1
|
Wang Y, Deng Y, Feng M, Chen J, Zhong M, Han Z, Zhang Q, Sun Y. Cordycepin Extracted from Cordyceps militaris mitigated CUMS-induced depression of rats via targeting GSK3β/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119249. [PMID: 39689748 DOI: 10.1016/j.jep.2024.119249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordycepin, the main active component of Cordyceps militaris, exhibits various pharmacological activities, including anti-tumor and antioxidant effects. However, its antidepressant effect and the underlying mechanisms remain unclear. AIM OF REVIEW This study aimed to explore the antidepressant effect of cordycepin and elucidate the potential molecular mechanisms. MATERIALS AND METHODS Chronic unpredictable mild stress (CUMS) rat model was established to assess antidepressant effect of cordycepin. Gas chromatography-mass spectrometry (GC-MS) metabolomics with integrated network pharmacology were used to find differential metabolites in serum, brain, and cerebrospinal fluid of rats and identify potential target by cordycepin. Western blot and Real-time PCR were applied to validate the signaling pathway. RESULTS Cordycepin alleviated CUMS-induced depression-like behaviors by weight gain, sucrose preference increment, immobility time reduction, total travelling distance extension and serum corticosterone levels reduction. Metabolomics showed that cordycepin reversed CUMS-induced metabolic disturbances through alanine and TCA cycle metabolism pathways. Network pharmacology identified GSK3β as a potential target. Cordycepin increased protein levels of p-GSK3β, β-catenin and nuclear β-catenin, and enhanced transcription of downstream genes PKM, LDHA, Cyclin D1 and C-myc in brains of CUMS-induced rats. CONCLUSIONS This study indicated that cordycepin exerted antidepressant effect by modulating GSK3β/β-catenin pathway, suggesting its potential as a candidate agent for depression.
Collapse
Affiliation(s)
- Yupeng Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Yanhui Deng
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Mingmei Feng
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Mengling Zhong
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Zhipeng Han
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China; College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China.
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China.
| |
Collapse
|
2
|
Sultania A, Brahadeeswaran S, Kolasseri AE, Jayanthi S, Tamizhselvi R. Menopause mysteries: the exosome-inflammation connection. J Ovarian Res 2025; 18:12. [PMID: 39849635 PMCID: PMC11756133 DOI: 10.1186/s13048-025-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Extracellular vesicles, or exosomes, are produced by every type of cell and contain metabolites, proteins, lipids, and nucleic acids. Their role in health and disease is to influence different aspects of cell biology and to act as intermediaries between cells. Follicular fluid exosomes or extracellular vesicles (FF-EVs) secreted by ovarian granulosa cells are critical mediators of ovary growth and maturation. The movement and proteins of these exosomes are crucial in the regulation of cellular communication and the aging of cells, a process termed inflammaging. Menopause, a natural progression in the aging of females, is often accompanied by numerous negative symptoms and health issues. It can also act as a precursor to more severe health problems, including neurological, cardiovascular, and metabolic diseases, as well as gynecological cancers. Researchers have discovered pathways that reveal the diverse effects of exosome-driven cellular communication and oocyte development in the follicular fluid. It also explores the complex functions of FF exosomal proteins in the pathologies associated with menopause.
Collapse
Affiliation(s)
- Aarushi Sultania
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Subhashini Brahadeeswaran
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Aparna Eledath Kolasseri
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Sivaraman Jayanthi
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Ramasamy Tamizhselvi
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
3
|
Dwivedi Y, Roy B, Korla PK. Genome-wide methylome-based molecular pathologies associated with depression and suicide. Neuropsychopharmacology 2024:10.1038/s41386-024-02040-9. [PMID: 39645539 DOI: 10.1038/s41386-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Major depressive disorder (MDD) is a debilitating disorder. Suicide attempts are 5-times higher in MDD patients than in the general population. Interestingly, not all MDD patients develop suicidal thoughts or complete suicide. Thus, it is important to study the risk factors that can distinguish suicidality among MDD patients. The present study examined if DNA methylation changes can distinguish suicidal behavior among depressed subjects. Genome-wide DNA methylation was examined in the dorsolateral prefrontal cortex of depressed suicide (MDD+S; n = 15), depressed non-suicide (MDD-S; n = 17), and nonpsychiatric control (C; n = 16) subjects using 850 K Infinium Methylation EPIC BeadChip. The significantly differentially methylated genes were used to determine the functional enrichment of genes for ontological clustering and pathway analysis. Based on the number of CpG content and their relative distribution from specific landmark regions of genes, 32,958 methylation sites were identified across 12,574 genes in C vs. MDD+/-S subjects, 30,852 methylation sites across 12,019 genes in C vs. MDD-S, 41,648 methylation sites across 13,941 genes in C vs. MDD+S, and 49,848 methylation sites across 15,015 genes in MDD-S vs. MDD+S groups. A comparison of methylation sites showed 33,129 unique methylation sites and 5451 genes in the MDD-S group compared to the MDD+S group. Functional analysis suggested oxytocin, GABA, VGFA, TNFA, and mTOR pathways associated with suicide in the MDD group. Altogether, our data show a distinct pattern of DNA methylation, the genomic distribution of differentially methylated sites, gene enrichment, and pathways in MDD suicide compared to non-suicide MDD subjects.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Praveen Kumar Korla
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
4
|
Xu DW, Li WY, Shi TS, Wang CN, Zhou SY, Liu W, Chen WJ, Zhu BL, Fei H, Cheng DD, Cui ZM, Jiang B. MiR-184-3p in the paraventricular nucleus participates in the neurobiology of depression via regulation of the hypothalamus-pituitary-adrenal axis. Neuropharmacology 2024; 260:110129. [PMID: 39179173 DOI: 10.1016/j.neuropharm.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for the pathogenesis of depression, and increased activity of cAMP response element binding protein (CREB)-regulated transcription co-activator 1 (CRTC1) in the paraventricular nucleus (PVN) plays a critical role. As a well-investigated microRNA (miRNA), miR-184 has two forms, miR-184-3p and miR-184-5p. Recently, miRNAs target genes predictive analysis and dual-luciferase reporter assays identified an inhibitory role of miR-184-3p on CRTC1 expression. Therefore, we speculated that miR-184-3p regulation was responsible for the effects of chronic stress on CRTC1 in the PVN. Various methods, including the chronic social defeat stress (CSDS) model of depression, behavioral tests, Western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer, were used. CSDS evidently downregulated the level of miR-184-3p, but not miR-184-5p, in the PVN. Genetic knockdown and pharmacological inhibition of miR-184-3p in the PVN induced various depressive-like symptoms (e.g., abnormal behaviors, HPA hyperactivity, enhanced CRTC1 function in PVN neurons, downregulation of hippocampal neurogenesis, and decreased brain-derived neurotrophic factor (BDNF) signaling) in naïve male C57BL/6J mice. In contrast, genetic overexpression and pharmacological activation of miR-184-3p in the PVN produced significant beneficial effects against CSDS. MiR-184-3p in the PVN was necessary for the antidepressant actions of two well-known SSRIs, fluoxetine and paroxetine. Collectively. miR-184-3p was also implicated in the neurobiology of depression and may be a viable target for novel antidepressants.
Collapse
Affiliation(s)
- Da-Wei Xu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Si-Yi Zhou
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei Liu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Hao Fei
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Dong-Dong Cheng
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Zhi-Ming Cui
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
5
|
Kukla-Bartoszek M, Piechota M, Suski M, Hajto J, Borczyk M, Basta-Kaim A, Głombik K. Integrated Profiling Identifies Long-Term Molecular Consequences of Prenatal Dexamethasone Treatment in the Rat Brain-Potential Triggers of Depressive Phenotype and Cognitive Impairment. Mol Neurobiol 2024:10.1007/s12035-024-04586-7. [PMID: 39528842 DOI: 10.1007/s12035-024-04586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Prenatal excess of glucocorticoids (GCs) is considered to be one of the highly impacting factors contributing to depression development. Although GCs are crucial for normal fetal development and their administration (mainly dexamethasone, DEX) is a life-saving procedure for those at risk of preterm delivery, exposure to excess levels of GCs during pregnancy can yield detrimental consequences. Therefore, we aimed to systematically investigate the brain molecular alterations triggered by prenatal DEX administration. We used a rat model of depression based on prenatal exposure to DEX and performed integrative multi-level methylomic, transcriptomic, and proteomic analyses of adult rats' brains (i.e., frontal cortex (FCx) and hippocampus (Hp)) to identify the outcomes of DEX action. Each of the investigated levels was significantly affected by DEX in the long-term manner. Particularly, we found 200 CpG islands to be differentially methylated in the FCx and 200 in the Hp of prenatally DEX-treated rats. Global transcriptomic analysis uncovered differential expression of transcripts mostly in FCx (271) and 1 in Hp, while proteomic study identified 146 differentially expressed proteins in FCx and 123 in Hp. Among the identified enriched molecular networks, we found altered pathways involved in synaptic plasticity (i.e., cAMP, calcium, and Wnt signaling pathways or tight junctions and adhesion molecules), which may contribute to cognitive impairment, observed in DEX-treated animals. Moreover, in the FCx, DEX administration in the prenatal period downregulates the expression of ribosome protein genes associated both with large and small ribosomal subunit assembly which can lead to a global decrease in translation and protein synthesis processes and, indirectly, alterations in the neurotransmission process.
