1
|
Ge LK, Man X, Cai K, Liu Z, Tsang WW, Chen A, Wei GX. Sharing Our World: Impact of Group Motor Skill Learning on Joint Attention in Children with Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06528-7. [PMID: 39230782 DOI: 10.1007/s10803-024-06528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Impaired joint attention is a common feature of autism spectrum disorder (ASD), affecting social interaction and communication. We explored if group basketball learning could enhance joint attention in autistic children, and how this relates to brain changes, particularly white matter development integrity. Forty-nine autistic children, aged 4-12 years, were recruited from special education centers. The experimental group underwent a 12-week basketball motor skill learning, while the control group received standard care. Eye-tracking and brain scans were conducted. The 12-week basketball motor skill learning improved joint attention in the experimental group, evidenced by better eye tracking metrics and enhanced white matter integrity. Moreover, reduced time to first fixation correlated positively with decreased mean diffusivity of the left superior corona radiata and left superior fronto-occipital fasciculus in the experimental group. Basketball-based motor skill intervention effectively improved joint attention in autistic children. Improved white matter fiber integrity related to sensory perception, spatial and early attention function may underlie this effect. These findings highlight the potential of group motor skill learning within clinical rehabilitation for treating ASD.
Collapse
Affiliation(s)
- Li-Kun Ge
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Man
- Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, 100875, China
- Shandong Sports Science Research Center, Jinan, 250100, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - Zhimei Liu
- College of Physical Education, Yangzhou University, Yangzhou, 225009, China
| | - William Wainam Tsang
- Department of Physiotherapy, School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, China
| | - Aiguo Chen
- Nanjing Institute of Physical Education, Nanjing, 210014, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou, 225127, China
| | - Gao-Xia Wei
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Arunachalam Chandran V, Pliatsikas C, Neufeld J, O'Connell G, Haffey A, DeLuca V, Chakrabarti B. Brain structural correlates of autistic traits across the diagnostic divide: A grey matter and white matter microstructure study. Neuroimage Clin 2021; 32:102897. [PMID: 34911200 PMCID: PMC8641248 DOI: 10.1016/j.nicl.2021.102897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022]
Abstract
Autism Spectrum Disorders (ASD) are a set of neurodevelopmental conditions characterised by difficulties in social interaction and communication as well as stereotyped and restricted patterns of interest. Autistic traits exist in a continuum across the general population, whilst the extreme end of this distribution is diagnosed as clinical ASD. While many studies have investigated brain structure in autism using a case-control design, few have used a dimensional approach. To add to this growing body of literature, we investigated the structural brain correlates of autistic traits in a mixed sample of adult participants (25 ASD and 66 neurotypicals; age: 18-60 years). We examined the relationship between regional brain volumes (using voxel-based morphometry and surface-based morphometry) and white matter microstructure properties (using Diffusion Tensor Imaging) and autistic traits (using Autism Spectrum Quotient). Our findings show grey matter differences in regions including the orbitofrontal cortex and lingual gyrus, and suggestive evidence for white matter microstructure differences in tracts including the superior longitudinal fasciculus being related to higher autistic traits. These grey matter and white matter microstructure findings from our study are consistent with previous reports and support the brain structural differences in ASD. These findings provide further support for shared aetiology for autistic traits across the diagnostic divide.
Collapse
Affiliation(s)
- Varun Arunachalam Chandran
- Centre for Autism, School of Psychology and Clinical Language Sciences (SPCLS), University of Reading, UK; Center for Mind and Brain, University of California Davis, Davis, CA, USA.
