1
|
Demirci SC, Barun S, Özaslan A, Gülbahar Ö, Bulut TSD, Çamurdan AD, İşeri E. Investigating the Relationship of Serum CD163, YKL40 and VILIP-1 Levels with Autism Severity and Language-cognitive Development in Preschool Children with Autism. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:473-483. [PMID: 39069687 PMCID: PMC11289611 DOI: 10.9758/cpn.23.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 07/30/2024]
Abstract
Objective This study aimed to compare serum levels of CD163, YKL-40, and VILIP-1 between children with autism spectrum disorder (ASD) and healthy controls, while also investigating their association with the severity of ASD and language development. Methods The study included 40 ASD-diagnosed patients (aged 18-72 months) and 40 age-matched healthy controls. Childhood Autism Rating Scale, Preschool Language Scale-4, and Ankara Development Screening Inventory were administered to children in the ASD group. Serum CD163, YKL-40 and VILIP-1 levels were measured with an enzyme- linked immunosorbent assay kit. Results In the ASD group compared to the control group, serum VILIP-1 levels were significantly higher (p = 0.046). No significant differences were observed in mean serum CD163 and YKL-40 levels between patients and controls (p = 0.613, p = 0.769). Interestingly, a positive correlation was observed between CD163 and YKL-40 levels and ASD severity (p < 0.001 for both). Additionally, CD163 and YKL-40 levels showed significant predictive value for ASD severity. While no significant associations were found between CD163 and YKL-40 levels and language development, a negative correlation was observed between VILIP-1 levels and language development (p < 0.001). Conclusion Our findings highlight that the levels of CD163 and YKL-40 significantly predicted ASD severity, indicating a potential role of neuroinflammation in the development of ASD.
Collapse
Affiliation(s)
- Samet Can Demirci
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
- Department of Child and Adolescent Psychiatry, Ardahan State Hospital, Ardahan, Turkey
| | - Süreyya Barun
- Department of Medical Pharmacology, Gazi University Medical Faculty, Ankara, Turkey
| | - Ahmet Özaslan
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
- Autism and Developmental Disorders Application and Research Center, Gazi University, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Medical Biochemistry, Gazi University Medical Faculty, Ankara, Turkey
| | | | - Aysu Duyan Çamurdan
- Department of Child Health and Diseases, Gazi University Medical Faculty, Ankara, Turkey
| | - Elvan İşeri
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
2
|
Darbinian N, Darbinyan A, Khalili K, Amini S. Fetal Brain Injury Models of Fetal Alcohol Syndrome: Examination of Neuronal Morphologic Condition Using Sholl Assay. Methods Mol Biol 2021; 2311:195-201. [PMID: 34033088 DOI: 10.1007/978-1-0716-1437-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The lack of a convenient in vitro human neuronal model to study alcohol-induced neurodegenerative diseases, such as fetal alcohol syndrome (FAS), prompted us to develop human neuronal culture and in vitro human FAS model by incubating cells with physiologically relevant EtOH concentration (50 mM). Here, we describe the detailed method of isolation of human neuronal culture, and ability to analyze neurites extension using Sholl assay. We utilized highly efficient transfection method of neuronal cells to study morphology of neurons with or without EtOH treatment.
Collapse
Affiliation(s)
- Nune Darbinian
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA. .,Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, PA, USA.
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Shohreh Amini
- Department of Biology, College of Science & Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Abashkin DA, Kurishev AO, Karpov DS, Golimbet VE. Cellular Models in Schizophrenia Research. Int J Mol Sci 2021; 22:ijms22168518. [PMID: 34445221 PMCID: PMC8395162 DOI: 10.3390/ijms22168518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a prevalent functional psychosis characterized by clinical behavioural symptoms and underlying abnormalities in brain function. Genome-wide association studies (GWAS) of schizophrenia have revealed many loci that do not directly identify processes disturbed in the disease. For this reason, the development of cellular models containing SZ-associated variations has become a focus in the post-GWAS research era. The application of revolutionary clustered regularly interspaced palindromic repeats CRISPR/Cas9 gene-editing tools, along with recently developed technologies for cultivating brain organoids in vitro, have opened new perspectives for the construction of these models. In general, cellular models are intended to unravel particular biological phenomena. They can provide the missing link between schizophrenia-related phenotypic features (such as transcriptional dysregulation, oxidative stress and synaptic dysregulation) and data from pathomorphological, electrophysiological and behavioural studies. The objectives of this review are the systematization and classification of cellular models of schizophrenia, based on their complexity and validity for understanding schizophrenia-related phenotypes.