Collapse
Affiliation(s)
- Magdalena Kukla-Bartoszek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Marcin Piechota
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Faculty of Medicine, Grzegórzecka 16, 31-531, Kraków, Poland
- Centre for the Development of Therapies for Civilization and Age-Related Diseases CDT-CARD, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Jacek Hajto
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
6
|
Fu Y, Gu Z, Cao H, Zuo C, Huang Y, Song Y, Miao J, Jiang Y, Wang F. Proteomic characterization of the medial prefrontal cortex in chronic restraint stress mice. J Proteomics 2024; 307:105278. [PMID: 39142625 DOI: 10.1016/j.jprot.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Depression is a prominent contributor to global disability. A growing body of data suggests that depression is associated with the pathophysiology of the medial prefrontal cortex (mPFC), but the underlying mechanisms remain poorly understood. Mice were subjected to chronic restraint stress (CRS) for 3 weeks to create depression models during this investigation. Protein tandem mass tag (TMT) quantification and LC-MS/MS analysis were conducted to examine proteome patterns. Afterwards, to further explore the enrichment of differential proteins and the signaling pathways involved, we annotated these differentially expressed proteins. We confirmed that CRS mice developed depression-like and anxiety-like behaviors. Among the 8081 measured proteins, a total of 15 proteins were found to be differentially expressed. These proteins exhibited functional enrichment in a variety of biological functions, and among these pathways, alterations in synaptic function and autophagy are noteworthy. In addition, we identified a differentially expressed protein called Wnt2b and found that CRS may disrupt synaptic plasticity by affecting the activation of the Wnt2b/β-catenin pathway. Our findings showed depression-like behaviors in the CRS mouse model and molecular alterations in the mPFC, which may help explain the pathogenesis of depression and identify novel antidepressant medication targets. SIGNIFICANCE: Depression is a prevalent and frequent chronic mental illness and is now a significant contributor to global disability. In this study, we used chronic restraint stress to establish a mouse model of depression, and differentially expressed proteins in the medial prefrontal cortex of depressed model mice were detected by TMT proteomics. Our study verified the presence of altered synaptic function and excessive autophagy in the mPFC of CRS-induced mice from a proteomic perspective. Furthermore, we demonstrated that CRS may disrupt synaptic plasticity by affecting the activation of the Wnt2b/β-catenin pathway, which may be a key link in the pathogenesis of depression and may provide new insights for identifying new antidepressant drug targets.
Collapse
Affiliation(s)
- Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
7
|
Sanchez-Ruiz JA, Treviño-Alvarez AM, Zambrano-Lucio M, Lozano Díaz ST, Wang N, Biernacka JM, Tye SJ, Cuellar-Barboza AB. The Wnt signaling pathway in major depressive disorder: A systematic review of human studies. Psychiatry Res 2024; 339:115983. [PMID: 38870775 DOI: 10.1016/j.psychres.2024.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Despite uncertainty about the specific molecular mechanisms driving major depressive disorder (MDD), the Wnt signaling pathway stands out as a potentially influential factor in the pathogenesis of MDD. Known for its role in intercellular communication, cell proliferation, and fate, Wnt signaling has been implicated in diverse biological phenomena associated with MDD, spanning neurodevelopmental to neurodegenerative processes. In this systematic review, we summarize the functional differences in protein and gene expression of the Wnt signaling pathway, and targeted genetic association studies, to provide an integrated synthesis of available human data examining Wnt signaling in MDD. Thirty-three studies evaluating protein expression (n = 15), gene expression (n = 9), or genetic associations (n = 9) were included. Only fifteen demonstrated a consistently low overall risk of bias in selection, comparability, and exposure. We found conflicting observations of limited and distinct Wnt signaling components across diverse tissue sources. These data do not demonstrate involvement of Wnt signaling dysregulation in MDD. Given the well-established role of Wnt signaling in antidepressant response, we propose that a more targeted and functional assessment of Wnt signaling is needed to understand its role in depression pathophysiology. Future studies should include more components, assess multiple tissues concurrently, and follow a standardized approach.
Collapse
Affiliation(s)
- Jorge A Sanchez-Ruiz
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | - Sofía T Lozano Díaz
- Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Ning Wang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Susannah J Tye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| |
Collapse
|
8
|
Yu H, Li X, Zhang Q, Geng L, Su B, Wang Y. miR-143-3p modulates depressive-like behaviors via Lasp1 in the mouse ventral hippocampus. Commun Biol 2024; 7:944. [PMID: 39098885 PMCID: PMC11298515 DOI: 10.1038/s42003-024-06639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
Depression is a prevalent and intricate mental disorder. The involvement of small RNA molecules, such as microRNAs in the pathogenesis and neuronal mechanisms underlying the depression have been documented. Previous studies have demonstrated the involvement of microRNA-143-3p (miR-143-3p) in the process of fear memory and pathogenesis of ischemia; however, the relationship between miR-143-3p and depression remains poorly understood. Here we utilized two kinds of mouse models to investigate the role of miR-143-3p in the pathogenesis of depression. Our findings reveal that the expression of miR-143-3p is upregulated in the ventral hippocampus (VH) of mice subjected to chronic restraint stress (CRS) or acute Lipopolysaccharide (LPS) treatment. Inhibiting the expression of miR-143-3p in the VH effectively alleviates depressive-like behaviors in CRS and LPS-treated mice. Furthermore, we identify Lasp1 as one of the downstream target genes regulated by miR-143-3p. The miR-143-3p/Lasp1 axis primarily affects the occurrence of depressive-like behaviors in mice by modulating synapse numbers in the VH. Finally, miR-143-3p/Lasp1-induced F-actin change is responsible for the synaptic number variations in the VH. In conclusion, this study enhances our understanding of microRNA-mediated depression pathogenesis and provides novel prospects for developing therapeutic approaches for this intractable mood disorder.
Collapse
Affiliation(s)
- Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Xiaobing Li
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China
- Department of Human Anatomy Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, China
| | - Qiyao Zhang
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China
| | - Lian Geng
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China.
| | - Yue Wang
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China.
- Department of Human Anatomy Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, China.
| |
Collapse
|
9
|
Yin C, Luo K, Zhu X, Zheng R, Wang Y, Yu G, Wang X, She F, Chen X, Li T, Chen J, Bian B, Su Y, Niu J, Wang Y. Fluoxetine Rescues Excessive Myelin Formation and Psychological Behaviors in a Murine PTSD Model. Neurosci Bull 2024; 40:1037-1052. [PMID: 39014176 PMCID: PMC11306862 DOI: 10.1007/s12264-024-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/04/2024] [Indexed: 07/18/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.