| | - Christos Pliatsikas
- School of Psychology and Clinical Language Sciences, University of Reading, Harry Pitt Building, Earley Gate, Whiteknights Road, Reading RG6 6AL, UK; Centro de Ciencia Cognitiva, Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Calle de Sta. Cruz de Marcenado, 27, 28015 Madrid, Spain
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | | | - Anthony Haffey
- Centre for Autism, School of Psychology and Clinical Language Sciences (SPCLS), University of Reading, UK
| | - Vincent DeLuca
- Department of Language and Culture, UiT- The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| | - Bhismadev Chakrabarti
- Centre for Autism, School of Psychology and Clinical Language Sciences (SPCLS), University of Reading, UK; Department of Psychology, Ashoka University, Sonipat, India; India Autism Center, Kolkata, India
| |
Collapse
|
3
|
Minio-Paluello I, Porciello G, Pascual-Leone A, Baron-Cohen S. Face individual identity recognition: a potential endophenotype in autism. Mol Autism 2020; 11:81. [PMID: 33081830 PMCID: PMC7576748 DOI: 10.1186/s13229-020-00371-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Face individual identity recognition skill is heritable and independent of intellectual ability. Difficulties in face individual identity recognition are present in autistic individuals and their family members and are possibly linked to oxytocin polymorphisms in families with an autistic child. While it is reported that developmental prosopagnosia (i.e., impaired face identity recognition) occurs in 2-3% of the general population, no prosopagnosia prevalence estimate is available for autism. Furthermore, an autism within-group approach has not been reported towards characterizing impaired face memory and to investigate its possible links to social and communication difficulties. METHODS The present study estimated the prevalence of prosopagnosia in 80 autistic adults with no intellectual disability, investigated its cognitive characteristics and links to autism symptoms' severity, personality traits, and mental state understanding from the eye region by using standardized tests and questionnaires. RESULTS More than one third of autistic participants showed prosopagnosia. Their face memory skill was not associated with their symptom's severity, empathy, alexithymia, or general intelligence. Face identity recognition was instead linked to mental state recognition from the eye region only in autistic individuals who had prosopagnosia, and this relationship did not depend on participants' basic face perception skills. Importantly, we found that autistic participants were not aware of their face memory skills. LIMITATIONS We did not test an epidemiological sample, and additional work is necessary to establish whether these results generalize to the entire autism spectrum. CONCLUSIONS Impaired face individual identity recognition meets the criteria to be a potential endophenotype in autism. In the future, testing for face memory could be used to stratify autistic individuals into genetically meaningful subgroups and be translatable to autism animal models.
Collapse
Affiliation(s)
- Ilaria Minio-Paluello
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Rome, Italy.
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| | - Giuseppina Porciello
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Brain connectivity analysis in fathers of children with autism. Cogn Neurodyn 2020; 14:781-793. [PMID: 33101531 DOI: 10.1007/s11571-020-09625-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/28/2020] [Accepted: 08/16/2020] [Indexed: 01/24/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in which changes in brain connectivity, associated with autistic-like traits in some individuals. First-degree relatives of children with autism may show mild deficits in social interaction. The present study investigates electroencephalography (EEG) brain connectivity patterns of the fathers who have children with autism while performing facial emotion labeling task. Fifteen biological fathers of children with the diagnosis of autism (Test Group) and fifteen fathers of neurotypical children with no personal or family history of autism (Control Group) participated in this study. Facial emotion labeling task was evaluated using a set of photos consisting of six categories (mild and extreme: anger, happiness, and sadness). Group Independent Component Analysis method was applied to EEG data to extract neural sources. Dynamic causal connectivity of neural sources signals was estimated using the multivariate autoregressive model and quantified by using the Granger causality-based methods. Statistical analysis showed significant differences (p value < 0.01) in the connectivity of neural sources in recognition of some emotions in two groups, which the most differences observed in the mild anger and mild sadness emotions. Short-range connectivity appeared in Test Group and conversely, long-range and interhemispheric connections are observed in Control Group. Finally, it can be concluded that the Test Group showed abnormal activity and connectivity in the brain network for the processing of emotional faces compared to the Control Group. We conclude that neural source connectivity analysis in fathers may be considered as a potential and promising biomarker of ASD.
Collapse
|
5
|
Thompson A, Shahidiani A, Fritz A, O’Muircheartaigh J, Walker L, D’Almeida V, Murphy C, Daly E, Murphy D, Williams S, Deoni S, Ecker C. Age-related differences in white matter diffusion measures in autism spectrum condition. Mol Autism 2020; 11:36. [PMID: 32423424 PMCID: PMC7236504 DOI: 10.1186/s13229-020-00325-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/03/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Autism spectrum condition (ASC) is accompanied by developmental differences in brain anatomy and connectivity. White matter differences in ASC have been widely studied with diffusion imaging but results are heterogeneous and vary across the age range of study participants and varying methodological approaches. To characterize the neurodevelopmental trajectory of white matter maturation, it is necessary to examine a broad age range of individuals on the autism spectrum and typically developing controls, and investigate age × group interactions. METHODS Here, we employed a spatially unbiased tract-based spatial statistics (TBSS) approach to examine age-related differences in white matter connectivity in a sample of 41 individuals with ASC, and 41 matched controls between 7-17 years of age. RESULTS We found significant age-related differences between the ASC and control group in widespread brain regions. This included age-related differences in the uncinate fasciculus, corticospinal tract, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, anterior thalamic radiation, superior longitudinal fasciculus and forceps major. Measures of fractional anisotropy (FA) were significantly positively associated with age in both groups. However, this relationship was significantly stronger in the ASC group relative to controls. Measures of radial diffusivity (RD) were significantly negatively associated with age in both groups, but this relationship was significantly stronger in the ASC group relative to controls. LIMITATIONS The generalisability of our findings is limited by the restriction of the sample to right-handed males with an IQ > 70. Furthermore, a longitudinal design would be required to fully investigate maturational processes across this age group. CONCLUSIONS Taken together, our findings suggest that autistic males have an altered trajectory of white matter maturation relative to controls. Future longitudinal analyses are required to further characterize the extent and time course of these differences.
