1
|
Guo J, He C, Song H, Gao H, Yao S, Dong SS, Yang TL. Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives. Neurosci Bull 2024; 40:1333-1352. [PMID: 38703276 PMCID: PMC11365900 DOI: 10.1007/s12264-024-01214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/08/2024] [Indexed: 05/06/2024] Open
Abstract
Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changyi He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huimiao Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huiwu Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shi Yao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Caseras X, Simmonds E, Pardiñas AF, Anney R, Legge SE, Walters JTR, Harrison NA, O'Donovan MC, Escott-Price V. Common risk alleles for schizophrenia within the major histocompatibility complex predict white matter microstructure. Transl Psychiatry 2024; 14:194. [PMID: 38649377 PMCID: PMC11035599 DOI: 10.1038/s41398-024-02910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region - including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia.
Collapse
Affiliation(s)
- Xavier Caseras
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Emily Simmonds
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Dementia Research Institute, London, UK
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Richard Anney
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Neil A Harrison
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Dementia Research Institute, London, UK
| |
Collapse
|
3
|
Jiang X, Zai CC, Kennedy KG, Zou Y, Nikolova YS, Felsky D, Young LT, MacIntosh BJ, Goldstein BI. Association of polygenic risk for bipolar disorder with grey matter structure and white matter integrity in youth. Transl Psychiatry 2023; 13:322. [PMID: 37852985 PMCID: PMC10584947 DOI: 10.1038/s41398-023-02607-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
There is a gap in knowledge regarding the polygenic underpinnings of brain anomalies observed in youth bipolar disorder (BD). This study examined the association of a polygenic risk score for BD (BD-PRS) with grey matter structure and white matter integrity in youth with and without BD. 113 participants were included in the analyses, including 78 participants with both T1-weighted and diffusion-weighted MRI images, 32 participants with T1-weighted images only, and 3 participants with diffusion-weighted images only. BD-PRS was calculated using PRS-CS-auto and was based on independent adult genome-wide summary statistics. Vertex- and voxel-wise analyses examined the associations of BD-PRS with grey matter metrics (cortical volume [CV], cortical surface area [CSA], cortical thickness [CTh]) and fractional anisotropy [FA] in the combined sample, and separately in BD and HC. In the combined sample of participants with T1-weighted images (n = 110, 66 BD, 44 HC), higher BD-PRS was associated with smaller grey matter metrics in frontal and temporal regions. In within-group analyses, higher BD-PRS was associated with lower CTh of frontal, temporal, and fusiform gyrus in BD, and with lower CV and CSA of superior frontal gyrus in HC. In the combined sample of participants with diffusion-weighted images (n = 81, 49 BD, 32 HC), higher BD-PRS was associated with lower FA in widespread white matter regions. In summary, BD-PRS calculated based on adult genetic data was negatively associated with grey matter structure and FA in youth in regions implicated in BD, which may suggest neuroimaging markers of vulnerability to BD. Future longitudinal studies are needed to examine whether BD-PRS predicts neurodevelopmental changes in BD vs. HC and its interaction with course of illness and long-term medication use.
Collapse
Affiliation(s)
- Xinyue Jiang
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yuliya S Nikolova
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - L Trevor Young
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Le H, Dimitrakopoulou K, Patel H, Curtis C, Cordero-Grande L, Edwards AD, Hajnal J, Tournier JD, Deprez M, Cullen H. Effect of schizophrenia common variants on infant brain volumes: cross-sectional study in 207 term neonates in developing Human Connectome Project. Transl Psychiatry 2023; 13:121. [PMID: 37037832 PMCID: PMC10085987 DOI: 10.1038/s41398-023-02413-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Increasing lines of evidence suggest deviations from the normal early developmental trajectory could give rise to the onset of schizophrenia during adolescence and young adulthood, but few studies have investigated brain imaging changes associated with schizophrenia common variants in neonates. This study compared the brain volumes of both grey and white matter regions with schizophrenia polygenic risk scores (PRS) for 207 healthy term-born infants of European ancestry. Linear regression was used to estimate the relationship between PRS and brain volumes, with gestational age at birth, postmenstrual age at scan, ancestral principal components, sex and intracranial volumes as covariates. The schizophrenia PRS were negatively associated with the grey (β = -0.08, p = 4.2 × 10-3) and white (β = -0.13, p = 9.4 × 10-3) matter superior temporal gyrus volumes, white frontal lobe volume (β = -0.09, p = 1.5 × 10-3) and the total white matter volume (β = -0.062, p = 1.66 × 10-2). This result also remained robust when incorporating individuals of Asian ancestry. Explorative functional analysis of the schizophrenia risk variants associated with the right frontal lobe white matter volume found enrichment in neurodevelopmental pathways. This preliminary result suggests possible involvement of schizophrenia risk genes in early brain growth, and potential early life structural alterations long before the average age of onset of the disease.