Collapse
Affiliation(s)
- Dmitrii A. Abashkin
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Artemii O. Kurishev
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Dmitry S. Karpov
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Correspondence:
| |
Collapse
|
4
|
Gou M, Pan S, Tong J, Zhou Y, Han J, Xie T, Yu T, Feng W, Li Y, Chen S, Cui Y, Tian B, Tan MDS, Wang Z, Luo X, Li CSR, Zhang P, Huang J, Hong LE, Tan Y, Tian L. Effects of microRNA-181b-5p on cognitive deficits in first-episode patients with schizophrenia: Mediated by BCL-2. J Psychiatr Res 2021; 136:358-365. [PMID: 33636692 DOI: 10.1016/j.jpsychires.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 11/26/2022]
Abstract
MicroRNA (miR)-181b-5p is considered to be involved in the pathogenesis of schizophrenia, and one of its regulatory target genes BCL-2 (B-cell lymphoma 2) is suggested to associate with cognition of schizophrenia. Cognitive deficit is a core trait of schizophrenia. However, it remains unclear whether miR-181b-5p affects cognition and its possible pathway in schizophrenia. We hypothesized that miR-181b-5p affects cognition by targeting BCL-2 mRNA and downregulating BCL-2 protein expression in schizophrenia patients. In this study, first-episode patients with schizophrenia (FEPS, n = 123) and age- and gender-matched healthy controls (HCs, n = 50) were enrolled in Chinese populations. Expression levels of miR-181b-5p and BCL-2 mRNA in peripheral whole blood were measured with quantitative real-time PCR (Q-PCR) and BCL-2 protein in plasma were measured with Enzyme Linked Immunosorbent Assay (ELISA). Psychopathology was assessed with the Positive and Negative Syndrome Scale (PANSS), cognitive function was evaluated using the MATRICS Consensus Cognitive Battery (MCCB). Peripheral blood miR-181b-5p expression level was significantly upregulated (p = 0.001) whereas BCL-2 mRNA and BCL-2 protein levels were significantly downregulated (p = 0.002, p = 0.023 respectively) in the FEPS compared with those in the HCs. The miR-181b-5p level was negatively (p = 0.005), whereas the BCL-2 mRNA level was positively (p < 0.001), correlated with working memory in FEPS. Mediating effect analysis showed that the effect of miR-181b-5p on working memory in the FEPS was exerted via targeting BCL-2 mRNA. MiR-181b-5p in combination with BCL-2 mRNA might be suggested as potential biomarker for schizophrenia in our discovery sample. In conclusion, overexpressed miR-181b-5p may affect cognitive function in patients with schizophrenia.
Collapse
Affiliation(s)
- Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shujuan Pan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jiarui Han
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Xie
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - M D Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China.
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction in Tauopathy. Int J Mol Sci 2021; 22:ijms22031186. [PMID: 33530349 PMCID: PMC7865413 DOI: 10.3390/ijms22031186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression. In this study, we treated early stage tau transgenic mice with a multi-target kinase inhibitor to identify novel substrates that contribute to cognitive impairment and exhibit therapeutic potential. Drug treatment significantly ameliorated brain atrophy and cognitive function as determined by behavioral testing and a sensitive imaging technique called manganese-enhanced magnetic resonance imaging (MEMRI) with quantitative R1 mapping. Surprisingly, these benefits occurred despite unchanged hyperphosphorylated tau levels. To elucidate the mechanism behind these improved cognitive outcomes, we performed quantitative proteomics to determine the altered protein network during this early stage in tauopathy and compare this model with the human Alzheimer’s disease (AD) proteome. We identified a cluster of preserved pathways shared with human tauopathy with striking potential for broad multi-target kinase intervention. We further report high confidence candidate proteins as novel therapeutically relevant targets for the treatment of tauopathy. Proteomics data are available via ProteomeXchange with identifier PXD023562.
Collapse
|
6
|
Di Paolo A, Eastman G, Mesquita-Ribeiro R, Farias J, Macklin A, Kislinger T, Colburn N, Munroe D, Sotelo Sosa JR, Dajas-Bailador F, Sotelo-Silveira JR. PDCD4 regulates axonal growth by translational repression of neurite growth-related genes and is modulated during nerve injury responses. RNA (NEW YORK, N.Y.) 2020; 26:1637-1653. [PMID: 32747606 PMCID: PMC7566564 DOI: 10.1261/rna.075424.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/20/2020] [Indexed: 05/07/2023]
Abstract
Programmed cell death 4 (PDCD4) protein is a tumor suppressor that inhibits translation through the mTOR-dependent initiation factor EIF4A, but its functional role and mRNA targets in neurons remain largely unknown. Our work identified that PDCD4 is highly expressed in axons and dendrites of CNS and PNS neurons. Using loss- and gain-of-function experiments in cortical and dorsal root ganglia primary neurons, we demonstrated the capacity of PDCD4 to negatively control axonal growth. To explore PDCD4 transcriptome and translatome targets, we used Ribo-seq and uncovered a list of potential targets with known functions as axon/neurite outgrowth regulators. In addition, we observed that PDCD4 can be locally synthesized in adult axons in vivo, and its levels decrease at the site of peripheral nerve injury and before nerve regeneration. Overall, our findings demonstrate that PDCD4 can act as a new regulator of axonal growth via the selective control of translation, providing a target mechanism for axon regeneration and neuronal plasticity processes in neurons.