Collapse
Affiliation(s)
- Abigail Thompson
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Developmental Change & Plasticity Lab, Department of Psychology & Language Sciences, University College London, 26 Bedford Way, Bloomsbury, London, WC1H 0AP UK
| | - Asal Shahidiani
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Anne Fritz
- The Centre for Research in Autism and Education (CRAE), Psychology and Human Development, UCL, London, UK
| | - Jonathan O’Muircheartaigh
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, St. Thomas’ Hospital, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Lindsay Walker
- Advanced Baby Imaging Lab, Hasbro Childrens Hospital, Providence, RI USA
- Pediatrics and Radiology, Warren Alpert medical school, Brown University, Providence, USA
| | - Vera D’Almeida
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Clodagh Murphy
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Eileen Daly
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Declan Murphy
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Sean Deoni
- Advanced Baby Imaging Lab, Hasbro Childrens Hospital, Providence, RI USA
- Pediatrics and Radiology, Warren Alpert medical school, Brown University, Providence, USA
- Maternal, Newborn & Child Health Discovery & Tools at the Bill and Melinda Gates Foundation, Seattle, USA
| | - Christine Ecker
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Deutschordenstrasse 50, 60528 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Bos DJ, Silver BM, Barnes ED, Ajodan EL, Silverman MR, Clark-Whitney E, Tarpey T, Jones RM. Adolescent-Specific Motivation Deficits in Autism Versus Typical Development. J Autism Dev Disord 2019; 50:364-372. [PMID: 31625010 DOI: 10.1007/s10803-019-04258-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Differences in motivation during adolescence relative to childhood and adulthood in autism was tested in a cross-sectional study. 156 Typically developing individuals and 79 individuals with autism ages 10-30 years of age completed a go/nogo task with social and non-social cues. To assess age effects, linear and quadratic models were used. Consistent with prior studies, typically developing adolescents and young adults demonstrated more false alarms for positive relative to neutral social cues. In autism, there were no changes in attention across age for social or non-social cues. Findings suggest reduced orienting to motivating cues during late adolescence and early adulthood in autism. The findings provide a unique perspective to explain the challenges for adolescents with autism transitioning to adulthood.
Collapse
Affiliation(s)
- Dienke J Bos
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Benjamin M Silver
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Emily D Barnes
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Eliana L Ajodan
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Melanie R Silverman
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elysha Clark-Whitney
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Thaddeus Tarpey
- Division of Biostatistics, Department of Population Health, NYU School of Medicine, 180 Madison Avenue, New York, NY, 10016, USA
| | - Rebecca M Jones
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
7
|
Yamagata B, Itahashi T, Nakamura M, Mimura M, Hashimoto RI, Kato N, Aoki Y. White matter endophenotypes and correlates for the clinical diagnosis of autism spectrum disorder. Soc Cogn Affect Neurosci 2019; 13:765-773. [PMID: 30184206 PMCID: PMC6121142 DOI: 10.1093/scan/nsy048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Since prior diffusion tensor imaging (DTI) studies reported no significant differences in white matter organizations between individuals with autism spectrum disorder (ASD) and their unaffected siblings, the neural correlates for developing a clinical diagnosis among people with endophenotypes remain undetermined. We obtained DTI data from a total of 60 participants consisting of 30 people with endophenotypes and 30 people without. We first followed a conventional approach by comparing individuals with ASD and their unaffected siblings. Using region-of-interest approach, we then performed bootstrapping to examine whether the differences in white matter organizations between individuals with ASD and their unaffected siblings were substantially large, considering the distribution of differences between typically developing (TD) siblings. Conventional approaches revealed no significant differences in white matter organizations between individuals with ASD and their unaffected siblings. Bootstrapping revealed a significantly large difference in axial diffusivity in the left stria terminalis between individuals with ASD and their unaffected siblings after accounting for the distribution of differences in axial diffusivity among TD siblings (99.998 percentile). The results remained significant after controlling for multiple comparisons with Bonferroni method. We assumed that one aspect of this tract was associated with the development of a clinical diagnosis.