Collapse
Affiliation(s)
- Hai Le
- Centre for the Developing Brain, Perinatal Imaging and Health Department, King's College London, London, UK.
| | - Konstantina Dimitrakopoulou
- Translational Bioinformatics Platform, NIHR Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Hamel Patel
- NIHR Maudsley Biomedical Research Centre, King's College London, London, UK
| | - Charles Curtis
- NIHR Maudsley Biomedical Research Centre, King's College London, London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Perinatal Imaging and Health Department, King's College London, London, UK
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, ISCIII, Madrid, Spain
| | - A David Edwards
- Centre for the Developing Brain, Perinatal Imaging and Health Department, King's College London, London, UK
| | - Joseph Hajnal
- Centre for the Developing Brain, Perinatal Imaging and Health Department, King's College London, London, UK
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, Perinatal Imaging and Health Department, King's College London, London, UK
| | - Maria Deprez
- Centre for the Developing Brain, Perinatal Imaging and Health Department, King's College London, London, UK
| | - Harriet Cullen
- Centre for the Developing Brain, Perinatal Imaging and Health Department, King's College London, London, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
| |
Collapse
|
5
|
Carroll AL, Damme KSF, Alloy LB, Bart CP, Ng TH, Titone MK, Chein J, Cichocki AC, Armstrong CC, Nusslock R. Risk for bipolar spectrum disorders associated with positive urgency and orbitofrontal cortical grey matter volume. Neuroimage Clin 2022; 36:103225. [PMID: 36242853 PMCID: PMC9668630 DOI: 10.1016/j.nicl.2022.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
Abstract
Bipolar spectrum disorders (BSDs) are associated with reward hypersensitivity, impulsivity, and structural abnormalities within the brain's reward system. Using a behavioral high-risk study design based on reward sensitivity, this paper had two primary objectives: 1) investigate whether elevated positive urgency, the tendency to act rashly when experiencing extreme positive affect, is a risk for or correlate of BSDs, and 2) examine the nature of the relationship between positive urgency and grey matter volume in fronto-striatal reward regions, among individuals at differential risk for BSD. Young adults (ages 18-28) screened to be moderately reward sensitive (MReward; N = 42), highly reward sensitive (HReward; N = 48), or highly reward sensitive with a lifetime BSD (HReward + BSD; N = 32) completed a structural MRI scan and the positive urgency subscale of the UPPS-P scale. Positive urgency scores varied with BSD risk (MReward < HReward < HReward + BSD; ps≤0.05), and positive urgency interacted with BSD risk group in predicting lateral OFC volume (p <.001). Specifically, the MReward group showed a negative relationship between positive urgency and lateral OFC volume. By contrast, there was no relationship between positive urgency and lateral OFC grey matter volume among the HReward and HReward + BSD groups. The results suggest that heightened trait positive urgency is a pre-existing vulnerability for BSD that worsens with illness onset, and there is a distinct relationship between positive urgency and lateral OFC volume among individuals at high versus low risk for BSD. These findings have implications for understanding the expression and development of impulsivity in BSDs.
Collapse
Affiliation(s)
- Ann L Carroll
- Department of Psychology, Northwestern University, Evanston IL, United States.
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston IL, United States; Institute for Innovation in Developmental Sciences, Chicago IL, United States
| | - Lauren B Alloy
- Department of Psychology and Neuroscience, Temple University, Philadelphia PA, United States
| | - Corinne P Bart
- Department of Psychology and Neuroscience, Temple University, Philadelphia PA, United States
| | - Tommy H Ng
- Department of Psychology and Neuroscience, Temple University, Philadelphia PA, United States
| | - Madison K Titone
- Department of Psychology and Neuroscience, Temple University, Philadelphia PA, United States
| | - Jason Chein
- Department of Psychology and Neuroscience, Temple University, Philadelphia PA, United States
| | - Anna C Cichocki
- Department of Psychology, Northwestern University, Evanston IL, United States
| | - Casey C Armstrong
- Department of Psychology, Northwestern University, Evanston IL, United States
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston IL, United States; Institute for Policy Research, Northwestern University, Evanston IL, United States
| |
Collapse
|
6
|
Cattarinussi G, Delvecchio G, Sambataro F, Brambilla P. The effect of polygenic risk scores for major depressive disorder, bipolar disorder and schizophrenia on morphological brain measures: A systematic review of the evidence. J Affect Disord 2022; 310:213-222. [PMID: 35533776 DOI: 10.1016/j.jad.2022.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SCZ) share clinical features and genetic bases. Magnetic Resonance Imaging (MRI) studies assessing the effect of polygenic risk score (PRS) for psychiatric disorders on brain structure show heterogeneous results. Therefore, we provided an overview of the existing evidence on the association between PRS for MDD, BD and SCZ and MRI abnormalities in clinical and healthy populations. METHODS A search on PubMed, Web of Science and Scopus was performed to identify the studies exploring the effect of PRS for MDD, BD and SCZ on MRI measures. A total of 25 studies were included (N = 13 on healthy individuals and N = 12 on clinical populations). RESULTS Both in affected and unaffected individuals, PRS for BD and SCZ showed either positive or negative correlations with cortical thickness (CT), mostly involving fronto-temporal areas, whereas PRS for MDD was associated with cortical alterations in prefrontal regions in healthy subjects. LIMITATIONS The heterogeneity in the methods limits the conclusions of this review. CONCLUSIONS Overall the evidence on the effect of PRS for MDD, BD and SCZ on brain is considerably heterogeneous and far to be conclusive. However, from the results emerged that PRS for MDD, BD and SCZ were associated with widespread cortical abnormalities in all the populations explored, suggesting that genetic risk for MDD, BD and SCZ might affect neurodevelopmental processes, resulting in cortical alterations that transcend diagnostic boundaries and seem to be independent from the clinical status.