Collapse
Affiliation(s)
- Andrés Di Paolo
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | | | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada
- University of Toronto, Department of Medical Biophysics, Toronto M5S 1A1, Canada
| | - Nancy Colburn
- Former Chief of Laboratory of Cancer Prevention at the National Cancer Institute-NIH at Frederick, Maryland 21702, USA
| | - David Munroe
- Former Laboratory of Molecular Technologies, LEIDOS at Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - José R Sotelo Sosa
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | | | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias UdelaR, Montevideo 11400, Uruguay
| |
Collapse
|
7
|
Sandoval-Sierra JV, Salgado García FI, Brooks JH, Derefinko KJ, Mozhui K. Effect of short-term prescription opioids on DNA methylation of the OPRM1 promoter. Clin Epigenetics 2020; 12:76. [PMID: 32493461 PMCID: PMC7268244 DOI: 10.1186/s13148-020-00868-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background A long-term opioid use has been associated with hypermethylation of the opioid receptor mu 1 (OPRM1) promoter. Very little is currently known about the early epigenetic response to therapeutic opioids. Here, we examine whether we can detect DNA methylation changes associated with a few days’ use of prescribed opioids. Genome-wide DNA methylation was assayed in a cohort of 33 opioid-naïve participants who underwent standard dental surgery followed by opioid self-administration. Saliva samples were collected before surgery (visit 1), and at two postsurgery visits at 2.7 ± 1.5 days (visit 2), and 39 ± 10 days (visit 3) after the discontinuation of opioid analgesics. Results The perioperative methylome underwent significant changes over the three visits that were primarily due to postoperative inflammatory response and cell heterogeneity. To specifically examine the effect of opioids, we started with a candidate gene approach and evaluated 10 CpGs located in the OPRM1 promoter. There was a significant cross-sectional variability in opioid use, and for participants who self-administered the prescribed drugs, the total dosage ranged from 5–210 morphine milligram equivalent (MME). Participants were categorized by cumulative dosage into three groups: < 25 MME, 25–90 MME, and ≥ 90 MME. Using mixed-effects modeling, 4 CpGs had significant positive associations with opioid dose at two-tailed p value < 0.05, and overall, 9 of the 10 OPRM1 promoter CpGs showed the predicted higher methylation in the higher dose groups relative to the lowest dose group. After adjustment for age, cellular heterogeneity, and past tobacco use, the promoter mean methylation also had positive associations with cumulative MME (regression coefficient = 0.0002, one-tailed p value = 0.02) and duration of opioid use (regression coefficient = 0.003, one-tailed p value = 0.001), but this effect was significant only for visit 3. A preliminary epigenome-wide association study identified a significant CpG in the promoter of the RAS-related signaling gene, RASL10A, that may be predictive of opioid dosage. Conclusion The present study provides evidence that the hypermethylation of the OPRM1 promoter is in response to opioid use and that epigenetic differences in OPRM1 and other sites are associated with a short-term use of therapeutic opioids.
Collapse
Affiliation(s)
- Jose Vladimir Sandoval-Sierra
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Francisco I Salgado García
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jeffrey H Brooks
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Karen J Derefinko
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
8
|
Helios modulates the maturation of a CA1 neuronal subpopulation required for spatial memory formation. Exp Neurol 2019; 323:113095. [PMID: 31712124 DOI: 10.1016/j.expneurol.2019.113095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023]
Abstract
Currently, molecular, electrophysiological and structural studies delineate several neural subtypes in the hippocampus. However, the precise developmental mechanisms that lead to this diversity are still unknown. Here we show that alterations in a concrete hippocampal neuronal subpopulation during development specifically affect hippocampal-dependent spatial memory. We observed that the genetic deletion of the transcription factor Helios in mice, which is specifically expressed in developing hippocampal calbindin-positive CA1 pyramidal neurons (CB-CA1-PNs), induces adult alterations affecting spatial memory. In the same mice, CA3-CA1 synaptic plasticity and spine density and morphology in adult CB-CA1-PNs were severely compromised. RNAseq experiments in developing hippocampus identified an aberrant increase on the Visinin-like protein 1 (VSNL1) expression in the hippocampi devoid of Helios. This aberrant increase on VSNL1 levels was localized in the CB-CA1-PNs. Normalization of VSNL1 levels in CB-CA1-PNs devoid of Helios rescued their spine loss in vitro. Our study identifies a novel and specific developmental molecular pathway involved in the maturation and function of a CA1 pyramidal neuronal subtype.
Collapse
|
9
|
Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci 2018; 193:110-123. [DOI: 10.1016/j.lfs.2017.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
10
|
Dai J, Bing Z, Zhang Y, Li Q, Niu L, Liang W, Yuan G, Duan L, Yin H, Pan Y. Integrated mRNAseq and microRNAseq data analysis for grade III gliomas. Mol Med Rep 2017; 16:7468-7478. [PMID: 28944855 PMCID: PMC5865882 DOI: 10.3892/mmr.2017.7545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
The World Health Organization classification distinguishes four grades for gliomas. Grade III gliomas, which are brain malignant brain tumors with variable biological behavior and propensity, have been not widely investigated. The objective of the present study was to identify specific gene modules and valuable hubs associated with gliomagenesis and molecular signatures to assist in determining grade III glioma prognosis. mRNAseq and micro (mi)RNAseq data were used to construct a co-expression network of gliomas using weight gene co-expression network analysis, and revealed the prognostic molecular signature of grade III gliomas. The differently expressed miRNAs and mRNAs were identified. A total of 37 mRNAs and 10 miRNAs were identified, which were closely associated with the survival rates of patients with grade III glioma. To further understand the tumorigenesis, Cytoscape software was used to construct a network containing these differently expressed molecules. The result suggested that both the downregulated genes and upregulated genes are vital in the process of glioma deterioration, and certain genes are closely associated with clinical prognosis.