Collapse
Affiliation(s)
- Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research at Showa University, Tokyo, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research at Showa University, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research at Showa University, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research at Showa University, Tokyo, Japan
| | - Yuta Aoki
- Medical Institute of Developmental Disabilities Research at Showa University, Tokyo, Japan
| |
Collapse
|
8
|
Lo YC, Chen YJ, Hsu YC, Chien YL, Gau SSF, Tseng WYI. Altered frontal aslant tracts as a heritable neural basis of social communication deficits in autism spectrum disorder: A sibling study using tract-based automatic analysis. Autism Res 2018; 12:225-238. [PMID: 30548800 DOI: 10.1002/aur.2044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/12/2018] [Accepted: 10/21/2018] [Indexed: 01/08/2023]
Abstract
Investigating social behaviors and brain structural alterations in unaffected siblings of individuals with autism spectrum disorder (ASD) may help identify intermediate phenotypes of social communication deficits in ASD. This study hypothesized that such intermediate phenotypes could be identified in white matter tracts of the social communication model that exhibited reduced tract integrity and associations with social communication deficits. Boys with ASD (N = 30), unaffected male siblings (N = 27), and typically developing (TD) boys (N = 30) underwent clinical evaluation and MRI scanning. Group differences in generalized fractional anisotropy (GFA) values, a white matter integrity index derived from diffusion MRI data, and the relationships of GFA with the Social Responsiveness Scale (SRS) scores and the Child Behavior Checklist (CBCL/4-18) scores were investigated. Significant differences were found in the GFA values of the frontal aslant tract (FAT) among the three groups, with the decreasing order of GFA from TD to siblings to ASD. The GFA values of the FAT were associated with the social communication scores (on the SRS) in the sibling group, and those of the superior longitudinal fasciculus III were associated with the social problems scores (on the CBCL/4-18) in the boys with ASD. Due to the altered tract integrity and association with social communication deficits in the unaffected siblings of individuals with ASD, the FAT might be a heritable neural basis for social communication deficits of ASD. Autism Res 2019, 12: 225-238 © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Autism spectrum disorder (ASD) is a group of highly heritable disorders with social communication deficits as one of the core symptoms. This study aimed to identify a neural trait of social communication deficits in individuals with ASD. We investigated brain structural alterations and their associations with social communication scores in unaffected siblings of individuals with ASD. The siblings' frontal aslant tract was found to be impaired, and this tract showed a significant association with the social communication scores. Our findings support that the frontal aslant tract might be a potential neural trait of social communication deficits in ASD.
Collapse
Affiliation(s)
- Yu-Chun Lo
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jen Chen
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Chin Hsu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Developmental changes of cortical white-gray contrast as predictors of autism diagnosis and severity. Transl Psychiatry 2018; 8:249. [PMID: 30446637 PMCID: PMC6240045 DOI: 10.1038/s41398-018-0296-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/18/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022] Open
Abstract
Recent studies suggest that both cortical gray and white-matter microstructural characteristics are distinct for subjects with autism. There is a lack of evidence regarding how these characteristics change in a developmental context. We analysed a longitudinal/cross-sectional dataset of 402 magnetic resonance imaging (MRI) scans (171 subjects with autism and 231 with typical development) from the Autism Brain Imaging Data Exchange, cohorts I-II (ABIDE-I-II). In the longitudinal sample, we computed the rate of change in the white-gray contrast, a measure which has been related to age and cognitive performance, at the boundary of the cerebral cortex. Then, we devised an analogous metric for the cross-sectional sample of the ABIDE dataset to measure age-related differences in cortical contrast. Further, we developed a probabilistic model to predict the diagnostic group in the longitudinal sample of the cortical contrast change data, using results obtained from the cross-sectional sample. In both subsets, we observed a similar overall pattern of greater decrease within the autistic population in intensity contrast for most cortical regions (81%), with occasional increases, mostly in primary sensory regions. This pattern correlated well with raw and calibrated behavioural scores. The prediction results show 76% accuracy for the whole-cortex diagnostic prediction and 86% accuracy in prediction using the motor system alone. Our results support a contrast change analysis strategy that appears sensitive in predicting diagnostic outcome and symptom severity in autism spectrum disorder, and is readily extensible to other MRI-based studies of neurodevelopmental cohorts.
