1
|
Barone A, De Simone G, Ciccarelli M, Buonaguro EF, Tomasetti C, Eramo A, Vellucci L, de Bartolomeis A. A Postsynaptic Density Immediate Early Gene-Based Connectome Analysis of Acute NMDAR Blockade and Reversal Effect of Antipsychotic Administration. Int J Mol Sci 2023; 24:ijms24054372. [PMID: 36901803 PMCID: PMC10002165 DOI: 10.3390/ijms24054372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Although antipsychotics' mechanisms of action have been thoroughly investigated, they have not been fully elucidated at the network level. We tested the hypothesis that acute pre-treatment with ketamine (KET) and administration of asenapine (ASE) would modulate the functional connectivity of brain areas relevant to the pathophysiology of schizophrenia, based on transcript levels of Homer1a, an immediate early gene encoding a key molecule of the dendritic spine. Sprague-Dawley rats (n = 20) were assigned to KET (30 mg/kg) or vehicle (VEH). Each pre-treatment group (n = 10) was randomly split into two arms, receiving ASE (0.3 mg/kg), or VEH. Homer1a mRNA levels were evaluated by in situ hybridization in 33 regions of interest (ROIs). We computed all possible pairwise Pearson correlations and generated a network for each treatment group. Acute KET challenge was associated with negative correlations between the medial portion of cingulate cortex/indusium griseum and other ROIs, not detectable in other treatment groups. KET/ASE group showed significantly higher inter-correlations between medial cingulate cortex/indusium griseum and lateral putamen, the upper lip of the primary somatosensory cortex, septal area nuclei, and claustrum, in comparison to the KET/VEH network. ASE exposure was associated with changes in subcortical-cortical connectivity and an increase in centrality measures of the cingulate cortex and lateral septal nuclei. In conclusion, ASE was found to finely regulate brain connectivity by modelling the synaptic architecture and restoring a functional pattern of interregional co-activation.
Collapse
Affiliation(s)
- Annarita Barone
- Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, 80131 Naples, Italy
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, 80131 Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, 80131 Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, 80131 Naples, Italy
| | | | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-7463673; Fax: +39-081-7462644
| |
Collapse
|
2
|
Synaptic plasticity in Schizophrenia pathophysiology. IBRO Neurosci Rep 2023. [DOI: 10.1016/j.ibneur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
3
|
Zhang K, Liao P, Wen J, Hu Z. Synaptic plasticity in schizophrenia pathophysiology. IBRO Neurosci Rep 2022; 13:478-487. [PMID: 36590092 PMCID: PMC9795311 DOI: 10.1016/j.ibneur.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric syndrome with psychotic behavioral abnormalities and marked cognitive deficits. It is widely accepted that genetic and environmental factors contribute to the onset of schizophrenia. However, the etiology and pathology of the disease remain largely unexplored. Recently, the synaptopathology and the dysregulated synaptic plasticity and function have emerging as intriguing and prominent biological mechanisms of schizophrenia pathogenesis. Synaptic plasticity is the ability of neurons to change the strength of their connections in response to internal or external stimuli, which is essential for brain development and function, learning and memory, and vast majority of behavior responses relevant to psychiatric diseases including schizophrenia. Here, we reviewed molecular and cellular mechanisms of the multiple forms synaptic plasticity, and the functional regulations of schizophrenia-risk factors including disease susceptible genes and environmental alterations on synaptic plasticity and animal behavior. Recent genome-wide association studies have provided fruitful findings of hundreds of risk gene variances associated with schizophrenia, thus further clarifying the role of these disease-risk genes in synaptic transmission and plasticity will be beneficial to advance our understanding of schizophrenia pathology, as well as the molecular mechanism of synaptic plasticity.
Collapse
Affiliation(s)
- Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China
| | - Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, PR China,Correspondence to: Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, PR China.