Collapse
Affiliation(s)
- Junqiang Dai
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Yinian Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Qiao Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Liang Niu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Wentao Liang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Guoqiang Yuan
- Institute of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Lei Duan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hang Yin
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
11
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
12
|
Györffy BA, Gulyássy P, Gellén B, Völgyi K, Madarasi D, Kis V, Ozohanics O, Papp I, Kovács P, Lubec G, Dobolyi Á, Kardos J, Drahos L, Juhász G, Kékesi KA. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats. Brain Behav Immun 2016; 56:289-309. [PMID: 27058163 DOI: 10.1016/j.bbi.2016.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which might underlie the pathological cortical functions that are characteristic of schizophrenia and ASD.
Collapse
Affiliation(s)
- Balázs A Györffy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Péter Gulyássy
- MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Pediatrics, Medical University of Vienna, Vienna A-1090, Austria
| | - Barbara Gellén
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Katalin Völgyi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Dóra Madarasi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Olivér Ozohanics
- MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | | | | | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna A-1090, Austria
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - József Kardos
- MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Gábor Juhász
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Katalin A Kékesi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary.
| |
Collapse
|
13
|
Oikawa K, Odero GL, Nafez S, Ge N, Zhang D, Kobayashi H, Sate K, Kimura S, Tateno M, Albensi BC. Visinin-Like Protein-3 Modulates the Interaction Between Cytochrome b 5 and NADH-Cytochrome b 5 Reductase in a Ca 2+-Dependent Manner. Cell Biochem Biophys 2016; 74:449-457. [PMID: 27372904 DOI: 10.1007/s12013-016-0753-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/23/2016] [Indexed: 12/01/2022]
Abstract
Visinin-like proteins (VILIPs) belong to the calcium sensor protein family. VILIP-1 has been examined as a cerebrospinal fluid biomarker and as a potential indicator for cognitive decline in Alzheimer's disease (AD). However, little is known about VILIP-3 protein biochemistry. We performed co-immunoprecipitation experiments to examine whether VILIP-3 can interact with reduced nicotine adenine dinucleotide (NADH)-cytochrome b 5 reductase. We also evaluated the specificity of cytochrome b 5 within the visinin-like protein subfamily and identified cytochrome P450 isoforms in the brain. In this study, we show that cytochrome b 5 has an affinity for hippocalcin, neurocalcin-δ, and VILIP-3, but not visinin-like protein-1. VILIP-3 was also shown to interact with NADH-cytochrome b 5 reductase in a Ca2+-dependent manner. These results suggest that VILIP-3, hippocalcin, and neurocalcin-δ provide a Ca2+-dependent modulation to the NADH-dependent microsomal electron transport. The results also suggest that future therapeutic strategies that target calcium-signaling pathways and VILIPs may be of value.
Collapse
Affiliation(s)
- Kensuke Oikawa
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, 351 Tache Ave./Room 4050, Winnipeg, MB, R2H 2A6, Canada
| | - Gary L Odero
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, 351 Tache Ave./Room 4050, Winnipeg, MB, R2H 2A6, Canada
| | - Solmaz Nafez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, 351 Tache Ave./Room 4050, Winnipeg, MB, R2H 2A6, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Ning Ge
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, 351 Tache Ave./Room 4050, Winnipeg, MB, R2H 2A6, Canada
| | - Dali Zhang
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, 351 Tache Ave./Room 4050, Winnipeg, MB, R2H 2A6, Canada
| | - Hiroya Kobayashi
- Department of Pathology, and School of Nursing, Asahikawa Medical College, Asahikawa, 078-8510, Japan
| | - Keisuke Sate
- Department of Pathology, and School of Nursing, Asahikawa Medical College, Asahikawa, 078-8510, Japan
| | - Shoji Kimura
- Department of Pathology, and School of Nursing, Asahikawa Medical College, Asahikawa, 078-8510, Japan
| | - Masatoshi Tateno
- Department of Pathology, and School of Nursing, Asahikawa Medical College, Asahikawa, 078-8510, Japan
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, 351 Tache Ave./Room 4050, Winnipeg, MB, R2H 2A6, Canada. .,Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
14
|
Psychoactive pharmaceuticals at environmental concentrations induce in vitro gene expression associated with neurological disorders. BMC Genomics 2016; 17 Suppl 3:435. [PMID: 27356971 PMCID: PMC4943479 DOI: 10.1186/s12864-016-2784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background A number of researchers have speculated that neurological disorders are mostly due to the interaction of common susceptibility genes with environmental, epigenetic and stochastic factors. Genetic factors such as mutations, insertions, deletions and copy number variations (CNVs) are responsible for only a small subset of cases, suggesting unknown environmental contaminants play a role in triggering neurological disorders like idiopathic autism. Psychoactive pharmaceuticals have been considered as potential environmental contaminants as they are detected in the drinking water at very low concentrations. Preliminary studies in our laboratory identified gene sets associated with neuronal systems and human neurological disorders that were significantly enriched after treating fish brains with psychoactive pharmaceuticals at environmental concentrations. These gene expression inductions were associated with changes in fish behavior. Here, we tested