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Quidé Y, Watkeys OJ, Girshkin L, Kaur M, Carr VJ, Cairns MJ, Green MJ. Interactive effects of polygenic risk and cognitive subtype on brain morphology in schizophrenia spectrum and bipolar disorders. Eur Arch Psychiatry Clin Neurosci 2022; 272:1205-1218. [PMID: 35792918 PMCID: PMC9508053 DOI: 10.1007/s00406-022-01450-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022]
Abstract
Grey matter volume (GMV) may be associated with polygenic risk for schizophrenia (PRS-SZ) and severe cognitive deficits in people with schizophrenia, schizoaffective disorder (collectively SSD), and bipolar disorder (BD). This study examined the interactive effects of PRS-SZ and cognitive subtypes of SSD and BD in relation to GMV. Two-step cluster analysis was performed on 146 clinical cases (69 SSD and 77 BD) assessed on eight cognitive domains (verbal and visual memory, executive function, processing speed, visual processing, language ability, working memory, and planning). Among them, 55 BD, 51 SSD, and 58 healthy controls (HC), contributed to focal analyses of the relationships between cognitive subtypes, PRS-SZ and their interaction on GMV. Two distinct cognitive subtypes were evident among the combined sample of cases: a 'cognitive deficit' group (CD; N = 31, 20SSD/11BD) showed severe impairment across all cognitive indices, and a 'cognitively spared' (CS; N = 75; 31SSD/44BD) group showed intermediate cognitive performance that was significantly worse than the HC group but better than the CD subgroup. A cognitive subgroup-by-PRS-SZ interaction was significantly associated with GMV in the left precentral gyrus. Moderation analyses revealed a significant negative relationship between PRS-SZ and GMV in the CD group only. At low and average (but not high) PRS-SZ, larger precentral GMV was evident in the CD group compared to both CS and HC groups, and in the CS group compared to HCs. This study provides evidence for a relationship between regional GMV changes and PRS-SZ in psychosis spectrum cases with cognitive deficits, but not in cases cognitively spared.
Collapse
Affiliation(s)
- Yann Quidé
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia
| | - Oliver J. Watkeys
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia
| | - Leah Girshkin
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia
| | - Manreena Kaur
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia
| | - Vaughan J. Carr
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia ,Department of Psychiatry, Monash University, Clayton, VIC Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW Australia ,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW Australia ,Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Melissa J. Green
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales (UNSW), Sydney, NSW Australia ,Neuroscience Research Australia, Randwick, NSW Australia
| |
Collapse
|
8
|
Meller T, Ettinger U, Grant P, Nenadić I. The association of striatal volume and positive schizotypy in healthy subjects: intelligence as a moderating factor. Psychol Med 2020; 50:2355-2363. [PMID: 31530329 DOI: 10.1017/s0033291719002459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Schizotypy, a putative schizophrenia endophenotype, has been associated with brain-structural variations partly overlapping with those in psychotic disorders. Variations in precuneus structure have been repeatedly reported, whereas the involvement of fronto-striatal networks - as in schizophrenia - is less clear. While shared genetic architecture is thought to increase vulnerability to environmental insults, beneficial factors like general intelligence might buffer their effect. METHODS To further investigate the role of fronto-striatal networks in schizotypy, we examined the relationship of voxel- and surface-based brain morphometry and a measure of schizotypal traits (Schizotypal Personality Questionnaire, with subscores Cognitive-Perceptual, Interpersonal, Disorganised) in 115 healthy participants [54 female, mean age (s.d.) = 27.57(8.02)]. We tested intelligence (MWT-B) as a potential moderator. RESULTS We found a positive association of SPQ Cognitive-Perceptual with putamen volume (p = 0.040, FWE peak level-corrected), moderated by intelligence: with increasing IQ, the correlation of SPQ Cognitive-Perceptual and striatal volume decreased (p = 0.022). SPQ Disorganised was positively correlated with precentral volume (p = 0.013, FWE peak level-corrected). In an exploratory analysis (p < 0.001, uncorrected), SPQ total score was positively associated with gyrification in the precuneus and postcentral gyrus, and SPQ Disorganised was negatively associated with gyrification in the inferior frontal gyrus. CONCLUSIONS Our findings support the role of fronto-striatal networks for schizotypal features in healthy individuals, and suggest that these are influenced by buffering factors like intelligence. We conclude that protective factors, like general cognitive capacity, might attenuate the psychosis risk associated with schizotypy. These results endorse the idea of a continuous nature of schizotypy, mirroring similar findings in schizophrenia.
