1
|
Effects of psychotropic drugs on ocular parameters relevant to traffic safety: A systematic review. Neurosci Biobehav Rev 2022; 141:104831. [PMID: 35995080 PMCID: PMC10067018 DOI: 10.1016/j.neubiorev.2022.104831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Driving is a complex neurobehavioural task necessitating the rapid selection, uptake, and processing of visual information. Eye movements that are critical for the execution of visually guided behaviour such as driving are also sensitive to the effects of psychotropic substances. The Embase (via Ovid), EBSCOHost, Psynet, Pubmed, Scopus and Web of Science databases were examined from January 01st, 2000 to December 31st, 2021. Study selection, data extraction and Cochrane Risk of Bias (RoB2) assessments were conducted according to PRISMA guidelines. The review was prospectively registered (CRD42021267554). In total, 36 full-text articles examined the effects of six principal psychotropic drug classes on measures of oculomotor parameters relevant to driving. Centrally depressing substances affect oculomotor responses in a dose-dependent manner. Psychostimulants improve maximal speed, but not accuracy, of visual search behaviours. Inhaled Δ-9-tetrahydrocannabinol (THC) increases inattention (saccadic inaccuracy) but does not consistently affect other oculomotor parameters. Alterations to composite ocular parameters due to psychoactive substance usage likely differently compromises performance precision during driving through impaired ability to select and process dynamic visual information.
Collapse
|
2
|
Veraart JKE, Smith-Apeldoorn SY, Bakker IM, Visser BAE, Kamphuis J, Schoevers RA, Touw DJ. Pharmacodynamic Interactions Between Ketamine and Psychiatric Medications Used in the Treatment of Depression: A Systematic Review. Int J Neuropsychopharmacol 2021; 24:808-831. [PMID: 34170315 PMCID: PMC8538895 DOI: 10.1093/ijnp/pyab039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The use of ketamine for depression has increased rapidly in the past decades. Ketamine is often prescribed as an add-on to other drugs used in psychiatric patients, but clear information on drug-drug interactions is lacking. With this review, we aim to provide an overview of the pharmacodynamic interactions between ketamine and mood stabilizers, benzodiazepines, monoamine oxidase-inhibitors, antipsychotics, and psychostimulants. METHODS MEDLINE and Web of Science were searched. RESULTS Twenty-four studies were included. For lithium, no significant interactions with ketamine were reported. Two out of 5 studies on lamotrigine indicated that the effects of ketamine were attenuated. Benzodiazepines were repeatedly shown to reduce the duration of ketamine's antidepressant effect. For the monoamine oxidase-inhibitor tranylcypromine, case reports showed no relevant changes in vital signs during concurrent S-ketamine use. One paper indicated an interaction between ketamine and haloperidol, 2 other studies did not. Four papers investigated risperidone, including 3 neuroimaging studies showing an attenuating effect of risperidone on ketamine-induced brain perfusion changes. Clozapine significantly blunted ketamine-induced positive symptoms in patients with schizophrenia but not in healthy participants. One paper reported no effect of olanzapine on ketamine's acute psychotomimetic effects. CONCLUSION Current literature shows that benzodiazepines and probably lamotrigine reduce ketamine's treatment outcome, which should be taken into account when considering ketamine treatment. There is evidence for an interaction between ketamine and clozapine, haloperidol, and risperidone. Due to small sample sizes, different subject groups and various outcome parameters, the evidence is of low quality. More studies are needed to provide insight into pharmacodynamic interactions with ketamine.
Collapse
Affiliation(s)
- Jolien K E Veraart
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands,PsyQ Haaglanden, Parnassia Psychiatric Institute, The Hague, the Netherlands,Correspondence: J. K. E. Veraart, MD, Mangostraat 1, 2552 KS, The Hague, The Netherlands ()
| | - Sanne Y Smith-Apeldoorn
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands
| | - Iris M Bakker
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands
| | - Berber A E Visser
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands
| | - Jeanine Kamphuis
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands
| | - Robert A Schoevers
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands,University of Groningen, Research School of Behavioural and Cognitive Neurosciences (BCN), Groningen, the Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Nilsen AS, Juel BE, Farnes N, Romundstad L, Storm JF. Behavioral effects of sub-anesthetic ketamine in a go/no-go task. JOURNAL OF PSYCHEDELIC STUDIES 2021. [DOI: 10.1556/2054.2020.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractBackground and aimsWhile psychedelic agents are known to have powerful, but largely unexplained, effects on contents of consciousness, there is an increasing interest in the potential clinical usefulness of such drugs for therapy, and legalization is discussed in some countries. Thus, it is relevant to study the effects of psychedelic compounds not only on experience, but also on behavioral performance.MethodsSeven healthy participants performed a motor response inhibition task before, during, and after sub-anesthetic doses of intravenously administered ketamine. The infusion rate was individually adjusted to produce noticeable subjective psychedelic effects.ResultsWe observed no statistically significant impact of sub-anesthetic ketamine on reaction times, omission errors, or post error slowing, relative to the preceding drug-free condition. However, we did observe significant correlations between performance impairment and self-reported, subjective altered states of consciousness, specifically experience of “anxiety” and “complex imagery.”ConclusionsConsidering the limited number of participants and large variation in strength of self-reported experiences, further studies with wider ranges of ketamine doses and behavioral tasks are needed to determine the presence and strength of potential behavioral effects.