the hypothesis that similar treatments would alter in vitro gene expression associated with neurological disorders (including autism) in human neuronal cells. We differentiated and treated human SK-N-SH neuroblastoma cells with a mixture (fluoxetine, carbamazepine and venlafaxine) and valproate (used as a positive control to induce autism-associated profiles), followed by transcriptome analysis with RNA-Seq approach. Results We found that psychoactive pharmaceuticals and valproate significantly altered neuronal gene sets associated with human neurological disorders (including autism-associated sets). Moreover, we observed that altered expression profiles in human cells were similar to gene expression profiles previously identified in fish brains. Conclusions Psychoactive pharmaceuticals at environmental concentrations altered in vitro gene expression profiles of neuronal growth, development and regulation. These expression patterns were associated with potential neurological disorders including autism, suggested psychoactive pharmaceuticals at environmental concentrations might mimic, aggravate, or induce neurological disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2784-1) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Groblewska M, Muszyński P, Wojtulewska-Supron A, Kulczyńska-Przybik A, Mroczko B. The Role of Visinin-Like Protein-1 in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2016; 47:17-32. [PMID: 26402751 DOI: 10.3233/jad-150060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Calcium ions are crucial in the process of information transmission and integration in the central nervous system (CNS). These ions participate not only in intracellular mechanisms but also in intercellular processes. The changes in the concentration of Ca2 + ions modulate synaptic transmission, whereas neuronal activity induces calcium ion waves. Disturbed calcium homeostasis is thought to be one of the main features in the pathophysiology of Alzheimer's disease (AD), and AD pathogenesis is closely connected to Ca2 + signaling pathways. The effects of changes in neuronal Ca2 + are mediated by neuronal calcium sensor (NCS) proteins. It has been revealed that NCS proteins, with special attention to visinin-like protein 1 (VILIP-1), might have a connection to the etiology of AD. In the CNS, VILIP-1 influences the intracellular neuronal signaling pathways involved in synaptic plasticity, such as cyclic nucleotide cascades and nicotinergic signaling. This particular protein is implicated in calcium-mediated neuronal injury as well. VILIP-1 also participates in the pathological mechanisms of altered Ca2 + homeostasis, leading to neuronal loss. These findings confirm the utility of VILIP-1 as a useful biomarker of neuronal injury. Moreover, VILIP-1 plays a vital role in linking calcium-mediated neurotoxicity and AD-type pathological changes. The disruption of Ca2 + homeostasis caused by AD-type neurodegeneration may result in the damage of VILIP-1-containing neurons in the brain, leading to increased cerebrospinal fluid levels of VILIP-1. Thus, the aim of this overview is to describe the relationships of the NCS protein VILIP-1 with the pathogenetic factors of AD and neurodegenerative processes, as well as its potential clinical usefulness as a biomarker of AD. Moreover, we describe the current and probable therapeutic strategies for AD, targeting calcium-signaling pathways and VILIP-1.
Collapse
Affiliation(s)
| | - Paweł Muszyński
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Poland
| | | | | | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, Poland.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Poland
| |
Collapse
|
16
|
Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Buczak K, Dziedzicka-Wasylewska M. Clozapine influences cytoskeleton structure and calcium homeostasis in rat cerebral cortex and has a different proteomic profile than risperidone. J Neurochem 2015; 132:657-76. [DOI: 10.1111/jnc.13007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Sylwia Kedracka-Krok
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Bianka Swiderska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Urszula Jankowska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Bozena Skupien-Rabian
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Joanna Solich
- Institute of Pharmacology; Polish Academy of Sciences; Krakow Poland
| | - Katarzyna Buczak
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Institute of Pharmacology; Polish Academy of Sciences; Krakow Poland
| |
Collapse
|
17
|
Lin CW, Chang LC, Tseng GC, Kirkwood CM, Sibille EL, Sweet RA. VSNL1 Co-Expression Networks in Aging Include Calcium Signaling, Synaptic Plasticity, and Alzheimer's Disease Pathways. Front Psychiatry 2015; 6:30. [PMID: 25806004 PMCID: PMC4353182 DOI: 10.3389/fpsyt.2015.00030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
The visinin-like 1 (VSNL1) gene encodes visinin-like protein 1, a peripheral biomarker for Alzheimer disease (AD). Little is known, however, about normal VSNL1 expression in brain and the biologic networks in which it participates. Frontal cortex gray matter obtained from 209 subjects without neurodegenerative or psychiatric illness, ranging in age from 16 to 91, was processed on Affymetrix GeneChip 1.1 ST and Human SNP Array 6.0. VSNL1 expression was unaffected by age and sex, and not significantly associated with SNPs in cis or trans. VSNL1 was significantly co-expressed with genes in pathways for calcium signaling, AD, long-term potentiation, long-term depression, and trafficking of AMPA receptors. The association with AD was driven, in part, by correlation with amyloid precursor protein (APP) expression. These findings provide an unbiased link between VSNL1 and molecular mechanisms of AD, including pathways implicated in synaptic pathology in AD. Whether APP may drive increased VSNL1 expression, VSNL1 drives increased APP expression, or both are downstream of common pathogenic regulators will need to be evaluated in model systems.
