
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, The School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, China
| |
Collapse
|
9
|
Yanakiev S. Effects of Cinnamon ( Cinnamomum spp.) in Dentistry: A Review. Molecules 2020; 25:E4184. [PMID: 32932678 PMCID: PMC7571082 DOI: 10.3390/molecules25184184] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Dental medicine is one of the fields of medicine where the most common pathologies are of bacterial and fungal origins. This review is mainly focused on the antimicrobial effects of cinnamon essential oil (EO), cinnamon extracts, and pure compounds against different oral pathogens and the oral biofilm and the possible effects on soft mouth tissue. Basic information is provided about cinnamon, as is a review of its antimicrobial properties against the most common microorganisms causing dental caries, endodontic and periodontal lesions, and candidiasis. Cinnamon EO, cinnamon extracts, and pure compounds show significant antimicrobial activities against oral pathogens and could be beneficial in caries and periodontal disease prevention, endodontics, and candidiasis treatment.
Collapse
Affiliation(s)
- Spartak Yanakiev
- Medical College Y. Filaretova, Medical University-Sofia, Yordanka Filaretova Street 3, 1000 Sofia, Bulgaria
| |
Collapse
|
10
|
Desorption atmospheric pressure chemical ionization: A review. Anal Chim Acta 2020; 1130:146-154. [DOI: 10.1016/j.aca.2020.05.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/27/2023]
|
11
|
Yang Z, An W, Liu S, Huang Y, Xie C, Huang S, Zheng X. Mining of candidate genes involved in the biosynthesis of dextrorotatory borneol in Cinnamomum burmannii by transcriptomic analysis on three chemotypes. PeerJ 2020; 8:e9311. [PMID: 32566406 PMCID: PMC7293187 DOI: 10.7717/peerj.9311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Dextrorotatory borneol (D-borneol), a cyclic monoterpene, is widely used in traditional Chinese medicine as an efficient topical analgesic drug. Fresh leaves of Cinnamomum trees, e.g., C. burmannii and C. camphor, are the main sources from which D-borneol is extracted by steam distillation, yet with low yields. Insufficient supply of D-borneol has hampered its clinical use and production of patent remedies for a long time. Biological synthesis of D-borneol offers an additional approach; however, mechanisms of D-borneol biosynthesis remain mostly unresolved. Hence, it is important and necessary to elucidate the biosynthetic pathway of D-borneol. Results Comparative analysis on the gene expression patterns of different D-borneol production C. burmannii samples facilitates elucidation on the underlying biosynthetic pathway of D-borneol. Herein, we collected three different chemotypes of C. burmannii, which harbor different contents of D-borneol.A total of 100,218 unigenes with an N50 of 1,128 bp were assembled de novo using Trinity from a total of 21.21 Gb clean bases. We used BLASTx analysis against several public databases to annotate 45,485 unigenes (45.38%) to at least one database, among which 82 unigenes were assigned to terpenoid biosynthesis pathways by KEGG annotation. In addition, we defined 8,860 unigenes as differentially expressed genes (DEGs), among which 13 DEGs were associated with terpenoid biosynthesis pathways. One 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and two monoterpene synthase, designated as CbDXS9, CbTPS2 and CbTPS3, were up-regulated in the high-borneol group compared to the low-borneol and borneol-free groups, and might be vital to biosynthesis of D-borneol in C. burmannii. In addition, we identified one WRKY, two BHLH, one AP2/ERF and three MYB candidate genes, which exhibited the same expression patterns as CbTPS2 and CbTPS3, suggesting that these transcription factors might potentially regulate D-borneol biosynthesis. Finally, quantitative real-time PCR was conducted to detect the actual expression level of those candidate genes related to the D-borneol biosynthesis pathway, and the result showed that the expression patterns of the candidate genes related to D-borneol biosynthesis were basically consistent with those revealed by transcriptome analysis. Conclusions We used transcriptome sequencing to analyze three different chemotypes of C. burmannii, identifying three candidate structural genes (one DXS, two monoterpene synthases) and seven potential transcription factor candidates (one WRKY, two BHLH, one AP2/ERF and three MYB) involved in D-borneol biosynthesis. These results provide new insight into our understanding of the production and accumulation of D-borneol in C. burmannii.