Collapse
Affiliation(s)
- André Sevenius Nilsen
- 1Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Erik Juel
- 1Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nadine Farnes
- 1Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Luis Romundstad
- 2Department of Anesthesia, and Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Johan Frederik Storm
- 1Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Włodarczyk A, Cubała WJ, Gałuszko-Węgielnik M, Szarmach J. Central nervous system-related safety and tolerability of add-on ketamine to antidepressant medication in treatment-resistant depression: focus on the unique safety profile of bipolar depression. Ther Adv Psychopharmacol 2021; 11:20451253211011021. [PMID: 34046159 PMCID: PMC8138297 DOI: 10.1177/20451253211011021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/27/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There is evidence supporting the use of ketamine in treatment-resistant depression (TRD). However, there are some safety and tolerability concerns associated with ketamine. This study aimed to investigate ketamine's safety and tolerability to the central nervous system and to assess the relationship between dissociative symptomology and psychometric outcomes during and after intravenous ketamine treatment concurrent with treatment by varying psychotropic medications in treatment-refractory inpatients with major depressive disorder (MDD) and bipolar disorder (BP). METHODS A total of 49 patients with MDD and BP were included in this study. The subjects were administered ketamine and were assessed for changes using an observational protocol. RESULTS No antidepressants were associated with psychomimetic symptomatology except for citalopram (p = 0.019). Patients treated with citalopram showed a higher intensity of psychomimetic symptomatology. The use of classic mood-stabilizers was significantly associated with an increase in psychomimetic symptomatology according to the Brief Psychiatric Rating Scale (BPRS; lamotrigine p = 0.009, valproate p = 0.048, lithium p = 0.012). No sequelae were observed. CONCLUSIONS Despite the limitations that this study may be underpowered due to the small sample size, the sample consisted of a heterogeneous TRD population in a single site, and there no blinding of who underwent only acute ketamine administration, our observations indicate ketamine use requires close safety and tolerability monitoring with regards to psychomimetic and dissociative symptoms in TRD-BP and careful management for MDD patients.ClinicalTrials.gov identifier: NCT04226963.
Collapse
Affiliation(s)
- Adam Włodarczyk
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7 St. Build. 25, Gdańsk, pomorskie 80-952, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Pomorskie, Poland
| | - Maria Gałuszko-Węgielnik
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Pomorskie, Poland
| | - Joanna Szarmach
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Pomorskie, Poland
| |
Collapse
|
5
|
Effects of ketamine on brain function during response inhibition. Psychopharmacology (Berl) 2018; 235:3559-3571. [PMID: 30357437 DOI: 10.1007/s00213-018-5081-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The uncompetitive N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist ketamine has been proposed to model symptoms of psychosis. Inhibitory deficits in the schizophrenia spectrum have been reliably reported using the antisaccade task. Interestingly, although similar antisaccade deficits have been reported following ketamine in non-human primates, ketamine-induced deficits have not been observed in healthy human volunteers. METHODS To investigate the effects of ketamine on brain function during an antisaccade task, we conducted a double-blind, placebo-controlled, within-subjects study on n = 15 healthy males. We measured the blood oxygen level dependent (BOLD) response and eye movements during a mixed antisaccade/prosaccade task while participants received a subanesthetic dose of intravenous ketamine (target plasma level 100 ng/ml) on one occasion and placebo on the other occasion. RESULTS While ketamine significantly increased self-ratings of psychosis-like experiences, it did not induce antisaccade or prosaccade performance deficits. At the level of BOLD, we observed an interaction between treatment and task condition in somatosensory cortex, suggesting recruitment of additional neural resources in the antisaccade condition under NMDAR blockage. DISCUSSION Given the robust evidence of antisaccade deficits in schizophrenia spectrum populations, the current findings suggest that ketamine may not mimic all features of psychosis at the dose used in this study. Our findings underline the importance of a more detailed research to further understand and define effects of NMDAR hypofunction on human brain function and behavior, with a view to applying ketamine administration as a model system of psychosis. Future studies with varying doses will be of importance in this context.