Collapse
Affiliation(s)
- Chenrui Yin
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Kefei Luo
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Xinyue Zhu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Ronghang Zheng
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- Department of Respiratory Diseases, Central Medical Branch of PLA General Hospital, Beijing, 100853, China
| | - Guangdan Yu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei She
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100142, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Tao Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Jingfei Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Baduojie Bian
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
| | - Yuxin Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China.
| |
Collapse
|
10
|
Li Y, Luan S, Ruan C, Li W, Zhang X, Ran Z, Bi W, Tong Y, Gao L, Zhao J, Li Y, He Z. TSHR signaling promotes hippocampal dependent memory formation through modulating Wnt5a/β-catenin mediated neurogenesis. Biochem Biophys Res Commun 2024; 704:149723. [PMID: 38430698 DOI: 10.1016/j.bbrc.2024.149723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Subclinical hyperthyroidism is defined biochemically as a low or undetectable thyroid-stimulating hormone (TSH) with normal thyroid hormone levels. Low TSHR signaling is considered to associate with cognitive impairment. However, the underlying molecular mechanism by which TSHR signaling modulates memory is poorly understood. In this study, we found that Tshr-deficient in the hippocampal neurons impairs the learning and memory abilities of mice, accompanying by a decline in the number of newborn neurons. Notably, Tshr ablation in the hippocampus decreases the expression of Wnt5a, thereby inactivating the β-catenin signaling pathway to reduce the neurogenesis. Conversely, activating of the Wnt/β-catenin pathway by the agonist SKL2001 results in an increase in hippocampal neurogenesis, resulting in the amelioration in the deficits of memory caused by Tshr deletion. Understanding how TSHR signaling in the hippocampus regulates memory provides insights into subclinical hyperthyroidism affecting cognitive function and will suggest ways to rationally design interventions for neurocognitive disorders.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Sisi Luan
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China; Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Cairong Ruan
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Weihao Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Xinyu Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Zijing Ran
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Wenkai Bi
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Yuelin Tong
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Yuan Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
11
|
Han H, Xu M, Wang J, Li MD, Yang Z. CRISPR/Cas9 based gene editing of Frizzled class receptor 6 (FZD6) reveals its role in depressive symptoms through disrupting Wnt/β-catenin signaling pathway. J Adv Res 2024; 58:129-138. [PMID: 37321345 PMCID: PMC10982865 DOI: 10.1016/j.jare.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/18/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION As one of the common psychiatric diseases, depression poses serious threats to human health. Although many genes have been nominated for depression, few of them were investigated in details at the molecular level. OBJECTIVES To demonstrate Frizzled class receptor 6 (FZD6) functions in depression through disrupting Wnt/β-catenin signal pathway. METHODS The FZD6 edited cell line and mouse model were generated by using CRISPR/Cas9 technique. The expression of key genes and proteins in Wnt/β-catenin pathway was determined by qRT-PCR and Western blotting, respectively. Animal behavioral tests, including open field test (OFT), elevated plus maze test (EPM), forced swimming test (FST), tail suspension test (TST), and sucrose preference test (SPT), were employed to determine anxiety- and depressive-like behaviors. Immunofluorescent staining was used to assess cell proliferation in the hippocampus of mouse brain. RESULTS Among patients with depression, FZD6, one of the receptors of Wnt ligand, was significantly decreased. In CRISPR/Cas9-based FZD6 knockdown cells, we showed that FZD6 plays a significant role in regulating expression of genes involved in Wnt/β-catenin pathway. Subsequently behavioral studies on Fzd6 knockdown mice (with a 5-nucleotide deletion; Fzd6-Δ5) revealed significant changes in depressive symptoms, including increased immobility duration in FST, less preference of sucrose in SPT, reduction of distance traveled in OFT, and decreased time spent in open arms in EPM. Immunofluorescent staining showed decreased cell proliferation in the hippocampus of Fzd6-Δ5 mice with reduced number of Ki67+ and PCNA+ cells. Moreover, decreased Gsk3β mRNA expression, phosphorylated GSK3β, and cytoplasmic β-catenin in the hippocampus of Fzd6-Δ5 mice provided further evidence supporting the role of Fzd6 in depression. CONCLUSION Together, above findings proved the significant role of FZD6 in depression through its effect on hippocampal cell proliferation and its ability to regulate canonical Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Wang
- VIT University, Chennai, India
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Li H, Kawatake-Kuno A, Inaba H, Miyake Y, Itoh Y, Ueki T, Oishi N, Murai T, Suzuki T, Uchida S. Discrete prefrontal neuronal circuits determine repeated stress-induced behavioral phenotypes in male mice. Neuron 2024; 112:786-804.e8. [PMID: 38228137 DOI: 10.1016/j.neuron.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Chronic stress is a major risk factor for psychiatric disorders, including depression. Although depression is a highly heterogeneous syndrome, it remains unclear how chronic stress drives individual differences in behavioral responses. In this study, we developed a subtyping-based approach wherein stressed male mice were divided into four subtypes based on their behavioral patterns of social interaction deficits and anhedonia, the core symptoms of psychiatric disorders. We identified three prefrontal cortical neuronal projections that regulate repeated stress-induced behavioral phenotypes. Among them, the medial prefrontal cortex (mPFC)→anterior paraventricular thalamus (aPVT) pathway determines the specific behavioral subtype that exhibits both social deficits and anhedonia. Additionally, we identified the circuit-level molecular mechanism underlying this subtype: KDM5C-mediated epigenetic repression of Shisa2 transcription in aPVT projectors in the mPFC led to social deficits and anhedonia. Thus, we provide a set of biological aspects at the cellular, molecular, and epigenetic levels that determine distinctive stress-induced behavioral phenotypes.
Collapse
Affiliation(s)
- Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuka Miyake
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan; Kyoto University Medical Science and Business Liaison Organization, Medical Innovation Center, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| |
Collapse
|
13
|
Nuñez NA, Coombes BJ, Beaupre LM, Ozerdem A, Resendez MG, Romo-Nava F, Bond DJ, Veldic M, Singh B, Moore KM, Betcher HK, Kung S, Prieto ML, Fuentes M, Ercis M, Miola A, Sanchez Ruiz JA, Jenkins G, Batzler A, Leung JG, Cuellar-Barboza A, Tye SJ, McElroy SL, Biernacka JM, Frye MA. Pharmacogenomic overlap between antidepressant treatment response in major depression & antidepressant associated treatment emergent mania in bipolar disorder. Transl Psychiatry 2024; 14:93. [PMID: 38351009 PMCID: PMC10864308 DOI: 10.1038/s41398-024-02798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
There is increasing interest in individualizing treatment selection for more than 25 regulatory approved treatments for major depressive disorder (MDD). Despite an inconclusive efficacy evidence base, antidepressants (ADs) are prescribed for the depressive phase of bipolar disorder (BD) with oftentimes, an inadequate treatment response and or clinical concern for mood destabilization. This study explored the relationship between antidepressant response in MDD and antidepressant-associated treatment emergent mania (TEM) in BD. We conducted a genome-wide association study (GWAS) and polygenic score analysis of TEM and tested its association in a subset of BD-type I patients treated with SSRIs or SNRIs. Our results did not identify any genome-wide significant variants although, we found that a higher polygenic score (PGS) for antidepressant response in MDD was associated with higher odds of TEM in BD. Future studies with larger transdiagnostic depressed cohorts treated with antidepressants are encouraged to identify a neurobiological mechanism associated with a spectrum of depression improvement from response to emergent mania.
Collapse
Affiliation(s)
- Nicolas A Nuñez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Aysegul Ozerdem
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Manuel Gardea Resendez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, México
| | | | - David J Bond
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Marin Veldic
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Balwinder Singh
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Katherine M Moore
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Hannah K Betcher
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Simon Kung
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Miguel L Prieto
- Department of Psychiatry, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Manuel Fuentes
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mete Ercis
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Alessandro Miola
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Gregory Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Susannah J Tye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Susan L McElroy
- Lindner Center of HOPE/University of Cincinnati, Cincinnati, OH, USA
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Li L, Wang L, Zhang L. Therapeutic Potential of Natural Compounds from Herbs and Nutraceuticals in Alleviating Neurological Disorders: Targeting the Wnt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2411-2433. [PMID: 38284360 DOI: 10.1021/acs.jafc.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning PR China
| |
Collapse
|
15
|
Yin L, Lu C, Zeng S, Jiang D, Zeng G, Wang H. Asperuloside Suppresses the Development of Depression through Wnt3α/GSK-3β Signal Pathway in Rats. Biol Pharm Bull 2024; 47:1637-1643. [PMID: 39370268 DOI: 10.1248/bpb.b24-00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Depressive disorder is the most common mental disorder with significant economic burden and limited treatments. Traditional Chinese medicine monomer has emerged as a promising non-pharmacological treatment for reducing depressive symptoms. The aim of this study was to investigate the antidepressant-like effects of asperuloside (ASP) and its mechanism. The depression-like behaviors of chronic unpredictable mild stress (CUMS)-exposed rats were evaluated by behavioral tests. At the same time, the behaviors of rats treated with different concentrations of ASP (10, 20, 40 mg/kg) were also evaluated. RNA sequencing was performed to screen for dysregulated genes following ASP treatment. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to state the enriched pathways. Protein expression was detected by Western blotting. With the increase of ASP concentration (over 20 mg/kg), the depression-like behaviors of the rats were alleviated, which was manifested as the increase of the number of entries in the central zone, decrease of immobility time, and the increase of swimming time, sucrose preference, and body weight. ASP activated the Wnt3α/glycogen synthase kinase 3β (GSK-3β)/β-catenin signaling pathway in vivo. Knockdown of β-catenin reversed the effects of ASP on regulating depression-like behaviors. ASP alleviates depression-like behaviors by activating the Wnt3α/GSK-3β/β-catenin signaling pathway, indicating that ASP may be a potential therapeutic drug for treatment of depression.