Collapse
Affiliation(s)
- Zerui Yang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenli An
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shanshan Liu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuying Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunzhu Xie
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Song Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiasheng Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Liu X, Meng Y, Zhang Z, Wang Y, Geng X, Li M, Li Z, Zhang D. Functional nano-catalyzed pyrolyzates from branch of Cinnamomum camphora. Saudi J Biol Sci 2019; 26:1227-1246. [PMID: 31516353 PMCID: PMC6733784 DOI: 10.1016/j.sjbs.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/19/2022] Open
Abstract
Cinnamomum camphora is an excellent tree species for construction of forest construction of Henan Province, China. The diverse bioactive components of nano-catalyzed pyrolyzates form cold-acclimated C. camphora branch (CCB) in North China were explored. The raw powder of CCB treated with nano-catalyst (Ag, NiO, 1/2Ag + 1/2NiO) were pyrolyzed at two temperatures (550 °C and 700 °C), respectively. The main pyrolyzates are bioactive components of bioenergy, biomedicines, food additive, spices, cosmetics and chemical, whose total relative contents at 550 °C pyrolyzates are higher than those at 700 °C pyrolyzates. There are abundant components of spices and biomedicine at 550 °C pyrolyzates, while more spices and food additive at 700 °C pyrolyzates. At 550 °C, the content of biomedicine components reaches the highest by 1/2Ag + 1/2NiO nanocatalysis, while the contents of spices and food additive components reach the highest by NiO nanocatalysis. At 700 °C, the content of bioenergy components reaches the highest by 1/2Ag + 1/2NiO nanocatalysis, and the content of cosmetics components reaches the highest by Ag nanocatalysis. The findings suggested that the branch of the cold-acclimated C. camphora have the potential to develop into valued-added products of bioenergy, biomedicine, cosmetics, spices and food additive by nanocatalysis.
Collapse
Affiliation(s)
- Xue Liu
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Yu Meng
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Zanpei Zhang
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Yihan Wang
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaodong Geng
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingwan Li
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhi Li
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangquan Zhang
- College of Forestry/Henan Province Engineering Research Center for Forest Biomass Value-added Products, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
13
|
Smith BL, Hughes DM, Badu-Tawiah AK, Eccles R, Goodall I, Maher S. Rapid Scotch Whisky Analysis and Authentication using Desorption Atmospheric Pressure Chemical Ionisation Mass Spectrometry. Sci Rep 2019; 9:7994. [PMID: 31142757 PMCID: PMC6541643 DOI: 10.1038/s41598-019-44456-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023] Open
Abstract
Whisky, as a high value product, is often adulterated, with adverse economic effects for both producers and consumers as well as potential public health impacts. Here we report the use of DAPCI-MS to analyse and chemically profile both genuine and counterfeit whisky samples employing a novel 'direct from the bottle' methodology with zero sample pre-treatment, zero solvent requirement and almost no sample usage. 25 samples have been analysed from a collection of blended Scotch whisky (n = 15) and known counterfeit whisky products (n = 10). Principal component analysis has been applied to dimensionally reduce the data and discriminate between sample groups. Additional chemometric modelling, a partial least squares regression, has correctly classified samples with 92% success rate. DAPCI-MS shows promise for simple, fast and accurate counterfeit detection with potential for generic aroma profiling and process quality monitoring applications.
Collapse
Affiliation(s)
- Barry L Smith
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, UK
| | - David M Hughes
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | | | - Rebecca Eccles
- The Scotch Whisky Research Institute, The Robertson Trust Building, Edinburgh, UK
| | - Ian Goodall
- The Scotch Whisky Research Institute, The Robertson Trust Building, Edinburgh, UK
| | - Simon Maher
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
14
|
Abd El-Kader EM, Serag A, Aref MS, Ewais EEA, Farag MA. Metabolomics reveals ionones upregulation in MeJA elicited Cinnamomum camphora (camphor tree) cell culture. PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC) 2019; 137:309-318. [DOI: 10.1007/s11240-019-01572-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/06/2019] [Indexed: 09/02/2023]
|
15
|
Lebedev VG, Krutovsky KV, Shestibratov KA. …Fell Upas Sits, the Hydra-Tree of Death †, or the Phytotoxicity of Trees. Molecules 2019; 24:E1636. [PMID: 31027270 PMCID: PMC6514861 DOI: 10.3390/molecules24081636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
The use of natural products that can serve as natural herbicides and insecticides is a promising direction because of their greater safety for humans and environment. Secondary metabolites of plants that are toxic to plants and insects-allelochemicals-can be used as such products. Woody plants can produce allelochemicals, but they are studied much less than herbaceous species. Meanwhile, there is a problem of interaction of woody species with neighboring plants in the process of introduction or invasion, co-cultivation with agricultural crops (agroforestry) or in plantation forestry (multiclonal or multispecies plantations). This review describes woody plants with the greatest allelopathic potential, allelochemicals derived from them, and the prospects for their use as biopesticides. In addition, the achievement of and the prospects for the use of biotechnology methods in relation to the allelopathy of woody plants are presented and discussed.
Collapse
Affiliation(s)
- Vadim G Lebedev
- Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospect Nauki, Pushchino, 142290 Moscow, Russia.
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany.
- Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119991 Moscow, Russia.
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 50a/2 Akademgorodok, 660036 Krasnoyarsk, Russia.