Collapse
Affiliation(s)
- Tina Meller
- Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111Bonn, Germany
| | - Phillip Grant
- Psychology School, Fresenius University of Applied Sciences, Marienburgstr. 6, 60528Frankfurt am Main, Germany
- Faculty of Life Science Engineering, Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Igor Nenadić
- Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Marburg University Hospital - UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
| |
Collapse
|
9
|
Grama S, Willcocks I, Hubert JJ, Pardiñas AF, Legge SE, Bracher-Smith M, Menzies GE, Hall LS, Pocklington AJ, Anney RJL, Bray NJ, Escott-Price V, Caseras X. Polygenic risk for schizophrenia and subcortical brain anatomy in the UK Biobank cohort. Transl Psychiatry 2020; 10:309. [PMID: 32908133 PMCID: PMC7481214 DOI: 10.1038/s41398-020-00940-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Research has shown differences in subcortical brain volumes between participants with schizophrenia and healthy controls. However, none of these differences have been found to associate with schizophrenia polygenic risk. Here, in a large sample (n = 14,701) of unaffected participants from the UK Biobank, we test whether schizophrenia polygenic risk scores (PRS) limited to specific gene-sets predict subcortical brain volumes. We compare associations with schizophrenia PRS at the whole genome level ('genomic', including all SNPs associated with the disorder at a p-value threshold < 0.05) with 'genic' PRS (based on SNPs in the vicinity of known genes), 'intergenic' PRS (based on the remaining SNPs), and genic PRS limited to SNPs within 7 gene-sets previously found to be enriched for genetic association with schizophrenia ('abnormal behaviour,' 'abnormal long-term potentiation,' 'abnormal nervous system electrophysiology,' 'FMRP targets,' '5HT2C channels,' 'CaV2 channels' and 'loss-of-function intolerant genes'). We observe a negative association between the 'abnormal behaviour' gene-set PRS and volume of the right thalamus that survived correction for multiple testing (ß = -0.031, pFDR = 0.005) and was robust to different schizophrenia PRS p-value thresholds. In contrast, the only association with genomic PRS surviving correction for multiple testing was for right pallidum, which was observed using a schizophrenia PRS p-value threshold < 0.01 (ß = -0.032, p = 0.0003, pFDR = 0.02), but not when using other PRS P-value thresholds. We conclude that schizophrenia PRS limited to functional gene sets may provide a better means of capturing differences in subcortical brain volume than whole genome PRS approaches.
Collapse
Affiliation(s)
- Steluta Grama
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Isabella Willcocks
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - John J Hubert
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Matthew Bracher-Smith
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Georgina E Menzies
- UK Dementia Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Lynsey S Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Andrew J Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Richard J L Anney
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Nicholas J Bray
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
10
|
Warland A, Kendall KM, Rees E, Kirov G, Caseras X. Schizophrenia-associated genomic copy number variants and subcortical brain volumes in the UK Biobank. Mol Psychiatry 2020; 25:854-862. [PMID: 30679740 PMCID: PMC7156345 DOI: 10.1038/s41380-019-0355-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a highly heritable disorder for which anatomical brain alterations have been repeatedly reported in clinical samples. Unaffected at-risk groups have also been studied in an attempt to identify brain changes that do not reflect reverse causation or treatment effects. However, no robust associations have been observed between neuroanatomical phenotypes and known genetic risk factors for schizophrenia. We tested subcortical brain volume differences between 49 unaffected participants carrying at least one of the 12 copy number variants associated with schizophrenia in UK Biobank and 9063 individuals who did not carry any of the 93 copy number variants reported to be pathogenic. Our results show that CNV carriers have reduced volume in some of the subcortical structures previously shown to be reduced in schizophrenia. Moreover, these associations partially accounted for the association between pathogenic copy number variants and cognitive impairment, which is one of the features of schizophrenia.
Collapse
Affiliation(s)
- Anthony Warland
- 0000 0001 0807 5670grid.5600.3MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Kimberley M. Kendall
- 0000 0001 0807 5670grid.5600.3MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Elliott Rees
- 0000 0001 0807 5670grid.5600.3MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - George Kirov
- 0000 0001 0807 5670grid.5600.3MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
11
|
Neilson E, Shen X, Cox SR, Clarke TK, Wigmore EM, Gibson J, Howard DM, Adams MJ, Harris MA, Davies G, Deary IJ, Whalley HC, McIntosh AM, Lawrie SM. Impact of Polygenic Risk for Schizophrenia on Cortical Structure in UK Biobank. Biol Psychiatry 2019; 86:536-544. [PMID: 31171358 DOI: 10.1016/j.biopsych.2019.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Schizophrenia is a neurodevelopmental disorder with many genetic variants of individually small effect contributing to phenotypic variation. Lower cortical thickness (CT), surface area, and cortical volume have been demonstrated in people with schizophrenia. Furthermore, a range of obstetric complications (e.g., lower birth weight) are consistently associated with an increased risk for schizophrenia. We investigated whether a high polygenic risk score for schizophrenia (PGRS-SCZ) is associated with CT, surface area, and cortical volume in UK Biobank, a population-based sample, and tested for interactions with birth weight. METHODS Data were available for 2864 participants (nmale/nfemale = 1382/1482; mean age = 62.35 years, SD = 7.40). Linear mixed models were used to test for associations among PGRS-SCZ and cortical volume, surface area, and CT and between PGRS-SCZ and birth weight. Interaction effects of these variables on cortical structure were also tested. RESULTS We found a significant negative association between PGRS-SCZ and global CT; a higher PGRS-SCZ was associated with lower CT across the whole brain. We also report a significant negative association between PGRS-SCZ and insular lobe CT. PGRS-SCZ was not associated with birth weight and no PGRS-SCZ × birth weight interactions were found. CONCLUSIONS These results suggest that individual differences in CT are partly influenced by genetic variants and are most likely not due to factors downstream of disease onset. This approach may help to elucidate the genetic pathophysiology of schizophrenia. Further investigation in case-control and high-risk samples could help identify any localized effects of PGRS-SCZ, and other potential schizophrenia risk factors, on CT as symptoms develop.