Collapse
Affiliation(s)
- Chien-Wei Lin
- Department of Biostatistics, University of Pittsburgh , Pittsburgh, PA , USA
| | - Lun-Ching Chang
- Department of Biostatistics, University of Pittsburgh , Pittsburgh, PA , USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh , Pittsburgh, PA , USA
| | - Caitlin M Kirkwood
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, PA , USA
| | - Etienne L Sibille
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, PA , USA ; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Departments of Psychiatry and Pharmacology & Toxicology, University of Toronto , Toronto, ON , Canada
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Neurology, University of Pittsburgh , Pittsburgh, PA , USA ; VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System , Pittsburgh, PA , USA
| |
Collapse
|
18
|
Wearne TA, Mirzaei M, Franklin JL, Goodchild AK, Haynes PA, Cornish JL. Methamphetamine-induced sensitization is associated with alterations to the proteome of the prefrontal cortex: implications for the maintenance of psychotic disorders. J Proteome Res 2014; 14:397-410. [PMID: 25245100 DOI: 10.1021/pr500719f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repeat administration of psychostimulants, such as methamphetamine, produces a progressive increase in locomotor activity (behavioral sensitization) in rodents that is believed to represent the underlying neurochemical changes driving psychoses. Alterations to the prefrontal cortex (PFC) are suggested to mediate the etiology and maintenance of these behavioral changes. As such, the aim of the current study was to investigate changes to protein expression in the PFC in male rats sensitized to methamphetamine using quantitative label-free shotgun proteomics. A methamphetamine challenge resulted in a significant sensitized locomotor response in methamphetamine pretreated animals compared to saline controls. Proteomic analysis revealed 96 proteins that were differentially expressed in the PFC of methamphetamine treated rats, with 20% of these being previously implicated in the neurobiology of schizophrenia in the PFC. We identified multiple biological functions in the PFC that appear to be commonly altered across methamphetamine-induced sensitization and schizophrenia, and these include synaptic regulation, protein phosphatase signaling, mitochondrial function, and alterations to the inhibitory GABAergic network. These changes could inform how alterations to the PFC could underlie the cognitive and behavioral dysfunction commonly seen across psychoses and places such biological changes as potential mediators in the maintenance of psychosis vulnerability.
Collapse
Affiliation(s)
- Travis A Wearne
- Department of Psychology, ‡Department of Chemistry and Biomolecular Sciences, §Australian School of Advanced Medicine, Macquarie University , Sydney, New South Wales 2109, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Kuroda Y, Ohashi I, Saito T, Nagai JI, Ida K, Naruto T, Iai M, Kurosawa K. Refinement of the deletion in 8q22.2-q22.3: The minimum deletion size at 8q22.3 related to intellectual disability and epilepsy. Am J Med Genet A 2014; 164A:2104-8. [DOI: 10.1002/ajmg.a.36604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/04/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Yukiko Kuroda
- Division of Medical Genetics; Kanagawa Children's Medical Center; Yokohama Japan
| | - Ikuko Ohashi
- Division of Medical Genetics; Kanagawa Children's Medical Center; Yokohama Japan
| | - Toshiyuki Saito
- Department of Clinical Laboratory; Kanagawa Children's Medical Center; Yokohama Japan
| | - Jun-ichi Nagai
- Department of Clinical Laboratory; Kanagawa Children's Medical Center; Yokohama Japan
| | - Kazumi Ida
- Division of Medical Genetics; Kanagawa Children's Medical Center; Yokohama Japan
| | - Takuya Naruto
- Division of Medical Genetics; Kanagawa Children's Medical Center; Yokohama Japan
| | - Mizue Iai
- Division of Pediatric Neurology; Kanagawa Children's Medical Center; Yokohama Japan
| | - Kenji Kurosawa
- Division of Medical Genetics; Kanagawa Children's Medical Center; Yokohama Japan
| |
Collapse
|
20
|
Thangavel M, Seelan RS, Lakshmanan J, Vadnal RE, Stagner JI, Parthasarathy LK, Casanova MF, El-Mallakh RS, Parthasarathy RN. Proteomic analysis of rat prefrontal cortex after chronic valproate treatment. J Neurosci Res 2014; 92:927-36. [DOI: 10.1002/jnr.23373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Muthusamy Thangavel
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Ratnam S. Seelan
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
- Department of Molecular; Cellular; and Craniofacial Biology; School of Dentistry, University of Louisville; Louisville Kentucky
| | - Jaganathan Lakshmanan
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Price Institute of Surgical Research; Department of Surgery; School of Medicine, University of Louisville; Louisville Kentucky
| | - Robert E. Vadnal
- Eastern Colorado Health Care System; Department of Veterans Affairs; Pueblo Colorado
| | - John I. Stagner
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
| | - Latha K. Parthasarathy
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Manuel F. Casanova
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Rifaat Shody El-Mallakh
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Ranga N. Parthasarathy
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
- Department of Biochemistry and Molecular Biology; University of Louisville; Louisville Kentucky
| |
Collapse
|
21
|
Darbinian N, Khalili K, Amini S. Neuroprotective activity of pDING in response to HIV-1 Tat. J Cell Physiol 2013; 229:153-61. [PMID: 23955241 DOI: 10.1002/jcp.24392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/17/2013] [Indexed: 12/13/2022]
Abstract
Although neurons are not productively infected with HIV-1, neuronal injury and death are frequently seen in the brains of AIDS patients with neurological and neurocognitive disorders. Evidently, viral proteins including Tat and cellular inflammatory factors released by activated and/or infected microglia, macrophages, and astrocytes contribute to neuronal cell death. Several studies have demonstrated that HIV-1 associated neuronal cell injury is mediated by dysregulation of signaling pathways that are controlled, in part, by a class of serine/threonine kinases. In this study, we demonstrate that pDING, a novel plant-derived phosphate binding protein has the capacity to reduce the severity of injury and death caused by HIV-1 and its neurotoxic Tat protein. We demonstrate that pDING, also called p27SJ/p38SJ, protects cells from the loss of neuronal processes induced by Tat and promotes neuronal outgrowth after Tat-mediated injury. Further, expression of pDING prevents Tat-induced oxidative stress and mitochondrial permeability. With its profound phosphatase activity, pDING controls the activity of several kinases including MAPK, Cdk5, and their downstream target protein, MEF2, which is implicated in neuronal cell protection. Our results show that expression of pDING in neuronal cells diminishes the level of hyperphosphorylated forms of Cdk5 and MEF2 caused by Tat and the other neurotoxic agents that are secreted by the HIV-1 infected cells. These observations suggest that pDING, through its phosphatase activity, has the ability to manipulate the state of phosphorylation and activity of several factors involved in neuronal cell health in response to HIV-1.