- Department of Ecosystem Science and Management, Texas A&M University, 495 Horticulture Rd, College Station, TX 77843-2138, USA.
| | - Konstantin A Shestibratov
- Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospect Nauki, Pushchino, 142290 Moscow, Russia.
| |
Collapse
|
16
|
Chen C, Zheng Y, Zhong Y, Wu Y, Li Z, Xu LA, Xu M. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genomics 2018; 19:550. [PMID: 30041601 PMCID: PMC6057064 DOI: 10.1186/s12864-018-4941-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cinnamomum camphora has been cultivated as an economically important tree for its medicinal and aromatic properties. Selective breeding has produced Cinnamomum plants for special uses, including spice strains with characteristic flavors and aromas and high-potency medicinal cultivars. The molecular biology underlying terpenoid biosynthesis is still unexplored. RESULTS Gas chromatography-mass spectrometry was used to analyze the differences in contents and compositions of essential oil terpenoids in linalool- and borneol-type chemotypes of C. camphora. The data revealed that the essential oils consist primarily of monoterpenes with only very minor quantities of sesquiterpenes and diterpenes and that the essential oil differs in different chemotypes of C. camphora, with higher yields of (-)-borneol from the borneol-type than from the linalool-type. To study the terpenoid biosynthesis of signature compounds of the major monoterpenes, we performed RNA sequencing to profile the leaf transcriptomes of the two chemotypes of C. camphora. A total of 23.76 Gb clean data was generated from two chemotypes and assembled into 156,184 unigenes. The total length, average length, N50 and GC content of unigenes were 155,645,929 bp, 997 bp, 1430 bp, and 46.5%, respectively. Among them, 76,421 unigenes were annotated by publicly available databases, of which 67 candidate unigenes were identified to be involved in terpenoid biosynthesis in C. camphora. A total of 2863 unigenes were identified to be differentially expression between borneol-type and linalool-type, including 1714 up-regulated and 1149 down-regulated unigenes. Most genes encoding proteins involved in terpenoid precursor MVA and MEP pathways were expressed in similar levels in both chemotypes of C. camphora. In addition, 10 and 17 DEGs were significantly enriched in the terpene synthase activity and oxidoreductase activity terms of their directed acyclic graphs (DAG), respectively. Three monoterpene synthase genes, TPS14-like1, TPS14-like2 and TPS14-like3 were up-regulated in the borneol-type compared to the linalool-type, and their expression levels were further verified using quantitative real-time PCR. CONCLUSIONS This study provides a global overview of gene expression patterns related to terpenoid biosynthesis in C. camphora, and could contribute to a better understanding of the differential accumulation of terpenoids in different C. camphora chemotypes.
Collapse
Affiliation(s)
- Caihui Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongjie Zheng
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Yongda Zhong
- Institute of Biological Resources, Jiangxi Academy of Science, Nanchang, Jiangxi, China
| | - Yangfang Wu
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Zhiting Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
17
|
de Andrade TU, Brasil GA, Endringer DC, da Nóbrega FR, de Sousa DP. Cardiovascular Activity of the Chemical Constituents of Essential Oils. Molecules 2017; 22:E1539. [PMID: 28926969 PMCID: PMC6151533 DOI: 10.3390/molecules22091539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are a leading cause of death in developed and developing countries and decrease the quality of life, which has enormous social and economic consequences for the population. Recent studies on essential oils have attracted attention and encouraged continued research of this group of natural products because of their effects on the cardiovascular system. The pharmacological data indicate a therapeutic potential for essential oils for use in the treatment of cardiovascular diseases. Therefore, this review reports the current studies of essential oils chemical constituents with cardiovascular activity, including a description of their mechanisms of action.
Collapse
Affiliation(s)
| | | | | | - Flávio Rogério da Nóbrega
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa PB 58051-970, Brazil.
| | - Damião Pergentino de Sousa
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa PB 58051-970, Brazil.
| |
Collapse
|
18
|
On the chemistry of 1-pyrroline in solution and in the gas phase. Sci Rep 2017; 7:7675. [PMID: 28794423 PMCID: PMC5550421 DOI: 10.1038/s41598-017-08217-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
1-Pyrroline has a highly characteristic odor, which is employed by living organisms for chemical signaling and other purposes, but the mechanism whereby this odor is formed remains poorly understood. Here we used a combination of ambient mass spectrometry (AMS) and nuclear magnetic resonance (NMR) spectroscopy to experimentally address the mechanistic aspects of 1-pyrroline volatility and other controversies regarding the chemistry of this compound. Our results indicate that in solution the volatility of the monomer species is significantly higher than that of the trimer species, and 1-pyrroline is evaporated mainly in its monomer state. Neat 1-pyrroline is essentially the pure trimer and displays ca. 100-fold lower evaporation rate than the monomer state in solution. In the gas-phase the trimer species is irreversibly decomposed into monomer species. Under equilibrium conditions the vapor of 1-pyrroline entirely consists of monomer species. The evaporation rate of 1-pyrroline in water has a step-wise dependence on the solution pH, the abrupt increase in volatility (>1,000-fold) occurring around the pKa value of 1-pyrroline (6.8). The pronounced step-wise dependence of 1-pyrroline volatility around neutral pH may also be an important evolutionary factor allowing living systems to regulate the odor strength from very weak to very strong with minimal efforts.
Collapse
|