Collapse
Affiliation(s)
- Emma Neilson
- Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK.
| | - Xueyi Shen
- Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK
| | | | - Jude Gibson
- Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK
| | - David M Howard
- Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK
| | - Mat A Harris
- Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK; The Patrick Wild Centre, Royal Edinburgh Hospital, Edinburgh, UK
| |
Collapse
|
12
|
Alemany S, Jansen PR, Muetzel RL, Marques N, El Marroun H, Jaddoe VWV, Polderman TJC, Tiemeier H, Posthuma D, White T. Common Polygenic Variations for Psychiatric Disorders and Cognition in Relation to Brain Morphology in the General Pediatric Population. J Am Acad Child Adolesc Psychiatry 2019; 58:600-607. [PMID: 30768412 DOI: 10.1016/j.jaac.2018.09.443] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/30/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE This study examined the relation between polygenic scores (PGSs) for 5 major psychiatric disorders and 2 cognitive traits with brain magnetic resonance imaging morphologic measurements in a large population-based sample of children. In addition, this study tested for differences in brain morphology-mediated associations between PGSs for psychiatric disorders and PGSs for related behavioral phenotypes. METHOD Participants included 1,139 children from the Generation R Study assessed at 10 years of age with genotype and neuroimaging data available. PGSs were calculated for schizophrenia, bipolar disorder, major depression disorder, attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, intelligence, and educational attainment using results from the most recent genome-wide association studies. Image processing was performed using FreeSurfer to extract cortical and subcortical brain volumes. RESULTS Greater genetic susceptibility for ADHD was associated with smaller caudate volume (strongest prior = 0.01: β = -0.07, p = .006). In boys, mediation analysis estimates showed that 11% of the association between the PGS for ADHD and the PGS attention problems was mediated by differences in caudate volume (n = 535), whereas mediation was not significant in girls or the entire sample. PGSs for educational attainment and intelligence showed positive associations with total brain volume (strongest prior = 0.5: β = 0.14, p = 7.12 × 10-8; and β = 0.12, p = 6.87 × 10-7, respectively). CONCLUSION The present findings indicate that the neurobiological manifestation of polygenic susceptibility for ADHD, educational attainment, and intelligence involve early morphologic differences in caudate and total brain volumes in childhood. Furthermore, the genetic risk for ADHD might influence attention problems through the caudate nucleus in boys.
Collapse
Affiliation(s)
- Silvia Alemany
- Barcelona Institute for Global Health and the Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Philip R Jansen
- Erasmus University Medical Center, Rotterdam, the Netherlands; Generation R Study Group, Erasmus University Medical Center; Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands; Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, the Netherlands
| | - Ryan L Muetzel
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Natália Marques
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Hanan El Marroun
- Erasmus University Medical Center, Rotterdam, the Netherlands; Generation R Study Group, Erasmus University Medical Center
| | - Vincent W V Jaddoe
- Erasmus University Medical Center, Rotterdam, the Netherlands; Generation R Study Group, Erasmus University Medical Center
| | - Tinca J C Polderman
- Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands; Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, the Netherlands
| | - Henning Tiemeier
- Erasmus University Medical Center, Rotterdam, the Netherlands; Harvard TH Chan School of Public Health, Boston, MA
| | - Danielle Posthuma
- Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands; Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, the Netherlands; VU University Medical Center (VUMC), Amsterdam
| | - Tonya White
- Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Bolhuis K, Tiemeier H, Jansen PR, Muetzel RL, Neumann A, Hillegers MHJ, van den Akker ETL, van Rossum EFC, Jaddoe VWV, Vernooij MW, White T, Kushner SA. Interaction of schizophrenia polygenic risk and cortisol level on pre-adolescent brain structure. Psychoneuroendocrinology 2019; 101:295-303. [PMID: 30599318 DOI: 10.1016/j.psyneuen.2018.12.231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/03/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022]
Abstract
The etiology of schizophrenia is multi-factorial with early neurodevelopmental antecedents, likely to result from a complex interaction of genetic and environmental risk. However, few studies have examined how schizophrenia polygenic risk scores (PRS) are moderated by environmental factors in shaping neurodevelopmental brain structure, prior to the onset of psychotic symptoms. Here, we examined whether hair cortisol, a quantitative metric of chronic stress, moderated the association between genetic risk for schizophrenia and pre-adolescent brain structure. This study was embedded within the Generation R Study, involving pre-adolescents of European ancestry assessed regarding schizophrenia PRS, hair cortisol, and brain imaging (n = 498 structural; n = 526 diffusion tensor imaging). Linear regression was performed to determine the association between schizophrenia PRS, hair cortisol level, and brain imaging outcomes. Although no single measure exceeded the multiple testing threshold, nominally significant interactions were observed for total ventricle volume (Pinteraction = 0.02) and global white matter microstructure (Pinteraction = 0.01) - two of the most well replicated brain structural findings in schizophrenia. These findings provide suggestive evidence for the joint effects of schizophrenia liability and cortisol levels on brain correlates in the pediatric general population. Given the widely replicated finding of ventricular enlargement and lower white matter integrity among schizophrenia patients, our findings generate novel hypotheses for future research on gene-environment interactions affecting the neurodevelopmental pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Koen Bolhuis