| |
Collapse
|
4
|
Adeyelu T, Shrestha A, Adeniyi PA, Lee CC, Ogundele OM. CA1 Spike Timing is Impaired in the 129S Inbred Strain During Cognitive Tasks. Neuroscience 2022; 484:119-138. [PMID: 34800576 PMCID: PMC8844212 DOI: 10.1016/j.neuroscience.2021.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/16/2023]
Abstract
A spontaneous mutation of the disrupted in schizophrenia 1 (Disc1) gene is carried by the 129S inbred mouse strain. Truncated DISC1 protein in 129S mouse synapses impairs the scaffolding of excitatory postsynaptic receptors and leads to progressive spine dysgenesis. In contrast, C57BL/6 inbred mice carry the wild-type Disc1 gene and exhibit more typical cognitive performance in spatial exploration and executive behavioral tests. Because of the innate Disc1 mutation, adult 129S inbred mice exhibit the behavioral phenotypes of outbred B6 Disc1 knockdown (Disc1-/-) or Disc1-L-100P mutant strains. Recent studies in Disc1-/- and L-100P mice have shown that impaired excitation-driven interneuron activity and low hippocampal theta power underlie the behavioral phenotypes that resemble human depression and schizophrenia. The current study compared the firing rate and connectivity profile of putative neurons in the CA1 of freely behaving inbred 129S and B6 mice, which have mutant and wild-type Disc1 genes, respectively. In cognitive behavioral tests, 129S mice had lower exploration scores than B6 mice. Furthermore, the mean firing rate for 129S putative pyramidal (pyr) cells and interneurons (int) was significantly lower than that for B6 CA1 neurons sampled during similar tasks. Analysis of pyr/int connectivity revealed a significant delay in synaptic transmission for 129S putative pairs. Sampled 129S pyr/int pairs also had lower detectability index scores than B6 putative pairs. Therefore, the spontaneous Disc1 mutation in the 129S strain attenuates the firing of putative pyr CA1 neurons and impairs spike timing fidelity during cognitive tasks.
Collapse
Affiliation(s)
- Tolulope Adeyelu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine. Baton Rouge, LA70803, Louisiana
| | - Amita Shrestha
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine. Baton Rouge, LA70803, Louisiana
| | - Philip A. Adeniyi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine. Baton Rouge, LA70803, Louisiana
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine. Baton Rouge, LA70803, Louisiana
| | - Olalekan M. Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine. Baton Rouge, LA70803, Louisiana
| |
Collapse
|
5
|
Functional brain defects in a mouse model of a chromosomal t(1;11) translocation that disrupts DISC1 and confers increased risk of psychiatric illness. Transl Psychiatry 2021; 11:135. [PMID: 33608504 PMCID: PMC7895946 DOI: 10.1038/s41398-021-01256-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
A balanced t(1;11) translocation that directly disrupts DISC1 is linked to schizophrenia and affective disorders. We previously showed that a mutant mouse, named Der1, recapitulates the effect of the translocation upon DISC1 expression. Here, RNAseq analysis of Der1 mouse brain tissue found enrichment for dysregulation of the same genes and molecular pathways as in neuron cultures generated previously from human t(1;11) translocation carriers via the induced pluripotent stem cell route. DISC1 disruption therefore apparently accounts for a substantial proportion of the effects of the t(1;11) translocation. RNAseq and pathway analysis of the mutant mouse predicts multiple Der1-induced alterations converging upon synapse function and plasticity. Synaptosome proteomics confirmed that the Der1 mutation impacts synapse composition, and electrophysiology found reduced AMPA:NMDA ratio in hippocampal neurons, indicating changed excitatory signalling. Moreover, hippocampal parvalbumin-positive interneuron density is increased, suggesting that the Der1 mutation affects inhibitory control of neuronal circuits. These phenotypes predict that neurotransmission is impacted at many levels by DISC1 disruption in human t(1;11) translocation carriers. Notably, genes implicated in schizophrenia, depression and bipolar disorder by large-scale genetic studies are enriched among the Der1-dysregulated genes, just as we previously observed for the t(1;11) translocation carrier-derived neurons. Furthermore, RNAseq analysis predicts that the Der1 mutation primarily targets a subset of cell types, pyramidal neurons and interneurons, previously shown to be vulnerable to the effects of common schizophrenia-associated genetic variants. In conclusion, DISC1 disruption by the t(1;11) translocation may contribute to the psychiatric disorders of translocation carriers through commonly affected pathways and processes in neurotransmission.