Collapse
Affiliation(s)
- Li Yin
- Zunyi Medical and Pharmaceutical College
| | - Chengshu Lu
- Department of Biopharmaceutics, Yulin Normal University
| | - Shiyuan Zeng
- Department of Biopharmaceutics, Yulin Normal University
| | - Deqi Jiang
- Department of Biopharmaceutics, Yulin Normal University
| | - Guofang Zeng
- Department of Biopharmaceutics, Yulin Normal University
| | | |
Collapse
|
16
|
Wang Z, Li XN, Yang SN, Wang Y, Gao KJ, Han B, Ma AJ. Exosomal miR-320e through wnt2targeted inhibition of the Wnt/β-catenin pathway allevisate cerebral small vessel disease and cognitive impairment. World J Psychiatry 2023; 13:630-644. [PMID: 37771642 PMCID: PMC10523201 DOI: 10.5498/wjp.v13.i9.630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Exosomal miRNAs play crucial roles in many central nervous system diseases. Cerebral small vessel disease (CVSD) is a small vessel disease that is affected by various factors. This study aimed to investigate the role of exosomal miR-320e in the Wnt/β-catenin pathway stimulated by oxidative stress and assess its clinical correlation with psychiatric symptoms in patients with CVSD. AIM To explore whether exosomal miR-320e could suppress the Wnt/β-catenin pathway and play a protective role in CVSD progression, as well as examine its potential correlation with cognitive impairment and depression in patients with CVSD. METHODS Differentially expressed exosomal miRNAs were filtered by sequencing plasma exosomes from patients with CVSD and healthy controls. Bioinformatics and dual luciferase analyses were used to confirm the binding of miR-320e to Wnt2, and the mRNA and protein levels of downstream components in the Wnt/β-catenin pathway were evaluated when overexpressed or with knockdown of miR-320e under H2O2-induced oxidative stress. In addition, Wnt2-targeting siRNA was used to confirm the role of miR-320e in the Wnt2-mediated inhibition of the Wnt/β-catenin pathway. A retrospective analysis was conducted among patients with CVSD to confirm the correlation between miR-320e expression and the severity of cognitive impairment and depression, which were quantified using the Montreal Cognitive Assessment (MoCA)/Executive Function Assessment (EFA), and the Hamilton Depression Scale (HAMD)/Beck Depression Inventory (BDI), respectively. RESULTS High-throughput sequencing revealed that exosomal miR-320e was downregulated in patients with CVSD. Bioinformatics analysis and dual-luciferase reporter gene experiments showed that exosomal miR-320e inhibited the Wnt/β-catenin pathway in response to oxidative stress by targeting the 3' noncoding region of Wnt2. Uptake of exosomes carrying miR-320e into endothelial cells could also target Wnt2 and inhibit the Wnt2/β-catenin pathway. Elevated miR-320e expression may protect patients with CVSD from relatively severe cognitive impairment and depression, as it was found to have a positive correlation with the MoCA/EFA and HAMD/BDI scores. CONCLUSION Our results suggest that exosomal miR-320e suppresses the Wnt/β-catenin pathway and may play a protective role in CVSD progression.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Internal Medicine-Neurology, Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Xue-Ning Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Shao-Nan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Yuan Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Ke-Jin Gao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Bin Han
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Ai-Jun Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| |
Collapse
|
17
|
Li Z, Dang W, Hao T, Zhang H, Yao Z, Zhou W, Deng L, Yu H, Wen Y, Liu L. Shared genetics and causal relationships between major depressive disorder and COVID-19 related traits: a large-scale genome-wide cross-trait meta-analysis. Front Psychiatry 2023; 14:1144697. [PMID: 37426090 PMCID: PMC10328439 DOI: 10.3389/fpsyt.2023.1144697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The comorbidity between major depressive disorder (MDD) and coronavirus disease of 2019 (COVID-19) related traits have long been identified in clinical settings, but their shared genetic foundation and causal relationships are unknown. Here, we investigated the genetic mechanisms behind COVID-19 related traits and MDD using the cross-trait meta-analysis, and evaluated the underlying causal relationships between MDD and 3 different COVID-19 outcomes (severe COVID-19, hospitalized COVID-19, and COVID-19 infection). Methods In this study, we conducted a comprehensive analysis using the most up-to-date and publicly available GWAS summary statistics to explore shared genetic etiology and the causality between MDD and COVID-19 outcomes. We first used genome-wide cross-trait meta-analysis to identify the pleiotropic genomic SNPs and the genes shared by MDD and COVID-19 outcomes, and then explore the potential bidirectional causal relationships between MDD and COVID-19 outcomes by implementing a bidirectional MR study design. We further conducted functional annotations analyses to obtain biological insight for shared genes from the results of cross-trait meta-analysis. Results We have identified 71 SNPs located on 25 different genes are shared between MDD and COVID-19 outcomes. We have also found that genetic liability to MDD is a causal factor for COVID-19 outcomes. In particular, we found that MDD has causal effect on severe COVID-19 (OR = 1.832, 95% CI = 1.037-3.236) and hospitalized COVID-19 (OR = 1.412, 95% CI = 1.021-1.953). Functional analysis suggested that the shared genes are enriched in Cushing syndrome, neuroactive ligand-receptor interaction. Discussion Our findings provide convincing evidence on shared genetic etiology and causal relationships between MDD and COVID-19 outcomes, which is crucial to prevention, and therapeutic treatment of MDD and COVID-19.
Collapse
Affiliation(s)
- Ziqi Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weijia Dang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tianqi Hao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hualin Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziwei Yao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenchao Zhou
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liufei Deng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yalu Wen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
18
|
Fu Y, Liu S, Dong Y, Gan Y, Guo X, Liu H, Xu Q, Yuan R, Ning A, Hong W, Peng Y, Yu S. Chronic restraint stress-induced depression-like behavior is mediated by upregulation of melanopsin expression in C57BL/6 mice retina. Psychopharmacology (Berl) 2023; 240:283-293. [PMID: 36580134 DOI: 10.1007/s00213-022-06302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Depression is associated with circadian disturbances in which melanopsin was a key mechanism. Further studies have demonstrated that melanopsin gene variations are associated with some depressive disorders and aberrant light can impair mood through melanopsin-expressing retinal ganglion cells (mRGCs). The goal of this study was to explore the direct relationship between depression and melanopsin. METHODS Adult C57BL/6 male mice were physically restrained for 16 h in a 50-ml polypropylene centrifuge tube and all behavioral tests were performed after CRS treatment. Western blot analysis and immunofluorescence were used to detect melanopsin expression in the retina of C57BL/6 mice. And we observed the change of the electrophysiological function and release of glutamate of mRGCs. RESULTS The melanopsin expression upregulate in mRGCs of chronic restraint stress (CRS)-treating mice which exhibit depression-like behavior. The frequency of blue light-induced action potentials and light-induced glutamate release mediated by melanopsin also increase significantly. This change of melanopsin is mediated by the CRS-induced glucocorticoid. CONCLUSIONS CRS may induce the depression-like behavior in mice via glucocorticoid-melanopsin pathway. Our findings provide a novel mechanistic link between CRS-induced depression and melanopsin in mice.