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center -Sophia Children's Hospital, Rotterdam, the Netherlands; Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center -Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Philip R Jansen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center -Sophia Children's Hospital, Rotterdam, the Netherlands; Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center -Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center -Sophia Children's Hospital, Rotterdam, the Netherlands; Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center -Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Erica T L van den Akker
- Department of Pediatrics, Erasmus MC University Medical Center -Sophia Children's Hospital, Rotterdam, the Netherlands; Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC University Medical Center -Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center -Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
14
|
Polygenic risk for neuropsychiatric disease and vulnerability to abnormal deep grey matter development. Sci Rep 2019; 9:1976. [PMID: 30760829 PMCID: PMC6374514 DOI: 10.1038/s41598-019-38957-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022] Open
Abstract
Neuropsychiatric disease has polygenic determinants but is often precipitated by environmental pressures, including adverse perinatal events. However, the way in which genetic vulnerability and early-life adversity interact remains obscure. We hypothesised that the extreme environmental stress of prematurity would promote neuroanatomic abnormality in individuals genetically vulnerable to psychiatric disorders. In 194 unrelated infants (104 males, 90 females), born before 33 weeks of gestation (mean gestational age 29.7 weeks), we combined Magnetic Resonance Imaging with a polygenic risk score (PRS) for five psychiatric pathologies to test the prediction that: deep grey matter abnormalities frequently seen in preterm infants are associated with increased polygenic risk for psychiatric illness. The variance explained by the PRS in the relative volumes of four deep grey matter structures (caudate nucleus, thalamus, subthalamic nucleus and lentiform nucleus) was estimated using linear regression both for the full, mixed ancestral, cohort and a subsample of European infants. Psychiatric PRS was negatively associated with lentiform volume in the full cohort (β = −0.24, p = 8 × 10−4) and a European subsample (β = −0.24, p = 8 × 10−3). Genetic variants associated with neuropsychiatric disease increase vulnerability to abnormal lentiform development after perinatal stress and are associated with neuroanatomic changes in the perinatal period.
Collapse
|
15
|
Polygenic risk for schizophrenia and associated brain structural changes: A systematic review. Compr Psychiatry 2019; 88:77-82. [PMID: 30529765 DOI: 10.1016/j.comppsych.2018.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genome wide association studies (GWAS) of schizophrenia allow the generation of Polygenic Risk Scores (PRS). PRS can be used to determine the contribution to altered brain structures in this disorder, which have been well described. However, findings from studies using PRS to predict brain structural changes in schizophrenia have been inconsistent. We therefore performed a systematic review to determine the association between schizophrenia PRS and brain structure. METHODS Following PRISMA systematic review guidelines, databases were searched for literature using key search terms. Inclusion criteria for the discovery sample required case-control schizophrenia GWAS summary statistics from European populations. The target sample was required to be of European ancestry, and have brain structure and genotype information. Quality assessment of the publications was conducted using the Mixed Methods Appraisal Tool for quantitative non-randomised studies. MAIN FINDINGS A total of seven studies were found to be eligible for review. Five studies found no significant association and two studies found a significant association of schizophrenia PRS with total brain, reduced white matter volume, and globus pallidus volume. However, the latter studies were conducted using smaller discovery (ncases = 9394 ncontrols = 12,462) and target samples compared to the studies with substantially larger discovery (ncases = 33,636 ncontrols = 43,008) and target samples where no association was observed. Taken together, the results suggest that schizophrenia PRS are not significantly associated with brain structural changes in this disorder. CONCLUSIONS The lack of significant association between schizophrenia PRS and brain structural changes may indicate that intermediate phenotypes other than brain structure should be the focus of future work. Alternatively, however, the lack of association found here may point to limitations of the current evidence-base, and so point to the need for future better powered studies.
Collapse
|
16
|
Development of Neuroimaging-Based Biomarkers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:159-195. [PMID: 31705495 DOI: 10.1007/978-981-32-9721-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of accumulating neuroimaging data with emphasis on translational potential. The subject will be described in the context of three disease states, i.e., schizophrenia, bipolar disorder, and major depressive disorder, and for three clinical goals, i.e., disease risk assessment, subtyping, and treatment decision.