Collapse
|
6
|
Li N, Cui L, Song G, Guo L, Gu H, Cao H, Li GD, Zhou Y. Adolescent Isolation Interacts With DISC1 Point Mutation to Impair Adult Social Memory and Synaptic Functions in the Hippocampus. Front Cell Neurosci 2018; 12:238. [PMID: 30116177 PMCID: PMC6082952 DOI: 10.3389/fncel.2018.00238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/17/2018] [Indexed: 11/16/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a strong candidate susceptibility gene for a spectrum of neuropsychiatric diseases including schizophrenia, bipolar disorder and major depression, all of which are thought to result from interactions between gene mutations and environmental risk factors such as influenza, trauma and stress. Adolescence is a key period susceptible to stress and stress-related mental illnesses. In a previous study, we found that although DISC1 L100P point mutation mice shows object recognition deficits, their sociability and social memory are relatively normal. Therefore, in this article, we investigated whether the interaction between adolescent stress and DISC1 L100P point mutation affects adult social memory, and we explored the underlying mechanisms. We found that adolescent stress (isolation from 5 weeks to 8 weeks of age) specifically impaired social memory of adult DISC1 L100P mice but not that of WT littermates, which could be rescued by administration of atypical antipsychotic drug clozapine. On the other hand, it did not induce anxiety or depression in adult mice. Adolescent isolation exacerbated adult neurogenesis deficits in the hippocampus of DISC1 L100P mice, while it had no effect on WT mice. In addition, we found that adolescent isolation led to long lasting changes in synaptic transmission and plasticity in the hippocampal circuits, some of which are specific for DISC1 L100P mice. In summary, we identified here the specific interaction between genetic mutation (DISC1 L100P) and adolescence social stress that damages synaptic function and social memory in adult hippocampal circuits. HighlightsAdolescent isolation (from 5 weeks to 8 weeks of age) impairs adult social memory when combined with DISC1 L100P point mutation. Adolescent isolation exacerbates adult neurogenesis deficit in the hippocampus of L100P mice but has no similar effect on WT mice. Adolescent isolation causes long lasting changes in synaptic transmission and plasticity of the hippocampal network in DISC1 L100P mice.
Collapse
Affiliation(s)
- Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lin Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, China
| | - Ge Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Li Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Huating Gu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Haisheng Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Guo-Dong Li
- Department of Surgery, Valley Presbyterian Hospital, Van Nuys, CA, United States
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
8
|
Sultana R, Ghandi T, M. Davila A, Lee CC, Ogundele OM. Upregulated SK2 Expression and Impaired CaMKII Phosphorylation Are Shared Synaptic Defects Between 16p11.2del and 129S: Δdisc1 Mutant Mice. ASN Neuro 2018; 10:1759091418817641. [PMID: 33592687 PMCID: PMC6295693 DOI: 10.1177/1759091418817641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Ion channel gating and kinase regulation of N-methyl-D-aspartate receptor 1 activity are fundamental mechanisms that govern synaptic plasticity. In this study, we showed that two mutant models (16p11.2del and Δdisc1 ) that recapitulate aspects of human cognitive disorders shared a similar defect in N-methyl-D-aspartate receptor 1-dependent synaptic function. Our results demonstrate that the expression of small-conductance potassium channels (SK2 or KCa2.2) was significantly upregulated in the hippocampus and prefrontal cortex of 16p11.2del and 129S:Δdisc1 mutant mice. Likewise, both mutant strains exhibited an impairment of T286 phosphorylation of calcium-calmodulin-dependent kinase II (CaMKII) in the hippocampus and prefrontal cortex. In vivo neural recordings revealed that increased SK2 expression and impaired T286 phosphorylation of CaMKII coincide with a prolonged interspike interval in the hippocampal cornu ammonis-1 (CA1) field for both 16p11.2del and 129S:Δdisc1 mutant mice. These findings suggest that alteration of small conductance channels and T286 phosphorylation of CaMKII are likely shared factors underlying behavioral changes in these two genetic mouse models.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Comparative Biomedical Sciences, Louisiana State
University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Tanya Ghandi
- Department of Comparative Biomedical Sciences, Louisiana State
University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Alexandra M. Davila
- Department of Comparative Biomedical Sciences, Louisiana State
University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State
University School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Olalekan M. Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State
University School of Veterinary Medicine, Baton Rouge, LA, USA
| |
Collapse
|
9
|
Dachtler J, Fox K. Do cortical plasticity mechanisms differ between males and females? J Neurosci Res 2017; 95:518-526. [PMID: 27870449 PMCID: PMC5111614 DOI: 10.1002/jnr.23850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