Collapse
Affiliation(s)
- Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shanshan Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Yigang Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education & Health Care, East China Normal University, Shanghai, 200241, China
| | - Yixia Gan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education & Health Care, East China Normal University, Shanghai, 200241, China
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixue Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ailing Ning
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanmin Peng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Moya-Alvarado G, Tiburcio-Felix R, Ibáñez MR, Aguirre-Soto AA, Guerra MV, Wu C, Mobley WC, Perlson E, Bronfman FC. BDNF/TrkB signaling endosomes in axons coordinate CREB/mTOR activation and protein synthesis in the cell body to induce dendritic growth in cortical neurons. eLife 2023; 12:77455. [PMID: 36826992 PMCID: PMC9977295 DOI: 10.7554/elife.77455] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptors tropomyosin kinase receptor B (TrkB) and the p75 neurotrophin receptor (p75) are the primary regulators of dendritic growth in the CNS. After being bound by BDNF, TrkB and p75 are endocytosed into endosomes and continue signaling within the cell soma, dendrites, and axons. We studied the functional role of BDNF axonal signaling in cortical neurons derived from different transgenic mice using compartmentalized cultures in microfluidic devices. We found that axonal BDNF increased dendritic growth from the neuronal cell body in a cAMP response element-binding protein (CREB)-dependent manner. These effects were dependent on axonal TrkB but not p75 activity. Dynein-dependent BDNF-TrkB-containing endosome transport was required for long-distance induction of dendritic growth. Axonal signaling endosomes increased CREB and mTOR kinase activity in the cell body, and this increase in the activity of both proteins was required for general protein translation and the expression of Arc, a plasticity-associated gene, indicating a role for BDNF-TrkB axonal signaling endosomes in coordinating the transcription and translation of genes whose products contribute to learning and memory regulation.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Department of Physiology, Faculty of Biological Sciences and Center for Aging and Regeneration), Pontificia Universidad Católica de Chile. Av. Libertador Bernardo O´HigginsSantiagoChile
| | - Reynaldo Tiburcio-Felix
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - María Raquel Ibáñez
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Alejandro A Aguirre-Soto
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Miguel V Guerra
- Department of Physiology, Faculty of Biological Sciences and Center for Aging and Regeneration), Pontificia Universidad Católica de Chile. Av. Libertador Bernardo O´HigginsSantiagoChile,NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - William C Mobley
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Francisca C Bronfman
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| |
Collapse
|
20
|
Kot M, Neglur PK, Pietraszewska A, Buzanska L. Boosting Neurogenesis in the Adult Hippocampus Using Antidepressants and Mesenchymal Stem Cells. Cells 2022; 11:cells11203234. [PMID: 36291101 PMCID: PMC9600461 DOI: 10.3390/cells11203234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus is one of the few privileged regions (neural stem cell niche) of the brain, where neural stem cells differentiate into new neurons throughout adulthood. However, dysregulation of hippocampal neurogenesis with aging, injury, depression and neurodegenerative disease leads to debilitating cognitive impacts. These debilitating symptoms deteriorate the quality of life in the afflicted individuals. Impaired hippocampal neurogenesis is especially difficult to rescue with increasing age and neurodegeneration. However, the potential to boost endogenous Wnt signaling by influencing pathway modulators such as receptors, agonists, and antagonists through drug and cell therapy-based interventions offers hope. Restoration and augmentation of hampered Wnt signaling to facilitate increased hippocampal neurogenesis would serve as an endogenous repair mechanism and contribute to hippocampal structural and functional plasticity. This review focuses on the possible interaction between neurogenesis and Wnt signaling under the control of antidepressants and mesenchymal stem cells (MSCs) to overcome debilitating symptoms caused by age, diseases, or environmental factors such as stress. It will also address some current limitations hindering the direct extrapolation of research from animal models to human application, and the technical challenges associated with the MSCs and their cellular products as potential therapeutic solutions.
Collapse
Affiliation(s)
- Marta Kot
- Correspondence: ; Tel.: +48-22-60-86-563
| | | | | | | |
Collapse
|
21
|
Han H, Xu M, Wen L, Chen J, Liu Q, Wang J, Li MD, Yang Z. Identification of a Novel Functional Non-synonymous Single Nucleotide Polymorphism in Frizzled Class Receptor 6 Gene for Involvement in Depressive Symptoms. Front Mol Neurosci 2022; 15:882396. [PMID: 35875672 PMCID: PMC9302575 DOI: 10.3389/fnmol.2022.882396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
Although numerous susceptibility loci for depression have been identified in recent years, their biological function and molecular mechanism remain largely unknown. By using an exome-wide association study for depressive symptoms assessed by the Center for Epidemiological Studies Depression (CES-D) score, we discovered a novel missense single nucleotide polymorphism (SNP), rs61753730 (Q152E), located in the fourth exon of the frizzled class receptor 6 gene (FZD6), which is a potential causal variant and is significantly associated with the CES-D score. Computer-based in silico analysis revealed that the protein configuration and stability, as well as the secondary structure of FZD6 differed greatly between the wild-type (WT) and Q152E mutant. We further found that rs61753730 significantly affected the luciferase activity and expression of FZD6 in an allele-specific way. Finally, we generated Fzd6-knockin (Fzd6-KI) mice with rs61753730 mutation using the CRISPR/Cas9 genome editing system and found that these mice presented greater immobility in the forced swimming test, less preference for sucrose in the sucrose preference test, as well as decreased center entries, center time, and distance traveled in the open filed test compared with WT mice after exposed to chronic social defeat stress. These results indicate the involvement of rs61753730 in depression. Taken together, our findings demonstrate that SNP rs61753730 is a novel functional variant and plays an important role in depressive symptoms.
Collapse
Affiliation(s)
- Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Wang
- Department of Medical Engineering, Tianjin Medical University, Tianjin, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
- *Correspondence: Ming D. Li,
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhongli Yang,
| |
Collapse
|
22
|
WNT3 hypomethylation counteracts low activity of the Wnt signaling pathway in the placenta of preeclampsia. Cell Mol Life Sci 2021; 78:6995-7008. [PMID: 34608506 PMCID: PMC8558176 DOI: 10.1007/s00018-021-03941-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy. Many studies have shown that epigenetic mechanisms may play a role in preeclampsia. Moreover, our previous study indicated that the differentially methylated genes in preeclampsia were enriched in the Wnt/β-catenin signaling pathway. This study aimed to identify differentially methylated Wnt/β-catenin signaling pathway genes in the preeclamptic placenta and to study the roles of these genes in trophoblast cells in vitro. Using an Illumina Infinium HumanMethylation 850 K BeadChip, we found that the Wnt signaling pathway was globally hypermethylated in the preeclamptic group compared with the term birth group, but hypomethylated in the preeclamptic group compared with the preterm birth group. Among all Wnt/β-catenin signaling pathway factors, WNT3 was the most significantly differentially expressed gene and was hypomethylated in the preeclamptic group compared to the nonhypertensive groups, namely, the preterm birth group and term birth group. This result was confirmed by pyrosequencing. Through quantitative real-time PCR and western blot analysis, the WNT3 gene was found to be highly expressed in preeclamptic placental tissues, in contrast to other WNT factors, which were previously reported to be expressed at low levels in placental tissues. Additionally, in the HTR8/SVneo cell line, knockdown of WNT3 suppressed the Wnt/β-catenin signaling pathway, consistent with the findings for other WNT factors. These results prompted us to speculate that the WNT3 gene counteracts the low activation state of the Wnt signaling pathway in the preeclamptic placenta through methylation modification.
Collapse
|
23
|
Bainomugisa CK, Sutherland HG, Parker R, Mcrae AF, Haupt LM, Griffiths LR, Heath A, Nelson EC, Wright MJ, Hickie IB, Martin NG, Nyholt DR, Mehta D. Using Monozygotic Twins to Dissect Common Genes in Posttraumatic Stress Disorder and Migraine. Front Neurosci 2021; 15:678350. [PMID: 34239411 PMCID: PMC8258453 DOI: 10.3389/fnins.2021.678350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Epigenetic mechanisms have been associated with genes involved in Posttraumatic stress disorder (PTSD). PTSD often co-occurs with other health conditions such as depression, cardiovascular disorder and respiratory illnesses. PTSD and migraine have previously been reported to be symptomatically positively correlated with each other, but little is known about the genes involved. The aim of this study was to understand the comorbidity between PTSD and migraine using a monozygotic twin disease discordant study design in six pairs of monozygotic twins discordant for PTSD and 15 pairs of monozygotic twins discordant for migraine. DNA from peripheral blood was run on Illumina EPIC arrays and analyzed. Multiple testing correction was performed using the Bonferroni method and 10% false discovery rate (FDR). We validated 11 candidate genes previously associated with PTSD including DOCK2, DICER1, and ADCYAP1. In the epigenome-wide scan, seven novel CpGs were significantly associated with PTSD within/near IL37, WNT3, ADNP2, HTT, SLFN11, and NQO2, with all CpGs except the IL37 CpG hypermethylated in PTSD. These results were significantly enriched for genes whose DNA methylation was previously associated with migraine (p-value = 0.036). At 10% FDR, 132 CpGs in 99 genes associated with PTSD were also associated with migraine in the migraine twin samples. Genes associated with PTSD were overrepresented in vascular smooth muscle, axon guidance and oxytocin signaling pathways, while genes associated with both PTSD and migraine were enriched for AMPK signaling and longevity regulating pathways. In conclusion, these results suggest that common genes and pathways are likely involved in PTSD and migraine, explaining at least in part the co-morbidity between the two disorders.