Collapse
|
6
|
Korn CW, Vunder J, Miró J, Fuentemilla L, Hurlemann R, Bach DR. Amygdala Lesions Reduce Anxiety-like Behavior in a Human Benzodiazepine-Sensitive Approach-Avoidance Conflict Test. Biol Psychiatry 2017; 82:522-531. [PMID: 28364943 PMCID: PMC5598543 DOI: 10.1016/j.biopsych.2017.01.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/18/2017] [Accepted: 01/29/2017] [Indexed: 12/03/2022]
Abstract
BACKGROUND Rodent approach-avoidance conflict tests are common preclinical models of human anxiety disorder. Their translational validity mainly rests on the observation that anxiolytic drugs reduce rodent anxiety-like behavior. Here, we capitalized on a recently developed approach-avoidance conflict computer game to investigate the impact of benzodiazepines and of amygdala lesions on putative human anxiety-like behavior. In successive epochs of this game, participants collect monetary tokens on a spatial grid while under threat of virtual predation. METHODS In a preregistered, randomized, double-blind, placebo-controlled trial, we tested the effect of a single dose (1 mg) of lorazepam (n = 59). We then compared 2 patients with bilateral amygdala lesions due to Urbach-Wiethe syndrome with age- and gender-matched control participants (n = 17). Based on a previous report, the primary outcome measure was the effect of intra-epoch time (i.e., an adaptation to increasing potential loss) on presence in the safe quadrant of the spatial grid. We hypothesized reduced loss adaptation in this measure under lorazepam and in patients with amygdala lesions. RESULTS Lorazepam and amygdala lesions reduced loss adaptation in the primary outcome measure. We found similar results in several secondary outcome measures. The relative reduction of anxiety-like behavior in patients with amygdala lesions was qualitatively and quantitatively indistinguishable from an impact of anterior hippocampus lesions found in a previous report. CONCLUSIONS Our results establish the translational validity of human approach-avoidance conflict tests in terms of anxiolytic drug action. We identified the amygdala, in addition to the hippocampus, as a critical structure in human anxiety-like behavior.
Collapse
Affiliation(s)
- Christoph W. Korn
- Division of Clinical Psychiatry Research, Psychiatric Hospital, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland,Address correspondence to Christoph W. Korn, Ph.D., Psychiatrische Universitätsklinik Zürich, Lenggstrasse 31, 8032 Zurich, Switzerland;Psychiatrische Universitätsklinik Zürich, Lenggstrasse 31Zurich8032Switzerland
| | - Johanna Vunder
- Division of Clinical Psychiatry Research, Psychiatric Hospital, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Júlia Miró
- Epilepsy Unit, University Hospital of Bellvitge, Barcelona, Spain
| | - Lluís Fuentemilla
- Cognition and Brain Plasticity Unit, Institute of Biomedicine Research of Bellvitge, Barcelona, Spain,Department of Cognition, Development, and Educational Psychology, Barcelona, Spain,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Rene Hurlemann
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Dominik R. Bach
- Division of Clinical Psychiatry Research, Psychiatric Hospital, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland,Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
7
|
Meyhöfer I, Kumari V, Hill A, Petrovsky N, Ettinger U. Sleep deprivation as an experimental model system for psychosis: Effects on smooth pursuit, prosaccades, and antisaccades. J Psychopharmacol 2017; 31:418-433. [PMID: 28347256 DOI: 10.1177/0269881116675511] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current antipsychotic medications fail to satisfactorily reduce negative and cognitive symptoms and produce many unwanted side effects, necessitating the development of new compounds. Cross-species, experimental behavioural model systems can be valuable to inform the development of such drugs. The aim of the current study was to further test the hypothesis that controlled sleep deprivation is a safe and effective model system for psychosis when combined with oculomotor biomarkers of schizophrenia. Using a randomized counterbalanced within-subjects design, we investigated the effects of 1 night of total sleep deprivation in 32 healthy participants on smooth pursuit eye movements (SPEM), prosaccades (PS), antisaccades (AS), and self-ratings of psychosis-like states. Compared with a normal sleep control night, sleep deprivation was associated with reduced SPEM velocity gain, higher saccadic frequency at 0.2 Hz, elevated PS spatial error, and an increase in AS direction errors. Sleep deprivation also increased intra-individual variability of SPEM, PS, and AS measures. In addition, sleep deprivation induced psychosis-like experiences mimicking hallucinations, cognitive disorganization, and negative symptoms, which in turn had moderate associations with AS direction errors. Taken together, sleep deprivation resulted in psychosis-like impairments in SPEM and AS performance. However, diverging somewhat from the schizophrenia literature, sleep deprivation additionally disrupted PS control. Sleep deprivation thus represents a promising but possibly unspecific experimental model that may be helpful to further improve our understanding of the underlying mechanisms in the pathophysiology of psychosis and aid the development of antipsychotic and pro-cognitive drugs.