Collapse
|
17
|
Ranlund S, Calafato S, Thygesen JH, Lin K, Cahn W, Crespo‐Facorro B, de Zwarte SM, Díez Á, Di Forti M, Iyegbe C, Jablensky A, Jones R, Hall M, Kahn R, Kalaydjieva L, Kravariti E, McDonald C, McIntosh AM, McQuillin A, Picchioni M, Prata DP, Rujescu D, Schulze K, Shaikh M, Toulopoulou T, van Haren N, van Os J, Vassos E, Walshe M, Lewis C, Murray RM, Powell J, Bramon E. A polygenic risk score analysis of psychosis endophenotypes across brain functional, structural, and cognitive domains. Am J Med Genet B Neuropsychiatr Genet 2018; 177:21-34. [PMID: 28851104 PMCID: PMC5763362 DOI: 10.1002/ajmg.b.32581] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022]
Abstract
This large multi-center study investigates the relationships between genetic risk for schizophrenia and bipolar disorder, and multi-modal endophenotypes for psychosis. The sample included 4,242 individuals; 1,087 patients with psychosis, 822 unaffected first-degree relatives of patients, and 2,333 controls. Endophenotypes included the P300 event-related potential (N = 515), lateral ventricular volume (N = 798), and the cognitive measures block design (N = 3,089), digit span (N = 1,437), and the Ray Auditory Verbal Learning Task (N = 2,406). Data were collected across 11 sites in Europe and Australia; all genotyping and genetic analyses were done at the same laboratory in the United Kingdom. We calculated polygenic risk scores for schizophrenia and bipolar disorder separately, and used linear regression to test whether polygenic scores influenced the endophenotypes. Results showed that higher polygenic scores for schizophrenia were associated with poorer performance on the block design task and explained 0.2% (p = 0.009) of the variance. Associations in the same direction were found for bipolar disorder scores, but this was not statistically significant at the 1% level (p = 0.02). The schizophrenia score explained 0.4% of variance in lateral ventricular volumes, the largest across all phenotypes examined, although this was not significant (p = 0.063). None of the remaining associations reached significance after correction for multiple testing (with alpha at 1%). These results indicate that common genetic variants associated with schizophrenia predict performance in spatial visualization, providing additional evidence that this measure is an endophenotype for the disorder with shared genetic risk variants. The use of endophenotypes such as this will help to characterize the effects of common genetic variation in psychosis.
Collapse
Affiliation(s)
- Siri Ranlund
- Division of PsychiatryUniversity College LondonLondonUK
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | | | | | - Kuang Lin
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
- Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Wiepke Cahn
- Department of Psychiatry, Brain Centre Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Benedicto Crespo‐Facorro
- CIBERSAMCentro Investigación Biomédica en Red Salud MentalMadridSpain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of MedicineUniversity of Cantabria–IDIVALSantanderSpain
| | - Sonja M.C. de Zwarte
- Department of Psychiatry, Brain Centre Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Álvaro Díez
- Division of PsychiatryUniversity College LondonLondonUK
- Laboratory of Cognitive and Computational Neuroscience—Centre for Biomedical Technology (CTB)Complutense University and Technical University of MadridMadridSpain
| | - Marta Di Forti
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | | | - Conrad Iyegbe
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Assen Jablensky
- Centre for Clinical Research in NeuropsychiatryThe University of Western AustraliaPerth, Western AustraliaAustralia
| | - Rebecca Jones
- Division of PsychiatryUniversity College LondonLondonUK
| | - Mei‐Hua Hall
- Psychosis Neurobiology Laboratory, Harvard Medical SchoolMcLean HospitalBelmontMassachusetts
| | - Rene Kahn
- Department of Psychiatry, Brain Centre Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Luba Kalaydjieva
- Harry Perkins Institute of Medical Research and Centre for Medical ResearchThe University of Western AustraliaPerthAustralia
| | - Eugenia Kravariti
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Colm McDonald
- The Centre for Neuroimaging & Cognitive Genomics (NICOG) and NCBES Galway Neuroscience CentreNational University of Ireland GalwayGalwayIreland
| | - Andrew M. McIntosh
- Division of Psychiatry, University of EdinburghRoyal Edinburgh HospitalEdinburghUK
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
| | | | | | - Marco Picchioni
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Diana P. Prata
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
- Faculdade de Medicina, Instituto de Medicina MolecularUniversidade de LisboaPortugal
| | - Dan Rujescu
- Department of PsychiatryLudwig‐Maximilians University of MunichMunichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity of Halle WittenbergHalleGermany
| | - Katja Schulze
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Madiha Shaikh
- North East London Foundation TrustLondonUK
- Research Department of Clinical, Educational and Health PsychologyUniversity College LondonLondonUK
| | - Timothea Toulopoulou
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
- Department of Psychology, Bilkent UniversityMain CampusBilkent, AnkaraTurkey
- Department of PsychologyThe University of Hong Kong, Pokfulam RdHong Kong SARChina
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong KongThe Hong Kong Jockey Club Building for Interdisciplinary ResearchHong Kong SARChina
| | - Neeltje van Haren
- Department of Psychiatry, Brain Centre Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jim van Os
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
- Department of Psychiatry and Psychology, Maastricht University Medical CentreEURONMaastrichtThe Netherlands
| | - Evangelos Vassos
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Muriel Walshe
- Division of PsychiatryUniversity College LondonLondonUK
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | | | - Cathryn Lewis
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Robin M. Murray