Collapse
Affiliation(s)
- Charlotte K Bainomugisa
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Allan F Mcrae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Andrew Heath
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Dale R Nyholt
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Divya Mehta
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
24
|
Bu T, Qiao Z, Wang W, Yang X, Zhou J, Chen L, Yang J, Xu J, Ji Y, Wang Y, Zhang W, Yang Y, Qiu X, Yu Y. Diagnostic Biomarker Hsa_circ_0126218 and Functioning Prediction in Peripheral Blood Monocular Cells of Female Patients With Major Depressive Disorder. Front Cell Dev Biol 2021; 9:651803. [PMID: 34095115 PMCID: PMC8174117 DOI: 10.3389/fcell.2021.651803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Although major depressive diroder (MDD) has brought huge burden and challenges to society globally, effective and accurate diagnoses and treatments remain inadequate. The pathogenesis that for women are more likely to suffer from depression than men needs to be excavated as well. The function of circRNAs in pathological process of depression has not been widely investigated. This study aims to explore potential diagnostic biomarker circRNA of female patients with MDD and to investigate its role in pathogenesis. Methods First, an expression profile of circRNAs in the peripheral blood monocular cells of MDD patients and healthy peripherals were established based on high-throughput sequencing analysis. In addition, the top 10 differentially expressed circRNAs were quantified by quantitative real-time PCR to explore diagnostic biomarkers. To further investigate the function of biomarkers in the pathogenesis of MDD, bioinformatics analysis on downstream target genes of the biomarkers was carried out. Results There is a mass of dysregulated circRNAs in PBMCs between female MDD patients and healthy controls. Among the top 10 differentially expressed circRNAs, hsa_circ_0126218 is more feasible as a diagnostic biomarker. The expression level of hsa_circ_0126218 displayed upregulation in patients with MDD and the area under the operating characteristic curve of hsa_circ_0126218 was 0.801 (95% CI 0.7226–0.8791, p < 0.0001). To explain the competing endogenous RNA role of hsa_circ_0126218 in the pathogenesis of female MDD, a hsa_circ_0126218-miRNA-mRNA network was established. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses stated that some of the enriched pathways downstream of hsa_circ_0126218 are closely related to MDD. Moreover, we established a protein-protein network to further screen out the hub genes (PIK3CA, PTEN, MAPK1, CDC42, Lyn, YES1, EPHB2, SMAD2, STAT1, and ILK). The function of hsa_circ_0126218 was refined by constructing a verified circRNA-predicted miRNA-hub gene subnetwork. Conclusion hsa_circ_0126218 can be considered as a new female MDD biomarker, and the pathogenesis of female MDD by the downstream regulation of hsa_circ_0126218 has been predicted. These findings may help further improve the early detection, effective diagnosis, convenient monitoring of complications, precise treatment, and timely recurrence prevention of depression.
Collapse
Affiliation(s)
- Tianyi Bu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Zhengxue Qiao
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Wenbo Wang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Xiuxian Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Jiawei Zhou
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Lu Chen
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Jiarun Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Jia Xu
- Psychotherapy Department, The First Psychiatric Hospital of Harbin, Harbin, China
| | - Yanping Ji
- Department of Nursing, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yini Wang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Wenxin Zhang
- Medical Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Xiaohui Qiu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Yunmiao Yu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Xiao Z, Cao Z, Yang J, Jia Z, Du Y, Sun G, Lu Y, Pei L. Baicalin promotes hippocampal neurogenesis via the Wnt/β-catenin pathway in a chronic unpredictable mild stress-induced mouse model of depression. Biochem Pharmacol 2021; 190:114594. [PMID: 33964281 DOI: 10.1016/j.bcp.2021.114594] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Hippocampal neurogenesis is known to be related to depressive symptoms. Increasing evidence indicates that Wnt/β-catenin signaling regulates multiple aspects of adult hippocampal neurogenesis. Baicalin is a major flavonoid compound with multiple pharmacological effects such as anti-inflammatory, anti-apoptotic, and neuroprotective effects. The current study aimed to explore the antidepressant effects of baicalin and its possible molecular mechanisms affecting hippocampal neurogenesis via the regulation of the Wnt/β-catenin signaling pathway. A chronic mild unpredictable stress (CUMS) model of depression was used in the study. The CUMS-induced mice were treated with baicalin (50 and 100 mg/kg) for 21 days, orally, and the fluoxetine was used as positive control drug. The results indicated that baicalin alleviated CUMS-induced depression-like behaviour, and improved the nerve cells' survival of the hippocampal dentate gyrus (DG) in CUMS-induced depression of model mice and increased Ki-67- and doublecortin (DCX)-positive cells to restore CUMS-induced suppression of hippocampal neurogenesis. The related proteins in the Wnt/β-catenin signaling pathway, which declined in the CUMS-induced depression model of mice, were upregulated after baicalin treatment, including Wingless3a (Wnt3a), dishevelled2 (DVL2), and β-catenin. Further study found that the phosphorylation rate of glycogen synthase kinase-3β (GSK3β) and β-catenin nuclear translocation increased, as the levels of the β-catenin target genes cyclinD1, c-myc, NeuroD1, and Ngn2 upregulated after baicalin treatment. In conclusion, these findings suggest that baicalin may promote hippocampal neurogenesis, thereby exerting the antidepressant effect via regulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhigang Xiao
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China
| | - Zhuoqing Cao
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China
| | - Jiali Yang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China
| | - Zhixia Jia
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China
| | - Yuru Du
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Guoqiang Sun
- Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China
| | - Ye Lu
- Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China.
| | - Lin Pei
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China.
| |
Collapse
|
26
|
Downregulation of miR-383 reduces depression-like behavior through targeting Wnt family member 2 (Wnt2) in rats. Sci Rep 2021; 11:9223. [PMID: 33927285 PMCID: PMC8085118 DOI: 10.1038/s41598-021-88560-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to evaluate the role of miR-383 in the regulation of Wnt-2 signaling in the rat model of chronic stress. The male SD rats with depressive-like behaviors were stimulated with chronic unpredictable mild stress (CUMS) including ice-water swimming for 5 min, food deprivation for 24 h, water deprivation for 24 h, stimulating tail for 1 min, turning night into day, shaking for 15 min (once/s), and wrap restraint (5 min/time) every day for 21 days. The expression levels of miRNAs were detected by qRT-PCR, and the expression levels of Wnt2, depression-impacted proteins (GFAP, BDNF, CREB), brain neurotransmitters (5-HT, NE, DA) and apoptosis-related proteins (Bax and Bcl-2) were evaluated by qRT-PCR and western blot. Bioinformatic analysis and luciferase reporter assay were performed to determine the relationship between miR-383 and Wnt2. Ethological analysis was evaluated by sugar preference test, refuge island test and open field tests. Rescue experiments including knockdown of miR-383, overexpression and silencing of Wnt2 were performed to determine the role of miR-383. High expression levels of miR-383 were observed in the hippocampus of rats submitted to CUMS model. Downregulation of miR-383 significantly inhibited the apoptosis and inflammatory response of hippocampal neurons, and increased the expression levels of GFAP, BDNF and CREB which were impacted in depression, as well as neurotransmitters, then attenuated neural injury in rats induced by CUMS. Furthermore, Wnt family member 2 (Wnt2) was identified as a target of miR-383, and silencing of Wnt2 obviously attenuated the protective effect of miR-383 inhibitor on the apoptosis and inflammatory response in hippocampal neurons, as well as neural injury in CUMS-induced rats. Downregulation of miR-383 ameliorated the behavioral and neurochemical changes induced by chronic stress in rats by directly targeting Wnt2, indicating that the miR-383/Wnt2 axis might be a potential therapeutic target for MDD.