Collapse
|
10
|
Rendall AR, Perrino PA, Buscarello AN, Fitch RH. Shank3B mutant mice display pitch discrimination enhancements and learning deficits. Int J Dev Neurosci 2018; 72:13-21. [DOI: 10.1016/j.ijdevneu.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amanda R. Rendall
- Yale University School of Medicine, Pediatrics464 Congress AveNew Haven06520‐8055CTUSA
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - Peter A. Perrino
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - Alexzandrea N. Buscarello
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - R. Holly Fitch
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| |
Collapse
|
11
|
Martínez K, Merchán-Naranjo J, Pina-Camacho L, Alemán-Gómez Y, Boada L, Fraguas D, Moreno C, Arango C, Janssen J, Parellada M. Atypical age-dependency of executive function and white matter microstructure in children and adolescents with autism spectrum disorders. Eur Child Adolesc Psychiatry 2017; 26:1361-1376. [PMID: 28447268 DOI: 10.1007/s00787-017-0990-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/17/2017] [Indexed: 11/29/2022]
Abstract
Executive function (EF) performance is associated with measurements of white matter microstructure (WMS) in typical individuals. Impaired EF is a hallmark symptom of autism spectrum disorders (ASD) but it is unclear how impaired EF relates to variability in WMS. Twenty-one male youth (8-18 years) with ASD and without intellectual disability and twenty-one typical male participants (TP) matched for age, intelligence quotient, handedness, race and parental socioeconomic status were recruited. Five EF domains were assessed and several DTI-based measurements of WMS [fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD)] were estimated for eighteen white matter tracts. The ASD group had lower scores for attention (F = 8.37, p = 0.006) and response inhibition (F = 13.09, p = 0.001). Age-dependent changes of EF performance and WMS measurements were present in TP but attenuated in the ASD group. The strongest diagnosis-by-age effect was found for forceps minor, left anterior thalamic radiation and left cingulum angular bundle (all p's ≤ 0.002). In these tracts subjects with ASD tended to have equal or increased FA and/or reduced MD and/or RD at younger ages while controls had increased FA and/or reduced MD and/or RD thereafter. Only for TP individuals, increased FA in the left anterior thalamic radiation was associated with better response inhibition, while reduced RD in forceps minor and left cingulum angular bundle was related to better problem solving and working memory performance respectively. These findings provide novel insight into the age-dependency of EF performance and WMS in ASD, which can be instructive to cognitive training programs.
Collapse
Affiliation(s)
- Kenia Martínez
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain. .,Ciber del área de Salud Mental (CIBERSAM), Madrid, Spain. .,Universidad Europea de Madrid, Madrid, Spain. .,Hospital Gregorio Marañón, Edificio prefabricado, entrada por Máiquez 9, 28009, Madrid, Spain.
| | - Jessica Merchán-Naranjo
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Ciber del área de Salud Mental (CIBERSAM), Madrid, Spain
| | - Laura Pina-Camacho
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Ciber del área de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Yasser Alemán-Gómez
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Ciber del área de Salud Mental (CIBERSAM), Madrid, Spain
| | - Leticia Boada
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Ciber del área de Salud Mental (CIBERSAM), Madrid, Spain
| | - David Fraguas
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Ciber del área de Salud Mental (CIBERSAM), Madrid, Spain
| | - Carmen Moreno
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Ciber del área de Salud Mental (CIBERSAM), Madrid, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Ciber del área de Salud Mental (CIBERSAM), Madrid, Spain.,Universidad Complutense de Madrid, Madrid, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Ciber del área de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mara Parellada
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Ciber del área de Salud Mental (CIBERSAM), Madrid, Spain.,Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Braden BB, Smith CJ, Thompson A, Glaspy TK, Wood E, Vatsa D, Abbott AE, McGee SC, Baxter LC. Executive function and functional and structural brain differences in middle-age adults with autism spectrum disorder. Autism Res 2017; 10:1945-1959. [PMID: 28940848 DOI: 10.1002/aur.1842] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 11/11/2022]
Abstract
There is a rapidly growing group of aging adults with autism spectrum disorder (ASD) who may have unique needs, yet cognitive and brain function in older adults with ASD is understudied. We combined functional and structural neuroimaging and neuropsychological tests to examine differences between middle-aged men with ASD and matched neurotypical (NT) men. Participants (ASD, n = 16; NT, n = 17) aged 40-64 years were well-matched according to age, IQ (range: 83-131), and education (range: 9-20 years). Middle-age adults with ASD made more errors on an executive function task (Wisconsin Card Sorting Test) but performed similarly to NT adults on tests of delayed verbal memory (Rey Auditory Verbal Learning Test) and local visual search (Embedded Figures Task). Independent component analysis of a functional MRI working memory task (n-back) completed by most participants (ASD = 14, NT = 17) showed decreased engagement of a cortico-striatal-thalamic-cortical neural network in older adults with ASD. Structurally, older adults with ASD had reduced bilateral hippocampal volumes, as measured by FreeSurfer. Findings expand our understanding of ASD as a lifelong condition with persistent cognitive and functional and structural brain differences evident at middle-age. Autism Res 2017, 10: 1945-1959. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY We compared cognitive abilities and brain measures between 16 middle-age men with high-functioning autism spectrum disorder (ASD) and 17 typical middle-age men to better understand how aging affects an older group of adults with ASD. Men with ASD made more errors on a test involving flexible thinking, had less activity in a flexible thinking brain network, and had smaller volume of a brain structure related to memory than typical men. We will follow these older adults over time to determine if aging changes are greater for individuals with ASD.