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - John Powell
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Elvira Bramon
- Division of PsychiatryUniversity College LondonLondonUK
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| |
Collapse
|
18
|
Verkooijen S, Stevelink R, Abramovic L, Vinkers CH, Ophoff RA, Kahn RS, Boks MPM, van Haren NEM. The association of sleep and physical activity with integrity of white matter microstructure in bipolar disorder patients and healthy controls. Psychiatry Res 2017; 262:71-80. [PMID: 28236715 PMCID: PMC5381646 DOI: 10.1016/j.pscychresns.2017.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 01/22/2017] [Indexed: 01/19/2023]
Abstract
We investigate how the sleep disruptions and irregular physical activity levels that are prominent features of bipolar disorder (BD) relate to white matter microstructure in patients and controls. Diffusion tension imaging (DTI) and 14-day actigraphy recordings were obtained in 51 BD I patients and 55 age-and-gender-matched healthy controls. Tract-based spatial statistics (TBSS) was used for voxelwise analysis of the association between fractional anisotropy (FA) and sleep and activity characteristics in the overall sample. Next, we investigated whether the relation between sleep and activity and DTI measures differed for patients and controls. Physical activity was related to increased integrity of white matter microstructure regardless of bipolar diagnosis. The relationship between sleep and white matter microstructure was more equivocal; we found an expected association between higher FA and effective sleep in controls but opposite patterns in bipolar patients. Confounding factors such as antipsychotic medication use are a likely explanation for these contrasting findings and highlight the need for further study of medication-related effects on white matter integrity.
Collapse
Affiliation(s)
- Sanne Verkooijen
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Remi Stevelink
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Lucija Abramovic
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Roel A Ophoff
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Marco P M Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Neeltje E M van Haren
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
19
|
Reus LM, Shen X, Gibson J, Wigmore E, Ligthart L, Adams MJ, Davies G, Cox SR, Hagenaars SP, Bastin ME, Deary IJ, Whalley HC, McIntosh AM. Association of polygenic risk for major psychiatric illness with subcortical volumes and white matter integrity in UK Biobank. Sci Rep 2017; 7:42140. [PMID: 28186152 PMCID: PMC5301496 DOI: 10.1038/srep42140] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BP) are common, disabling and heritable psychiatric diseases with a complex overlapping polygenic architecture. Individuals with these disorders, as well as their unaffected relatives, show widespread structural differences in corticostriatal and limbic networks. Structural variation in many of these brain regions is also heritable and polygenic but whether their genetic architecture overlaps with that of major psychiatric disorders is unknown. We sought to address this issue by examining the impact of polygenic risk of MDD, SCZ, and BP on subcortical brain volumes and white matter (WM) microstructure in a large single sample of neuroimaging data; the UK Biobank Imaging study. The first release of UK Biobank imaging data comprised participants with overlapping genetic data and subcortical volumes (N = 978) and WM measures (N = 816). The calculation of polygenic risk scores was based on genome-wide association study results generated by the Psychiatric Genomics Consortium. Our findings indicated no statistically significant associations between either subcortical volumes or WM microstructure, and polygenic risk for MDD, SCZ or BP. These findings suggest that subcortical brain volumes and WM microstructure may not be closely linked to the genetic mechanisms of major psychiatric disorders.
Collapse
Affiliation(s)
- L. M. Reus
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - X. Shen
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - J. Gibson
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - E. Wigmore
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - L. Ligthart
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - M. J. Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - G. Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - S. R. Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - S. P. Hagenaars
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - M. E. Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - I. J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - H. C. Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - A. M. McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| |
Collapse
|
20
|
Ligand autoradiographical quantification of histamine H 3 receptor in human dementia with Lewy bodies. Pharmacol Res 2016; 113:245-256. [PMID: 27592250 PMCID: PMC5113906 DOI: 10.1016/j.phrs.2016.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 01/21/2023]
Abstract
Dementia with Lewy bodies (DLB) is a serious age-dependent human neurodegenerative disease, with multiple debilitating symptoms, including dementia, psychosis and significant motor deficits, but with little or no effective treatments. This comparative ligand autoradiographical study has quantified histamine H3 receptors (H3R) in a series of major cortical and basal ganglia structures in human DLB and Alzheimer’s (AD) post-mortem cases using the highly selective radioligand, [3H] GSK189254. In the main, the levels of H3 receptor were largely preserved in DLB cases when compared with aged-matched controls. However, we provide new evidence showing variable levels in the globus pallidus, and, moreover, raised levels of Pallidum H3 correlated with positive psychotic symptoms, in particular delusions and visual hallucinations, but not symptoms associated with depression. Furthermore, no correlation was detected for H3 receptor levels to MMSE or IUPRS symptom severity. This study suggests that H3R antagonists have scope for treating the psychotic symptomologies in DLB and other human brain disorders.
Collapse
|