Collapse
|
27
|
Iñiguez SD, Flores-Ramirez FJ, Themann A, Lira O. Adolescent Fluoxetine Exposure Induces Persistent Gene Expression Changes in the Hippocampus of Adult Male C57BL/6 Mice. Mol Neurobiol 2021; 58:1683-1694. [PMID: 33241493 PMCID: PMC7933079 DOI: 10.1007/s12035-020-02221-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 02/03/2023]
Abstract
Mood-related disorders have a high prevalence among children and adolescents, posing a public health challenge, given their adverse impact on these young populations. Treatment with the selective serotonin reuptake inhibitor fluoxetine (FLX) is the first line of pharmacological intervention in pediatric patients suffering from affect-related illnesses. Although the use of this antidepressant has been deemed efficacious in the juvenile population, the enduring neurobiological consequences of adolescent FLX exposure are not well understood. Therefore, we explored for persistent molecular adaptations, in the adult hippocampus, as a function of adolescent FLX pretreatment. To do this, we administered FLX (20 mg/kg/day) to male C57BL/6 mice during adolescence (postnatal day [PD] 35-49). After a 21-day washout period (PD70), whole hippocampal tissue was dissected. We then used qPCR analysis to assess changes in the expression of genes associated with major intracellular signal transduction pathways, including the extracellular signal-regulated kinase (ERK), the phosphatidylinositide-3-kinase (PI3K)/AKT pathway, and the wingless (Wnt)-dishevelled-GSK3β signaling cascade. Our results show that FLX treatment results in long-term dysregulation of mRNA levels across numerous genes from the ERK, PI3K/AKT, and Wnt intracellular signaling pathways, along with increases of the transcription factors CREB, ΔFosB, and Zif268. Lastly, FLX treatment resulted in persistent increases of transcripts associated with cytoskeletal integrity (β-actin) and caspase activation (DIABLO), while decreasing genes associated with metabolism (fucose kinase) and overall neuronal activation (c-Fos). Collectively, these data indicate that adolescent FLX exposure mediates persistent alterations in hippocampal gene expression in adulthood, thus questioning the safety of early-life exposure to this antidepressant medication.
Collapse
Affiliation(s)
- Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Francisco J Flores-Ramirez
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
28
|
Gawlińska K, Gawliński D, Korostyński M, Borczyk M, Frankowska M, Piechota M, Filip M, Przegaliński E. Maternal dietary patterns are associated with susceptibility to a depressive-like phenotype in rat offspring. Dev Cogn Neurosci 2020; 47:100879. [PMID: 33232913 PMCID: PMC7691544 DOI: 10.1016/j.dcn.2020.100879] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Modified maternal diet influences offspring behavior and the brain transcriptome. Maternal HFD provokes depressive-like behavior in male and female offspring. In utero exposure to HFD leads to transcriptomics alterations within the offspring’s frontal cortex. Maternal HFD changes expression of markers specific to excitatory and inhibitory cortical neurons.
Environmental factors such as maternal diet, determine the pathologies that appear early in life and can persist in adulthood. Maternally modified diets provided through pregnancy and lactation increase the predisposition of offspring to the development of many diseases, including obesity, diabetes, and neurodevelopmental and mental disorders such as depression. Fetal and early postnatal development are sensitive periods in the offspring’s life in which maternal nutrition influences epigenetic modifications, which results in changes in gene expression and affects molecular phenotype. This study aimed to evaluate the impact of maternal modified types of diet, including a high-fat diet (HFD), high-carbohydrate diet (HCD) and mixed diet (MD) during pregnancy and lactation on phenotypic changes in rat offspring with respect to anhedonia, depressive- and anxiety-like behavior, memory impairment, and gene expression profile in the frontal cortex. Behavioral results indicate that maternal HFD provokes depressive-like behavior and molecular findings showed that HFD leads to persistent transcriptomics alterations. Moreover, a HFD significantly influences the expression of neuronal markers specific to excitatory and inhibitory cortical neurons. Collectively, these experiments highlight the complexity of the impact of maternal modified diet during fetal programming. Undoubtedly, maternal HFD affects brain development and our findings suggest that nutrition exerts significant changes in brain function that may be associated with depression.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Dawid Gawliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Michał Korostyński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Borczyk
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Frankowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Marcin Piechota
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland.
| | - Edmund Przegaliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| |
Collapse
|
29
|
Xia Z, Qi W, Xiaofeng G, Jiguang K, Hongfei H, Yuchen Z, Yihan Z, Yan W, Nannan L, Yiwei L, Hongsheng B, Xiaobai L. AMBMP activates WNT pathway and alleviates stress-induced behaviors in maternal separation and chronic stress models. Eur J Pharmacol 2020; 881:173192. [DOI: 10.1016/j.ejphar.2020.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
30
|
Breen MS, Browne A, Hoffman GE, Stathopoulos S, Brennand K, Buxbaum JD, Drapeau E. Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism. Mol Autism 2020; 11:53. [PMID: 32560742 PMCID: PMC7304190 DOI: 10.1186/s13229-020-00355-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare genetic disorder with high risk of autism spectrum disorder (ASD), intellectual disability, and language delay, and is caused by 22q13.3 deletions or mutations in the SHANK3 gene. To date, the molecular and pathway changes resulting from SHANK3 haploinsufficiency in PMS remain poorly understood. Uncovering these mechanisms is critical for understanding pathobiology of PMS and, ultimately, for the development of new therapeutic interventions. METHODS We developed human-induced pluripotent stem cell (hiPSC)-based models of PMS by reprogramming peripheral blood samples from individuals with PMS (n = 7) and their unaffected siblings (n = 6). For each participant, up to three hiPSC clones were generated and differentiated into induced neural progenitor cells (hiPSC-NPCs; n = 39) and induced forebrain neurons (hiPSC-neurons; n = 41). Genome-wide RNA-sequencing was applied to explore transcriptional differences between PMS probands and unaffected siblings. RESULTS Transcriptome analyses identified 391 differentially expressed genes (DEGs) in hiPSC-NPCs and 82 DEGs in hiPSC-neurons, when comparing cells from PMS probands and unaffected siblings (FDR < 5%). Genes under-expressed in PMS were implicated in Wnt signaling, embryonic development, and protein translation, while over-expressed genes were enriched for pre- and postsynaptic density genes, regulation of synaptic plasticity, and G-protein-gated potassium channel activity. Gene co-expression network analysis identified two modules in hiPSC-neurons that were over-expressed in PMS, implicating postsynaptic signaling and GDP binding, and both modules harbored a significant enrichment of genetic risk loci for developmental delay and intellectual disability. Finally, PMS-associated genes were integrated with other ASD hiPSC transcriptome findings and several points of convergence were identified, indicating altered Wnt signaling and extracellular matrix. LIMITATIONS Given the rarity of the condition, we could not carry out experimental validation in independent biological samples. In addition, functional and morphological phenotypes caused by loss of SHANK3 were not characterized here. CONCLUSIONS This is the largest human neural sample analyzed in PMS. Genome-wide RNA-sequencing in hiPSC-derived neural cells from individuals with PMS revealed both shared and distinct transcriptional signatures across hiPSC-NPCs and hiPSC-neurons, including many genes implicated in risk for ASD, as well as specific neurobiological pathways, including the Wnt pathway.