Collapse
Affiliation(s)
- Nune Darbinian
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
22
|
A combined metabonomic and proteomic approach identifies frontal cortex changes in a chronic phencyclidine rat model in relation to human schizophrenia brain pathology. Neuropsychopharmacology 2013; 38:2532-44. [PMID: 23942359 PMCID: PMC3799075 DOI: 10.1038/npp.2013.160] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/03/2013] [Accepted: 06/14/2013] [Indexed: 01/30/2023]
Abstract
Current schizophrenia (SCZ) treatments fail to treat the broad range of manifestations associated with this devastating disorder. Thus, new translational models that reproduce the core pathological features are urgently needed to facilitate novel drug discovery efforts. Here, we report findings from the first comprehensive label-free liquid-mass spectrometry proteomic- and proton nuclear magnetic resonance-based metabonomic profiling of the rat frontal cortex after chronic phencyclidine (PCP) intervention, which induces SCZ-like symptoms. The findings were compared with results from a proteomic profiling of post-mortem prefrontal cortex from SCZ patients and with relevant findings in the literature. Through this approach, we identified proteomic alterations in glutamate-mediated Ca(2+) signaling (Ca(2+)/calmodulin-dependent protein kinase II, PPP3CA, and VISL1), mitochondrial function (GOT2 and PKLR), and cytoskeletal remodeling (ARP3). Metabonomic profiling revealed changes in the levels of glutamate, glutamine, glycine, pyruvate, and the Ca(2+) regulator taurine. Effects on similar pathways were also identified in the prefrontal cortex tissue from human SCZ subjects. The discovery of similar but not identical proteomic and metabonomic alterations in the chronic PCP rat model and human brain indicates that this model recapitulates only some of the molecular alterations of the disease. This knowledge may be helpful in understanding mechanisms underlying psychosis, which, in turn, can facilitate improved therapy and drug discovery for SCZ and other psychiatric diseases. Most importantly, these molecular findings suggest that the combined use of multiple models may be required for more effective translation to studies of human SCZ.
Collapse
|
23
|
Wang W, Zhong Q, Teng L, Bhatnagar N, Sharma B, Zhang X, Luther W, Haynes LP, Burgoyne RD, Vidal M, Volchenboum S, Hill DE, George RE. Mutations that disrupt PHOXB interaction with the neuronal calcium sensor HPCAL1 impede cellular differentiation in neuroblastoma. Oncogene 2013; 33:3316-24. [PMID: 23873030 DOI: 10.1038/onc.2013.290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/17/2013] [Accepted: 05/26/2013] [Indexed: 12/14/2022]
Abstract
Heterozygous germline mutations in PHOX2B, a transcriptional regulator of sympathetic neuronal differentiation, predispose to diseases of the sympathetic nervous system, including neuroblastoma and congenital central hypoventilation syndrome (CCHS). Although the PHOX2B variants in CCHS largely involve expansions of the second polyalanine repeat within the C-terminus of the protein, those associated with neuroblastic tumors are nearly always frameshift and truncation mutations. To test the hypothesis that the neuroblastoma-associated variants exert their effects through loss or gain of protein-protein interactions, we performed a large-scale yeast two-hybrid screen using both wild-type (WT) and six different mutant PHOX2B proteins against over 10 000 human genes. The neuronal calcium sensor protein HPCAL1 (VILIP-3) exhibited strong binding to WT PHOX2B and a CCHS-associated polyalanine expansion mutant but only weakly or not at all to neuroblastoma-associated frameshift and truncation variants. We demonstrate that both WT PHOX2B and the neuroblastoma-associated R100L missense and the CCHS-associated alanine expansion variants induce nuclear translocation of HPCAL1 in a Ca(2+)-independent manner, while the neuroblastoma-associated 676delG frameshift and K155X truncation mutants impair subcellular localization of HPCAL1, causing it to remain in the cytoplasm. HPCAL1 did not appreciably influence the ability of WT PHOX2B to transactivate the DBH promoter, nor did it alter the decreased transactivation potential of PHOX2B variants in 293T cells. Abrogation of the PHOX2B-HPCAL1 interaction by shRNA knockdown of HPCAL1 in neuroblastoma cells expressing PHOX2B led to impaired neurite outgrowth with transcriptional profiles indicative of inhibited sympathetic neuronal differentiation. Our results suggest that certain PHOX2B variants associated with neuroblastoma pathogenesis, because of their inability to bind to key interacting proteins such as HPCAL1, may predispose to this malignancy by impeding the differentiation of immature sympathetic neurons.