Collapse
Affiliation(s)
- Inga Meyhöfer
- 1 Department of Psychology, University of Bonn, Bonn, Germany
| | - Veena Kumari
- 2 Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,3 NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Antje Hill
- 1 Department of Psychology, University of Bonn, Bonn, Germany.,4 Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
| | | | - Ulrich Ettinger
- 1 Department of Psychology, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
General and emotion-specific neural effects of ketamine during emotional memory formation. Neuroimage 2017; 150:308-317. [PMID: 28232170 DOI: 10.1016/j.neuroimage.2017.02.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/04/2017] [Accepted: 02/18/2017] [Indexed: 01/07/2023] Open
Abstract
Animal studies suggest that N-methyl-D-aspartate receptor (NMDAR) dependent signalling in limbic and prefrontal regions is critically involved in both cognitive and emotional functions. In humans, ketamine-induced transient, and disorder associated chronic NMDAR hypofunction (i.e. in schizophrenia) has been associated with deficient performance in the domains of memory and higher-order emotional functioning, as well as altered neural activity in the underlying limbic-prefrontal circuits. To model the effects of NMDAR hypofunction on the integration of emotion and cognition the present pharmacological fMRI study applied the NMDAR antagonist ketamine (target plasma level=100ng/ml) to 21 healthy volunteers in a within-subject placebo-controlled crossover design during encoding of neutral, positive and negative pictures. Our results show that irrespective of emotion, ketamine suppressed parahippocampal and medial prefrontal activity. In contrast, ketamine selectively increased amygdala and orbitofrontal activity during successful encoding of negative stimuli. On the network level ketamine generally increased medial prefrontal-parahippocampal coupling while specifically decreasing amygdala-orbitofrontal interplay during encoding of negative stimuli. On the behavioural level, ketamine produced generally decreased memory performance and abolished the emotional enhancement of memory after a wash-out period of 5 days. The present findings suggest that ketamine produces general as well as valence-specific effects during emotional memory formation. The pattern partly overlaps with alterations previously observed in patients with schizophrenia.
Collapse
|
9
|
Steffens M, Becker B, Neumann C, Kasparbauer AM, Meyhöfer I, Weber B, Mehta MA, Hurlemann R, Ettinger U. Effects of ketamine on brain function during smooth pursuit eye movements. Hum Brain Mapp 2016; 37:4047-4060. [PMID: 27342447 PMCID: PMC6867533 DOI: 10.1002/hbm.23294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/18/2016] [Accepted: 06/13/2016] [Indexed: 11/07/2022] Open
Abstract
The uncompetitive NMDA receptor antagonist ketamine has been proposed to model symptoms of psychosis. Smooth pursuit eye movements (SPEM) are an established biomarker of schizophrenia. SPEM performance has been shown to be impaired in the schizophrenia spectrum and during ketamine administration in healthy volunteers. However, the neural mechanisms mediating SPEM impairments during ketamine administration are unknown. In a counter-balanced, placebo-controlled, double-blind, within-subjects design, 27 healthy participants received intravenous racemic ketamine (100 ng/mL target plasma concentration) on one of two assessment days and placebo (intravenous saline) on the other. Participants performed a block-design SPEM task during functional magnetic resonance imaging (fMRI) at 3 Tesla field strength. Self-ratings of psychosis-like experiences were obtained using the Psychotomimetic States Inventory (PSI). Ketamine administration induced psychosis-like symptoms, during ketamine infusion, participants showed increased ratings on the PSI dimensions cognitive disorganization, delusional thinking, perceptual distortion and mania. Ketamine led to robust deficits in SPEM performance, which were accompanied by reduced blood oxygen level dependent (BOLD) signal in the SPEM network including primary visual cortex, area V5 and the right frontal eye field (FEF), compared to placebo. A measure of connectivity with V5 and FEF as seed regions, however, was not significantly affected by ketamine. These results are similar to the deviations found in schizophrenia patients. Our findings support the role of glutamate dysfunction in impaired smooth pursuit performance and the use of ketamine as a pharmacological model of psychosis, especially when combined with oculomotor biomarkers. Hum Brain Mapp 37:4047-4060, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Steffens
- Department of Psychology, University of Bonn, Bonn, Germany
| | - B Becker
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - C Neumann
- Department of Anesthesiology, University of Bonn, Bonn, Germany
| | | | - I Meyhöfer
- Department of Psychology, University of Bonn, Bonn, Germany
| | - B Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of NeuroCognition/Imaging, Life&Brain Research Center, Bonn, Germany
| | - M A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - R Hurlemann