Collapse
Affiliation(s)
- B Blair Braden
- Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona
| | | | - Amiee Thompson
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Tyler K Glaspy
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Emily Wood
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Divya Vatsa
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Angela E Abbott
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Samuel C McGee
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Leslie C Baxter
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
13
|
Koolschijn PCMP, Caan MWA, Teeuw J, Olabarriaga SD, Geurts HM. Age-related differences in autism: The case of white matter microstructure. Hum Brain Mapp 2016; 38:82-96. [PMID: 27511627 DOI: 10.1002/hbm.23345] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022] Open
Abstract
Autism spectrum disorder (ASD) is typified as a brain connectivity disorder in which white matter abnormalities are already present early on in life. However, it is unknown if and to which extent these abnormalities are hard-wired in (older) adults with ASD and how this interacts with age-related white matter changes as observed in typical aging. The aim of this first cross-sectional study in mid- and late-aged adults with ASD was to characterize white matter microstructure and its relationship with age. We utilized diffusion tensor imaging with head motion control in 48 adults with ASD and 48 age-matched controls (30-74 years), who also completed a Flanker task. Intra-individual variability of reaction times (IIVRT) measures based on performance on the Flanker interference task were used to assess IIVRT-white matter microstructure associations. We observed primarily higher mean and radial diffusivity in white matter microstructure in ASD, particularly in long-range fibers, which persisted after taking head motion into account. Importantly, group-by-age interactions revealed higher age-related mean and radial diffusivity in ASD, in projection and association fiber tracts. Subtle dissociations were observed in IIVRT-white matter microstructure relations between groups, with the IIVRT-white matter association pattern in ASD resembling observations in cognitive aging. The observed white matter microstructure differences are lending support to the structural underconnectivity hypothesis in ASD. These reductions seem to have behavioral percussions given the atypical relationship with IIVRT. Taken together, the current results may indicate different age-related patterns of white matter microstructure in adults with ASD. Hum Brain Mapp 38:82-96, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- P Cédric M P Koolschijn
- Dutch Autism & ADHD Research Center, Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Matthan W A Caan
- Department of Radiology, Brain Imaging Center, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jalmar Teeuw
- Department of Radiology, Brain Imaging Center, Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sílvia D Olabarriaga
- Department of Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Hilde M Geurts
- Dutch Autism & ADHD Research Center, Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands.,Dr Leo Kannerhuis, The Netherlands
| |
Collapse
|
14
|
Ypma RJ, Moseley RL, Holt RJ, Rughooputh N, Floris DL, Chura LR, Spencer MD, Baron-Cohen S, Suckling J, Bullmore ET, Rubinov M. Default Mode Hypoconnectivity Underlies a Sex-Related Autism Spectrum. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:364-371. [PMID: 27430030 PMCID: PMC4936761 DOI: 10.1016/j.bpsc.2016.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Females and males differ significantly in the prevalence and presentation of autism spectrum conditions. One theory of this effect postulates that autistic traits lie on a sex-related continuum in the general population, and autism represents the extreme male end of this spectrum. This theory predicts that any feature of autism in males should 1) be present in autistic females, 2) differentiate between the sexes in the typical population, and 3) correlate with autistic traits. We tested these three predictions for default mode network (DMN) hypoconnectivity during the resting state, one of the most robustly found neurobiological differences in autism. Methods We analyzed a primary dataset of adolescents (N = 121, 12–18 years of age) containing a relatively large number of females and a replication multisite dataset including children, adolescents, and adults (N = 980, 6–58 years of age). We quantified the average connectivity between DMN regions and tested for group differences and correlation with behavioral performance using robust regression. Results We found significant differences in DMN intraconnectivity between female controls and females with autism (p = .001 in the primary dataset; p = .009 in the replication dataset), and between female controls and male controls (p = .036 in the primary dataset; p = .002 in the replication dataset). We also found a significant correlation between DMN intraconnectivity and performance on a mentalizing task (p = .001) in the primary dataset. Conclusions Collectively, these findings provide the first evidence for DMN hypoconnectivity as a behaviorally relevant neuroimaging phenotype of the sex-related spectrum of autistic traits, of which autism represents the extreme case.