The difference between male and female behavior and male and female susceptibility to a number of neuropsychiatric conditions is not controversial. From a biological perspective, one might expect to see at least some of these differences underpinned by identifiable physical differences in the brain. This Mini‐Review focuses on evidence that plasticity mechanisms differ between males and females and ask at what scale of organization the differences might exist, at the systems level, the circuits level, or the synaptic level. Emerging evidence suggests that plasticity differences may extend to the scale of synaptic mechanisms. In particular, the CaMKK, NOS1 and estrogen receptor pathways show sexual dimorphisms with implications for plasticity in the hippocampus and cerebral cortex. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James Dachtler
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
The Role of CREB, SRF, and MEF2 in Activity-Dependent Neuronal Plasticity in the Visual Cortex. J Neurosci 2017; 37:6628-6637. [PMID: 28607167 DOI: 10.1523/jneurosci.0766-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/30/2017] [Accepted: 05/29/2017] [Indexed: 01/17/2023] Open
Abstract
The transcription factors CREB (cAMP response element binding factor), SRF (serum response factor), and MEF2 (myocyte enhancer factor 2) play critical roles in the mechanisms underlying neuronal plasticity. However, the role of the activation of these transcription factors in the different components of plasticity in vivo is not well known. In this study, we tested the role of CREB, SRF, and MEF2 in ocular dominance plasticity (ODP), a paradigm of activity-dependent neuronal plasticity in the visual cortex. These three proteins bind to the synaptic activity response element (SARE), an enhancer sequence found upstream of many plasticity-related genes (Kawashima et al., 2009; Rodríguez-Tornos et al., 2013), and can act cooperatively to express Arc, a gene required for ODP (McCurry et al., 2010). We used viral-mediated gene transfer to block the transcription function of CREB, SRF, and MEF2 in the visual cortex, and measured visually evoked potentials in awake male and female mice before and after a 7 d monocular deprivation, which allowed us to examine both the depression component (Dc-ODP) and potentiation component (Pc-ODP) of plasticity independently. We found that CREB, SRF, and MEF2 are all required for ODP, but have differential effects on Dc-ODP and Pc-ODP. CREB is necessary for both Dc-ODP and Pc-ODP, whereas SRF and MEF2 are only needed for Dc-ODP. This finding supports previous reports implicating SRF and MEF2 in long-term depression (required for Dc-ODP), and CREB in long-term potentiation (required for Pc-ODP).SIGNIFICANCE STATEMENT Activity-dependent neuronal plasticity is the cellular basis for learning and memory, and it is crucial for the refinement of neuronal circuits during development. Identifying the mechanisms of activity-dependent neuronal plasticity is crucial to finding therapeutic interventions in the myriad of disorders where it is disrupted, such as Fragile X syndrome, Rett syndrome, epilepsy, major depressive disorder, and autism spectrum disorder. Transcription factors are essential nuclear proteins that trigger the expression of gene programs required for long-term functional and structural plasticity changes. Our results elucidate the specific role of the transcription factors CREB, SRF, and MEF2 in the depression and potentiation components of ODP in vivo, therefore better informing future attempts to find therapeutic targets for diseases where activity-dependent plasticity is disrupted.
Collapse
|
11
|
Cui L, Sun W, Yu M, Li N, Guo L, Gu H, Zhou Y. Disrupted-in-schizophrenia1 (DISC1) L100P mutation alters synaptic transmission and plasticity in the hippocampus and causes recognition memory deficits. Mol Brain 2016; 9:89. [PMID: 27729083 PMCID: PMC5059944 DOI: 10.1186/s13041-016-0270-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/05/2016] [Indexed: 11/21/2022] Open
Abstract
Disrupted-in-schizophrenia 1(DISC1) is a promising candidate susceptibility gene for a spectrum of psychiatric illnesses that share cognitive impairments in common, including schizophrenia, bipolar disorder and major depression. Here we report that DISC1 L100P homozygous mutant shows normal anxiety- and depression-like behavior, but impaired object recognition which is prevented by administration of atypical antipsychotic drug clozapine. Ca2+ image analysis reveals suppression of glutamate-evoked elevation of cytoplasmic [Ca2+] in L100P hippocampal slices. L100P mutant slices exhibit decreased excitatory synaptic transmission (sEPSCs and mEPSCs) in dentate gyrus (DG) and impaired long-term potentiation in the CA1 region of the hippocampus. L100P mutation does not alter proteins expression of the excitatory synaptic markers, PSD95 and synapsin-1; neither does it changes dendrites morphology of primary cultured hippocampal neurons. Our findings suggest that the existence of abnormal synaptic transmission and plasticity in hippocampal network may disrupt declarative information processing and contribute to recognition deficits in DISC1 L100P mutant mice.
Collapse
Affiliation(s)
- Lin Cui
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China.,Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong, 266071, China
| | - Wei Sun
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China.,Departments of Medicine, Shandong Liming Polytechnic Vocational College, Jinan, Shandong, 250116, China
| | - Ming Yu
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Nan Li
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Li Guo
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Huating Gu
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Yu Zhou
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China.
| |
Collapse
|