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - U Ettinger
- Department of Psychology, University of Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Koychev I, Joyce D, Barkus E, Ettinger U, Schmechtig A, Dourish CT, Dawson GR, Craig KJ, Deakin JFW. Cognitive and oculomotor performance in subjects with low and high schizotypy: implications for translational drug development studies. Transl Psychiatry 2016; 6:C. [PMID: 27187233 PMCID: PMC5070057 DOI: 10.1038/tp.2016.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/14/2022] Open
Abstract
The development of drugs to improve cognition in patients with schizophrenia is a major unmet clinical need. A number of promising compounds failed in recent clinical trials, a pattern linked to poor translation between preclinical and clinical stages of drug development. Seeking proof of efficacy in early Phase 1 studies in surrogate patient populations (for example, high schizotypy individuals where subtle cognitive impairment is present) has been suggested as a strategy to reduce attrition in the later stages of drug development. However, there is little agreement regarding the pattern of distribution of schizotypal features in the general population, creating uncertainty regarding the optimal control group that should be included in prospective trials. We aimed to address this question by comparing the performance of groups derived from the general population with low, average and high schizotypy scores over a range of cognitive and oculomotor tasks. We found that tasks dependent on frontal inhibitory mechanisms (N-Back working memory and anti-saccade oculomotor tasks), as well as a smooth-pursuit oculomotor task were sensitive to differences in the schizotypy phenotype. In these tasks the cognitive performance of 'low schizotypes' was significantly different from 'high schizotypes' with 'average schizotypes' having an intermediate performance. These results indicate that for evaluating putative cognition enhancers for treating schizophrenia in early-drug development studies the maximum schizotypy effect would be achieved using a design that compares low and high schizotypes.
Collapse
Affiliation(s)
- I Koychev
- Department of Community-Based Psychiatry, Neuroscience and Psychiatry Unit, The University of Manchester, School of Community-Based Medicine, Manchester, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - D Joyce
- Cognition, Schizophrenia and Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, London
| | - E Barkus
- Department of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
- Department of Psychiatry, School of Community-Based Medicine, The University of Manchester, Manchester, UK
| | - U Ettinger
- Department of Psychology, University of Bonn, Bonn, Germany
| | - A Schmechtig
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - C T Dourish
- P1vital, Manor House, Howbery Park, Wallingford, UK
| | - G R Dawson
- P1vital, Manor House, Howbery Park, Wallingford, UK
| | - K J Craig
- P1vital, Manor House, Howbery Park, Wallingford, UK
| | - J F W Deakin
- Department of Community-Based Psychiatry, Neuroscience and Psychiatry Unit, The University of Manchester, School of Community-Based Medicine, Manchester, UK
| |
Collapse
|
11
|
Faull OK, Robertson J, Thomas O, Bradwell AR, Antoniades CA, Pattinson KTS. The effect of acetazolamide on saccadic latency at 3459 meters. Wilderness Environ Med 2016; 26:72-7. [PMID: 25712298 DOI: 10.1016/j.wem.2014.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The effect of altitude on brain function is not yet well understood, nor is the influence of height and speed of ascent. Additionally, the relationship between acute mountain sickness (AMS) symptoms and brain function at altitude is unclear. We hypothesized that a deterioration from baseline measures of brain function occurs after rapid, mechanical ascent to 3459 m and would be less pronounced in persons taking acetazolamide. METHODS In this double blind, randomized, placebo-controlled study, 20 healthy volunteers (14 men, 6 women; mean age [±SD] 43 ± 16 years) were alternately allocated to acetazolamide 250 mg or to placebo, taken every 12 hours commencing 3 days before ascent. Prosaccadic and antisaccadic eye movements, heart rate, arterial saturation, and Lake Louise AMS scores were assessed at sea level and 15 to 22 hours after ascent to 3459 m. RESULTS Arterial oxygen saturation was significantly lower in the placebo group compared to the acetazolamide group at altitude (Wilcoxon signed-rank test, median [interquartile range]: acetazolamide vs placebo: 92% [5] vs 85% [5]; P = .007), with no differences in prosaccadic latency, heart rate, or Lake Louise score. No differences in saccadic latencies from baseline to altitude were observed in the placebo group, whereas prosaccadic latencies were significantly longer at altitude with acetazolamide (altitude vs baseline: 153 ms [41] vs 176 ms [52], P = .008). CONCLUSIONS Brain function, measured by saccadic eye movements, appears to be unimpaired after rapid ascent to 3459 m. Although acetazolamide improves oxygen saturations, it may worsen prosaccades, possibly indicating adverse effects of acetazolamide on brain function at moderate altitude.