Collapse
Affiliation(s)
- Rolf J.F. Ypma
- Brain Mapping Unit, Department of Psychiatry
- Hughes Hall
- Address correspondence to: Rolf J.F. Ypma, Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Sir William Hardy Building, Cambridge CB2 3EB. .Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Sir William Hardy BuildingCB2 3EBCambridge
| | - Rachel L. Moseley
- Brain Mapping Unit, Department of Psychiatry
- Bournemouth University, Dorset
| | | | | | | | | | | | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry
- CLASS Clinic, Cambridge
| | - John Suckling
- Behavioural and Clinical Neuroscience Institute, Department of Experimental Psychology
- Cambridgeshire and Peterborough Foundation Trust, Cambridge
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of Psychiatry
- Behavioural and Clinical Neuroscience Institute, Department of Experimental Psychology
- Cambridgeshire and Peterborough Foundation Trust, Cambridge
- ImmunoPsychiatry, Alternative Discovery & Development, GlaxoSmithKline, Stevenage, United Kingdom
| | - Mikail Rubinov
- Brain Mapping Unit, Department of Psychiatry
- ; Churchill College, University of Cambridge, Cambridge
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| |
Collapse
|
15
|
Catani M, Dell'Acqua F, Budisavljevic S, Howells H, Thiebaut de Schotten M, Froudist-Walsh S, D'Anna L, Thompson A, Sandrone S, Bullmore ET, Suckling J, Baron-Cohen S, Lombardo MV, Wheelwright SJ, Chakrabarti B, Lai MC, Ruigrok ANV, Leemans A, Ecker C, Consortium MA, Craig MC, Murphy DGM. Frontal networks in adults with autism spectrum disorder. Brain 2016; 139:616-30. [PMID: 26912520 PMCID: PMC4805089 DOI: 10.1093/brain/awv351] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been postulated that autism spectrum disorder is underpinned by an 'atypical connectivity' involving higher-order association brain regions. To test this hypothesis in a large cohort of adults with autism spectrum disorder we compared the white matter networks of 61 adult males with autism spectrum disorder and 61 neurotypical controls, using two complementary approaches to diffusion tensor magnetic resonance imaging. First, we applied tract-based spatial statistics, a 'whole brain' non-hypothesis driven method, to identify differences in white matter networks in adults with autism spectrum disorder. Following this we used a tract-specific analysis, based on tractography, to carry out a more detailed analysis of individual tracts identified by tract-based spatial statistics. Finally, within the autism spectrum disorder group, we studied the relationship between diffusion measures and autistic symptom severity. Tract-based spatial statistics revealed that autism spectrum disorder was associated with significantly reduced fractional anisotropy in regions that included frontal lobe pathways. Tractography analysis of these specific pathways showed increased mean and perpendicular diffusivity, and reduced number of streamlines in the anterior and long segments of the arcuate fasciculus, cingulum and uncinate--predominantly in the left hemisphere. Abnormalities were also evident in the anterior portions of the corpus callosum connecting left and right frontal lobes. The degree of microstructural alteration of the arcuate and uncinate fasciculi was associated with severity of symptoms in language and social reciprocity in childhood. Our results indicated that autism spectrum disorder is a developmental condition associated with abnormal connectivity of the frontal lobes. Furthermore our findings showed that male adults with autism spectrum disorder have regional differences in brain anatomy, which correlate with specific aspects of autistic symptoms. Overall these results suggest that autism spectrum disorder is a condition linked to aberrant developmental trajectories of the frontal networks that persist in adult life.