Collapse
Affiliation(s)
- W Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Q Zhong
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - L Teng
- Chicago Center for Childhood Cancer and Blood Diseases, the University of Chicago, Chicago, IL, USA
| | - N Bhatnagar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B Sharma
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - X Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - W Luther
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - L P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - R D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - M Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Volchenboum
- Chicago Center for Childhood Cancer and Blood Diseases, the University of Chicago, Chicago, IL, USA
| | - D E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - R E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J, Kahn R, Li Y, Illig T, Wang-Sattler R, Rujescu D. Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry 2012; 2:e149. [PMID: 22892715 PMCID: PMC3432190 DOI: 10.1038/tp.2012.76] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/07/2012] [Accepted: 07/07/2012] [Indexed: 01/03/2023] Open
Abstract
Schizophrenia is a severe complex mental disorder affecting 0.5-1% of the world population. To date, diagnosis of the disease is mainly based on personal and thus subjective interviews. The underlying molecular mechanism of schizophrenia is poorly understood. Using targeted metabolomics we quantified and compared 103 metabolites in plasma samples from 216 healthy controls and 265 schizophrenic patients, including 52 cases that do not take antipsychotic medication. Compared with healthy controls, levels of five metabolites were found significantly altered in schizophrenic patients (P-values ranged from 2.9 × 10(-8) to 2.5 × 10(-4)) and in neuroleptics-free probands (P-values ranging between 0.006 and 0.03), respectively. These metabolites include four amino acids (arginine, glutamine, histidine and ornithine) and one lipid (PC ae C38:6) and are suggested as candidate biomarkers for schizophrenia. To explore the genetic susceptibility on the associated metabolic pathways, we constructed a molecular network connecting these five aberrant metabolites with 13 schizophrenia risk genes. Our result implicated aberrations in biosynthetic pathways linked to glutamine and arginine metabolism and associated signaling pathways as genetic risk factors, which may contribute to patho-mechanisms and memory deficits associated with schizophrenia. This study illustrated that the metabolic deviations detected in plasma may serve as potential biomarkers to aid diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Y He
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Key Laboratory of Systems Biology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Z Yu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - I Giegling
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - L Xie
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - A M Hartmann
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - C Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - J Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Experimental Genetics, Technische Universität München, Munich, Germany
| | - R Kahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Y Li
- Key Laboratory of Systems Biology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - T Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - R Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - D Rujescu
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
- Department of Psychiatry, University of Halle, Germany
| |
Collapse
|
25
|
Braunewell KH. The visinin-like proteins VILIP-1 and VILIP-3 in Alzheimer's disease-old wine in new bottles. Front Mol Neurosci 2012; 5:20. [PMID: 22375104 PMCID: PMC3284765 DOI: 10.3389/fnmol.2012.00020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/09/2012] [Indexed: 01/08/2023] Open
Abstract
The neuronal Ca2+-sensor (NCS) proteins VILIP-1 and VILIP-3 have been implicated in the etiology of Alzheimer's disease (AD). Genome-wide association studies (GWAS) show association of genetic variants of VILIP-1 (VSNL1) and VILIP-3 (HPCAL1) with AD+P (+psychosis) and late onset AD (LOAD), respectively. In AD brains the expression of VILIP-1 and VILIP-3 protein and mRNA is down-regulated in cortical and limbic areas. In the hippocampus, for instance, reduced VILIP-1 mRNA levels correlate with the content of neurofibrillary tangles (NFT) and amyloid plaques, the pathological characteristics of AD, and with the mini mental state exam (MMSE), a test for cognitive impairment. More recently, VILIP-1 was evaluated as a cerebrospinal fluid (CSF) biomarker and a prognostic marker for cognitive decline in AD. In CSF increased VILIP-1 levels correlate with levels of Aβ, tau, ApoE4, and reduced MMSE scores. These findings tie in with previous results showing that VILIP-1 is involved in pathological mechanisms of altered Ca2+-homeostasis leading to neuronal loss. In PC12 cells, depending on co-expression with the neuroprotective Ca2+-buffer calbindin D28K, VILIP-1 enhanced tau phosphorylation and cell death. On the other hand, VILIP-1 affects processes, such as cyclic nucleotide signaling and dendritic growth, as well as nicotinergic modulation of neuronal network activity, both of which regulate synaptic plasticity and cognition. Similar to VILIP-1, its interaction partner α4β2 nicotinic acetylcholine receptor (nAChR) is severely reduced in AD, causing severe cognitive deficits. Comparatively little is known about VILIP-3, but its interaction with cytochrome b5, which is part of an antioxidative system impaired in AD, hint toward a role in neuroprotection. A current hypothesis is that the reduced expression of visinin-like protein (VSNLs) in AD is caused by selective vulnerability of subpopulations of neurons, leading to the death of these VILIP-1-expressing neurons, explaining its increased CSF levels. While the Ca2+-sensor appears to be a good biomarker for the detrimental effects of Aβ in AD, its early, possibly Aβ-induced, down-regulation of expression may additionally attenuate neuronal signal pathways regulating the functions of dendrites and neuroplasticity, and as a consequence, this may contribute to cognitive decline in early AD.
Collapse
Affiliation(s)
- Karl H Braunewell
- Molecular and Cellular Neuroscience Laboratory, Department Biochemistry and Molecular Biology, Southern Research Institute, Birmingham AL, USA
| |
Collapse
|