Collapse
Affiliation(s)
- Olivia K Faull
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (Mss Faull and Robertson, and Drs Antoniades and Pattinson); School of Medicine, University of Birmingham, Birmingham, United Kingdom (Mss Faull and Robertson, Drs Thomas, Bradwell, and Pattinson and the Birmingham Medical Research Expeditionary Society).
| | - Josephine Robertson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (Mss Faull and Robertson, and Drs Antoniades and Pattinson); School of Medicine, University of Birmingham, Birmingham, United Kingdom (Mss Faull and Robertson, Drs Thomas, Bradwell, and Pattinson and the Birmingham Medical Research Expeditionary Society)
| | - Owen Thomas
- School of Medicine, University of Birmingham, Birmingham, United Kingdom (Mss Faull and Robertson, Drs Thomas, Bradwell, and Pattinson and the Birmingham Medical Research Expeditionary Society)
| | - Arthur R Bradwell
- School of Medicine, University of Birmingham, Birmingham, United Kingdom (Mss Faull and Robertson, Drs Thomas, Bradwell, and Pattinson and the Birmingham Medical Research Expeditionary Society)
| | - Chrystalina A Antoniades
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (Mss Faull and Robertson, and Drs Antoniades and Pattinson)
| | - Kyle T S Pattinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom (Mss Faull and Robertson, and Drs Antoniades and Pattinson); School of Medicine, University of Birmingham, Birmingham, United Kingdom (Mss Faull and Robertson, Drs Thomas, Bradwell, and Pattinson and the Birmingham Medical Research Expeditionary Society)
| | | |
Collapse
|
12
|
Phillipou A, Rossell SL, Gurvich C, Hughes ME, Castle DJ, Nibbs RG, Abel LA. Saccadic Eye Movements in Anorexia Nervosa. PLoS One 2016; 11:e0152338. [PMID: 27010196 PMCID: PMC4806909 DOI: 10.1371/journal.pone.0152338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
Background Anorexia Nervosa (AN) has a mortality rate among the highest of any mental illness, though the factors involved in the condition remain unclear. Recently, the potential neurobiological underpinnings of the condition have become of increasing interest. Saccadic eye movement tasks have proven useful in our understanding of the neurobiology of some other psychiatric illnesses as they utilise known brain regions, but to date have not been examined in AN. The aim of this study was to investigate whether individuals with AN differ from healthy individuals in performance on a range of saccadic eye movements tasks. Methods 24 females with AN and 25 healthy individuals matched for age, gender and premorbid intelligence participated in the study. Participants were required to undergo memory-guided and self-paced saccade tasks, and an interleaved prosaccade/antisaccade/no-go saccade task while undergoing functional magnetic resonance imaging (fMRI). Results AN participants were found to make prosaccades of significantly shorter latency than healthy controls. AN participants also made an increased number of inhibitory errors on the memory-guided saccade task. Groups did not significantly differ in antisaccade, no-go saccade or self-paced saccade performance, or fMRI findings. Discussion The results suggest a potential role of GABA in the superior colliculus in the psychopathology of AN.