Collapse
Affiliation(s)
- Marco Catani
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK 2 NatBrainLab, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College, London, UK
| | - Flavio Dell'Acqua
- 2 NatBrainLab, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College, London, UK
| | - Sanja Budisavljevic
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Henrietta Howells
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Michel Thiebaut de Schotten
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Seán Froudist-Walsh
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Lucio D'Anna
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Abigail Thompson
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Stefano Sandrone
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Edward T Bullmore
- 3 Cambridgeshire and Peterborough NHS Foundation Trust 4 Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK
| | - John Suckling
- 3 Cambridgeshire and Peterborough NHS Foundation Trust 4 Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK
| | - Simon Baron-Cohen
- 3 Cambridgeshire and Peterborough NHS Foundation Trust 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK
| | - Michael V Lombardo
- 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK 6 Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Cyprus
| | - Sally J Wheelwright
- 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK
| | - Bhismadev Chakrabarti
- 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK 7 Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Meng-Chuan Lai
- 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK 8 Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Canada 9 Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Amber N V Ruigrok
- 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK
| | - Alexander Leemans
- 10 Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Ecker
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | | | - Michael C Craig
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK 11 National Autism Unit, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - Declan G M Murphy
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| |
Collapse
|
16
|
Tager-Flusberg H. Risk Factors Associated With Language in Autism Spectrum Disorder: Clues to Underlying Mechanisms. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2016; 59:143-54. [PMID: 26502110 PMCID: PMC4867927 DOI: 10.1044/2015_jslhr-l-15-0146] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 05/13/2023]
Abstract
PURPOSE Identifying risk factors associated with neurodevelopmental disorders is an important line of research, as it will lead to earlier identification of children who could benefit from interventions that support optimal developmental outcomes. The primary goal of this review was to summarize research on risk factors associated with autism spectrum disorder (ASD). METHOD The review focused on studies of infants who have older siblings with ASD, with particular emphasis on risk factors associated with language impairment that affects the majority of children with ASD. Findings from this body of work were compared to the literature on specific language impairment. RESULTS A wide range of risk factors has been found for ASD, including demographic (e.g., male, family history), behavioral (e.g., gesture, motor) and neural risk markers (e.g., atypical lateralization for speech and reduced functional connectivity). Environmental factors, such as caregiver interaction, have not been found to predict language outcomes. Many of the risk markers for ASD are also found in studies of risk for specific language impairment, including demographic, behavioral, and neural factors. CONCLUSIONS There are significant gaps in the literature and limitations in the current research that preclude direct cross-syndrome comparisons. Future research directions are outlined that could address these limitations.
Collapse
|
17
|
Moseley R, Ypma R, Holt R, Floris D, Chura L, Spencer M, Baron-Cohen S, Suckling J, Bullmore E, Rubinov M. Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents. Neuroimage Clin 2015; 9:140-52. [PMID: 26413477 PMCID: PMC4556734 DOI: 10.1016/j.nicl.2015.07.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 11/04/2022]
Abstract
Endophenotypes are heritable and quantifiable markers that may assist in the identification of the complex genetic underpinnings of psychiatric conditions. Here we examined global hypoconnectivity as an endophenotype of autism spectrum conditions (ASCs). We studied well-matched groups of adolescent males with autism, genetically-related siblings of individuals with autism, and typically-developing control participants. We parcellated the brain into 258 regions and used complex-network analysis to detect a robust hypoconnectivity endophenotype in our participant group. We observed that whole-brain functional connectivity was highest in controls, intermediate in siblings, and lowest in ASC, in task and rest conditions. We identified additional, local endophenotype effects in specific networks including the visual processing and default mode networks. Our analyses are the first to show that whole-brain functional hypoconnectivity is an endophenotype of autism in adolescence, and may thus underlie the heritable similarities seen in adolescents with ASC and their relatives.
Collapse
Affiliation(s)
- R.L. Moseley
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, UK
| | - R.J.F. Ypma
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, UK
- University of Cambridge, Hughes Hall, Cambridge, UK
| | - R.J. Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - D. Floris
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - L.R. Chura
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - M.D. Spencer
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - S. Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridge Lifespan Asperger Syndrome Service (CLASS) Clinic, Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, UK
| | - J. Suckling
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough National Health Service Foundation Trust, Cambridge, UK
| | - E. Bullmore
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough National Health Service Foundation Trust, Cambridge, UK
- ImmunoPsychiatry, Alternative Discovery & Development, GlaxoSmithKline, Stevenage, UK
| | - M. Rubinov
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, UK
- Churchill College, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Stewart AM, Nguyen M, Song C, Kalueff AV. Understanding the genetic architectonics of complex CNS traits: Lost by the association, but found in the interaction? J Psychopharmacol 2015; 29:872-7. [PMID: 26156859 DOI: 10.1177/0269881115593904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent evidence supports the value of endophenotypes and genome-wide association studies in psychiatric genetics, and their importance for dissecting the neural pathways and molecular mechanisms of complex neuropsychiatric disorders. Continuing this important discussion, here we outline three new mechanisms by which novel classes of genes may facilitate CNS pathogenesis without directly worsening its individual 'established' endophenotypes. These putative genetic mechanisms can apply to other human disorders in general, and may also be used for designing novel effective CNS drug treatments.
Collapse
Affiliation(s)
| | - Michael Nguyen
- ZENEREI Institute, Slidell, LA, USA Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, China Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Allan V Kalueff
- ZENEREI Institute, Slidell, LA, USA Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, China Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|