Collapse
Affiliation(s)
- Andrea Phillipou
- Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Mental Health, The Austin Hospital, Heidelberg, Victoria, Australia
- * E-mail:
| | - Susan Lee Rossell
- Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Hawthorne, Victoria, Australia
- Monash Alfred Psychiatry Research Centre, Monash University, Clayton, Victoria, Australia
- Department of Psychiatry, St Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University, Clayton, Victoria, Australia
| | - Matthew Edward Hughes
- Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Hawthorne, Victoria, Australia
| | - David Jonathan Castle
- Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Psychiatry, St Vincent’s Hospital, Fitzroy, Victoria, Australia
- Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Richard Grant Nibbs
- Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Hawthorne, Victoria, Australia
| | - Larry Allen Abel
- Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Ketamine-induced brain activation in awake female nonhuman primates: a translational functional imaging model. Psychopharmacology (Berl) 2016; 233:961-72. [PMID: 26660447 PMCID: PMC4761287 DOI: 10.1007/s00213-015-4175-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/26/2015] [Indexed: 12/28/2022]
Abstract
RATIONALE There is significant interest in the NMDA receptor antagonist ketamine due to its efficacy in treating depressive disorders and its induction of psychotic-like symptoms that make it a useful tool for modeling psychosis. OBJECTIVE The present study extends the successful development of an apparatus and methodology to conduct pharmacological MRI studies in awake rhesus monkeys in order to evaluate the CNS effects of ketamine. METHODS Functional MRI scans were conducted in four awake adult female rhesus monkeys during sub-anesthetic intravenous (i.v.) infusions of ketamine (0.345 mg/kg bolus followed by 0.256 mg/kg/h constant infusion) with and without risperidone pretreatment (0.06 mg/kg). Statistical parametric maps of ketamine-induced blood oxygenation level-dependent (BOLD) activation were obtained with appropriate general linear regression models (GLMs) incorporating motion and hemodynamics of ketamine infusion. RESULTS Ketamine infusion induced and sustained robust BOLD activation in a number of cortical and subcortical regions, including the thalamus, cingulate gyrus, and supplementary motor area. Pretreatment with the antipsychotic drug risperidone markedly blunted ketamine-induced activation in many brain areas. CONCLUSIONS The results are remarkably similar to human imaging studies showing ketamine-induced BOLD activation in many of the same brain areas, and pretreatment with risperidone or another antipsychotic blunting the ketamine response to a similar extent. The strong concordance of the functional imaging data in humans with these results from nonhuman primates highlights the translational value of the model and provides an excellent avenue for future research examining the CNS effects of ketamine. This model may also be a useful tool for evaluating the efficacy of novel antipsychotic drugs.
Collapse
|
14
|
Ettinger U, Kumari V. Effects of sleep deprivation on inhibitory biomarkers of schizophrenia: implications for drug development. Lancet Psychiatry 2015; 2:1028-35. [PMID: 26544751 DOI: 10.1016/s2215-0366(15)00313-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/16/2015] [Accepted: 07/02/2015] [Indexed: 01/31/2023]
Abstract
Development of drugs for the treatment of the clinical symptoms and cognitive deficits of schizophrenia is unsatisfactory, with many initially promising compounds not showing beneficial effects in clinical studies. Experimental model systems of schizophrenia combined with well-validated biomarkers are urgently needed to provide early indicators of effectiveness. Herein, we argue that experimentally controlled sleep deprivation represents a translational model system that can be studied in combination with neurocognitive biomarkers. Specifically, we review data on the psychotomimetic effects of sleep deprivation in healthy human beings and provide evidence of the psychosis-like deficits in translational inhibitory biomarkers-prepulse inhibition and antisaccades-that occur after sleep deprivation. These data support the use of the sleep deprivation model in combination with biomarkers with excellent psychometric properties and well-characterised neural mechanisms, such as prepulse inhibition and antisaccades, to substantially advance development of drugs with antipsychotic or pro-cognitive effects.
Collapse
Affiliation(s)
- Ulrich Ettinger
- Department of Psychology, University of Bonn, Bonn, Germany.
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Ameqrane I, Wattiez N, Pouget P, Missal M, Pouget P, Pierre P, Missal M, Marcus M. A subanesthetic dose of ketamine in the Rhesus monkey reduces the occurrence of anticipatory saccades. Psychopharmacology (Berl) 2015; 232:3563-72. [PMID: 26153067 DOI: 10.1007/s00213-015-4005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/28/2015] [Indexed: 12/20/2022]
Abstract
RATIONALE It has been shown that antagonism of the glutamatergic N-methyl-D-aspartate (NMDA) receptor with subanesthetic doses of ketamine perturbs the perception of elapsed time. Anticipatory eye movements are based on an internal representation of elapsed time. Therefore, the occurrence of anticipatory saccades could be a particularly sensitive indicator of abnormal time perception due to NMDA receptors blockade. OBJECTIVES The objective of this study was to determine whether the occurrence of anticipatory saccades could be selectively altered by a subanesthetic dose of ketamine. METHODS Three Rhesus monkeys were trained in a simple visually guided saccadic task with a variable delay. Monkeys were rewarded for making a visually guided saccade at the end of the delay. Premature anticipatory saccades to the future position of the eccentric target initiated before the end of the delay were not rewarded. A subanesthetic dose of ketamine (0.25 mg/kg) or a saline solution of the same volume was injected i.m. during the task. RESULTS We found that the injected dose of ketamine did not induce sedation or abnormal behavior. However, in ∼4 min, ketamine induced a strong reduction of the occurrence of anticipatory saccades but did not reduce the occurrence of visually guided saccades. CONCLUSION This unexpected reduction of anticipatory saccade occurrence could be interpreted as resulting from an altered use of the perception of elapsed time during the delay period induced by NMDA receptors antagonism.
Collapse
|
16
|
Schwab S, Jost M, Altorfer A. Impaired top-down modulation of saccadic latencies in patients with schizophrenia but not in first-degree relatives. Front Behav Neurosci 2015; 9:44. [PMID: 25759644 PMCID: PMC4338814 DOI: 10.3389/fnbeh.2015.00044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/06/2015] [Indexed: 02/03/2023] Open
Abstract
Impaired eye movements have a long history in schizophrenia research and meet the criteria of a reliable biomarker. However, the effects of cognitive load and task difficulty on saccadic latencies (SL) are less understood. Recent studies showed that SL are strongly task dependent: SL are decreased in tasks with higher cognitive demand, and increased in tasks with lower cognitive demand. The present study investigates SL modulation in patients with schizophrenia and their first-degree relatives. A group of 13 patients suffering from ICD-10 schizophrenia, 10 first-degree relatives, and 24 control subjects performed two different types of visual tasks: a color task and a Landolt ring orientation task. We used video-based oculography to measure SL. We found that patients exhibited a similar unspecific SL pattern in the two different tasks, whereas controls and relatives exhibited 20–26% shorter average latencies in the orientation task (higher cognitive demand) compared to the color task (lower cognitive demand). Also, classification performance using support vector machines suggests that relatives should be assigned to the healthy controls and not to the patient group. Therefore, visual processing of different content does not modulate SL in patients with schizophrenia, but modulates SL in the relatives and healthy controls. The results reflect a specific oculomotor attentional dysfunction in patients with schizophrenia that is a potential state marker, possibly caused by impaired top-down disinhibition of the superior colliculus by frontal/prefrontal areas such as the frontal eye fields.
Collapse
Affiliation(s)
- Simon Schwab
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| | - Miriam Jost
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| | - Andreas Altorfer
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| |
Collapse
|
17
|
Mohr C, Ettinger U. An Overview of the Association between Schizotypy and Dopamine. Front Psychiatry 2014; 5:184. [PMID: 25566103 PMCID: PMC4271513 DOI: 10.3389/fpsyt.2014.00184] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022] Open
Abstract
Schizotypy refers to a constellation of personality traits that are believed to mirror the subclinical expression of schizophrenia in the general population. Evidence from pharmacological studies indicates that dopamine (DA) is involved in the etiology of schizophrenia. Based on the assumption of a continuum between schizophrenia and schizotypy, researchers have begun investigating the association between DA and schizotypy using a wide range of methods. In this article, we review published studies on this association from the following areas of work: (1) experimental investigations of the interactive effects of dopaminergic challenges and schizotypy on cognition, motor control, and behavior (2), dopaminergically supported cognitive functions (3), studies of associations between schizotypy and polymorphisms in genes involved in dopaminergic neurotransmission, and (4) molecular imaging studies of the association between schizotypy and markers of the DA system. Together, data from these lines of evidence suggest that DA is important to the expression and experience of schizotypy and associated behavioral biases. An important observation is that the experimental designs, methods, and manipulations used in this research are highly heterogeneous. Future studies are required to replicate individual observations, to enlighten the link between DA and different schizotypy dimensions (positive, negative, cognitive disorganization), and to guide the search for solid DA-sensitive behavioral markers. Such studies are important in order to clarify inconsistencies between studies. More work is also needed to identify differences between dopaminergic alterations in schizotypy compared to the dysfunctions observed in schizophrenia.
Collapse
Affiliation(s)
- Christine Mohr
- Institute of Psychology, University of Lausanne , Lausanne , Switzerland
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn , Bonn , Germany
| |
Collapse
|