Collapse
Affiliation(s)
- Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew Browne
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sofia Stathopoulos
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kristen Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
31
|
Roy B, Dunbar M, Agrawal J, Allen L, Dwivedi Y. Amygdala-Based Altered miRNome and Epigenetic Contribution of miR-128-3p in Conferring Susceptibility to Depression-Like Behavior via Wnt Signaling. Int J Neuropsychopharmacol 2020; 23:165-177. [PMID: 32173733 PMCID: PMC7171932 DOI: 10.1093/ijnp/pyz071] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies suggest that microRNAs (miRNAs) can participate in depression pathogenesis by altering a host of genes that are critical in corticolimbic functioning. The present study focuses on examining whether alterations in the miRNA network in the amygdala are associated with susceptibility or resiliency to develop depression-like behavior in rats. METHODS Amygdala-specific altered miRNA transcriptomics were determined in a rat depression model following next-generation sequencing method. Target prediction analyses (cis- and trans) and qPCR-based assays were performed to decipher the functional role of altered miRNAs. miRNA-specific target interaction was determined using in vitro transfection assay in neuroblastoma cell line. miRNA-specific findings from the rat in vivo model were further replicated in postmortem amygdala of major depressive disorder (MDD) subjects. RESULTS Changes in miRNome identified 17 significantly upregulated and 8 significantly downregulated miRNAs in amygdala of learned helpless (LH) compared with nonlearned helpless rats. Prediction analysis showed that the majority of the upregulated miRNAs had target genes enriched for the Wnt signaling pathway. Among altered miRNAs, upregulated miR-128-3p was identified as a top hit based on statistical significance and magnitude of change in LH rats. Target validation showed significant downregulation of Wnt signaling genes in amygdala of LH rats. A discernable increase in expression of amygdalar miR-128-3p along with significant downregulation of key target genes from Wnt signaling (WNT5B, DVL, and LEF1) was noted in MDD subjects. Overexpression of miR-128-3p in a cellular model lead to a marked decrease in the expression of Dvl1 and Lef1 genes, confirming them as validated targets of miR-128-3p. Additional evidence suggested that the amygdala-specific diminished expression of transcriptional repressor Snai1 could be potentially linked to induced miR-128-2 expression in LH rats. Furthermore, an amygdala-specific posttranscriptional switching mechanism could be active between miR-128-3p and RNA binding protein Arpp21 to gain control over their target genes such as Lef1. CONCLUSION Our study suggests that in amygdala a specific set of miRNAs may play an important role in depression susceptibility, which could potentially be mediated through Wnt signaling.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Dunbar
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Juhee Agrawal
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lauren Allen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama,Correspondence: Yogesh Dwivedi, PhD, Elesabeth Ridgely Shook Professor, Director of Translational Research, UAB Mood Disorder Program, Co-Director, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL ()
| |
Collapse
|
32
|
Pigment epithelium-derived factor alleviates depressive-like behaviors in mice by modulating adult hippocampal synaptic growth and Wnt pathway. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109792. [PMID: 31676463 DOI: 10.1016/j.pnpbp.2019.109792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Pigment epithelium-derived factor (PEDF, also known as SERPINF1) is a secreted glycoprotein with neuroprotective effects. However, the potential role of PEDF in major depressive disorder (MDD) remains largely unknown. Here, applying two-dimensional gel electrophoresis (2-DE) proteomics, we found that PEDF levels were significantly decreased in the plasma of 12 first-episode treatment-naïve MDD patients (FETND) compared to the levels in 12 healthy controls (HCs). PEDF levels were especially lower in MDD patients than in HCs and patients with bipolar disorder (BD) and schizophrenia (SCZ), and elevated PEDF were consistent with decreased HAM-D scores in patients given antidepressant therapy (ADT). Animal research indicated that PEDF was decreased in the periphery and hippocampus of two well-known depression rodent models (the chronic unpredictable mild stress (CUMS) rat model and chronic social defeat stress (CSDS) mouse model). Decreased PEDF levels in the hippocampus led to depressive-like behaviors, synaptic impairments and aberrant Wnt signaling in C57BL mice, while increased PEDF resulted in the opposite results. Mechanistic studies indicated that PEDF contributes to dendritic growth and Wnt signaling activation in the hippocampus of adult mice. Taken together, the results of our study demonstrate the involvement of PEDF and its related mechanism in depression, thus providing translational evidence suggesting that PEDF may be a novel therapeutic target for depression.
Collapse
|
33
|
Mao J, Li T, Fan D, Zhou H, Feng J, Liu L, Zhang C, Wang X. Abnormal expression of rno_circRNA_014900 and rno_circRNA_005442 induced by ketamine in the rat hippocampus. BMC Psychiatry 2020; 20:1. [PMID: 31898506 PMCID: PMC6939336 DOI: 10.1186/s12888-019-2374-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 11/27/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent studies have shown that circular RNA (circRNA) is rich in microRNA (miRNA) binding sites. We have previously demonstrated that the antidepressant effect of ketamine is related to the abnormal expression of various miRNAs in the brain. This study determined the expression profile of circRNAs in the hippocampus of rats treated with ketamine. METHODS The aberrantly expressed circRNAs in rat hippocampus after ketamine injection were analyzed by microarray chip, and we further validated these circRNAs by quantitative reverse-transcription PCR (qRT-PCR). The target genes of the different circRNAs were predicted using bioinformatic analyses, and the functions and signal pathways of these target genes were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. RESULTS Microarray analysis showed that five circRNAs were aberrantly expressed in rat hippocampus after ketamine injection (fold change > 2.0, p < 0.05). The results from the qRT-PCR showed that one of the circRNAs was significantly increased (rno_circRNA_014900; fold change = 2.37; p = 0.03), while one was significantly reduced (rno_circRNA_005442; fold change = 0.37; p = 0.01). We discovered a significant enrichment in several GO terms and pathways associated with depression. CONCLUSION Our findings showed the abnormal expression of ketamine-induced hippocampal circRNAs in rats.
Collapse
Affiliation(s)
- Jing Mao
- grid.488387.8School of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province People’s Republic of China
| | - Tianmei Li
- grid.488387.8School of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province People’s Republic of China
| | - Di Fan
- grid.488387.8School of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province People’s Republic of China
| | - Hongli Zhou
- grid.488387.8School of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province People’s Republic of China
| | - Jianguo Feng
- grid.488387.8Laboratory of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province People’s Republic of China
| | - Li Liu
- grid.488387.8Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Road, Luzhou, Sichuan Province 646000 People’s Republic of China
| | - Chunxiang Zhang
- 0000000106344187grid.265892.2Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Xiaobin Wang
- Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Road, Luzhou, Sichuan Province, 646000, People's Republic of China.
| |
Collapse
|
34
|
Cook IA, Congdon E, Krantz DE, Hunter AM, Coppola G, Hamilton SP, Leuchter AF. Time Course of Changes in Peripheral Blood Gene Expression During Medication Treatment for Major Depressive Disorder. Front Genet 2019; 10:870. [PMID: 31620172 PMCID: PMC6760033 DOI: 10.3389/fgene.2019.00870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Changes in gene expression (GE) during antidepressant treatment may increase understanding of the action of antidepressant medications and serve as biomarkers of efficacy. GE changes in peripheral blood are desirable because they can be assessed easily on multiple occasions during treatment. We report here on GE changes in 68 individuals who were treated for 8 weeks with either escitalopram alone, or escitalopram followed by bupropion. GE changes were assessed after 1, 2, and 8 weeks of treatment, with significant changes observed in 156, 121, and 585 peripheral blood gene transcripts, respectively. Thirty-one transcript changes were shared between the 1- and 8-week time points (seven upregulated, 24 downregulated). Differences were detected between the escitalopram- and bupropion-treated subjects, although there was no significant association between GE changes and clinical outcome. A subset of 18 genes overlapped with those previously identified as differentially expressed in subjects with MDD compared with healthy control subjects. There was statistically significant overlap between genes differentially expressed in the current and previous studies, with 10 genes overlapping in at least two previous studies. There was no enrichment for genes overexpressed in nervous system cell types, but there was a trend toward enrichment for genes in the WNT/β-catenin pathway in the anterior thalamus; three genes in this pathway showed differential expression in the present and in three previous studies. Our dataset and other similar studies will provide an important source of information about potential biomarkers of recovery and for potential dysregulation of GE in MDD.
Collapse
Affiliation(s)
- Ian A Cook
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, Henry Samueli School of Engineering at Applied Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Eliza Congdon
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David E Krantz
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aimee M Hunter
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Giovanni Coppola
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven P Hamilton
- Department of Psychiatry, Kaiser Permanente Northern California, San Francisco, CA, United States.,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew F Leuchter
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
35
|
Taff CC, Campagna L, Vitousek MN. Genome-wide variation in DNA methylation is associated with stress resilience and plumage brightness in a wild bird. Mol Ecol 2019; 28:3722-3737. [PMID: 31330076 DOI: 10.1111/mec.15186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
Individuals often differ in their ability to cope with challenging environmental and social conditions. Evidence from model systems suggests that patterns of DNA methylation are associated with variation in coping ability. These associations could arise directly if methylation plays a role in controlling the physiological response to stressors by, among other things, regulating the release of glucocorticoids in response to challenges. Alternatively, the association could arise indirectly if methylation and resilience have a common cause, such as early-life conditions. In either case, methylation might act as a biomarker for coping ability. At present, however, relatively little is known about whether variation in methylation is associated with organismal performance and resilience under natural conditions. We studied genome-wide patterns of DNA methylation in free-living female tree swallows (Tachycineta bicolor) using methylated DNA immunoprecipitation (MeDIP) and a tree swallow genome that was assembled for this study. We identified areas of the genome that were differentially methylated with respect to social signal expression (breast brightness) and physiological traits (ability to terminate the glucocorticoid stress response through negative feedback). We also asked whether methylation predicted resilience to a subsequent experimentally imposed challenge. Individuals with brighter breast plumage and higher stress resilience had lower methylation at differentially methylated regions across the genome. Thus, widespread differences in methylation predicted both social signal expression and the response to future challenges under natural conditions. These results have implications for predicting individual differences in resilience, and for understanding the mechanistic basis of resilience and its environmental and social mediators.
Collapse
Affiliation(s)
- Conor C Taff
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| | - Leonardo Campagna
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| | - Maren N Vitousek
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| |
Collapse
|
36
|
Lee JM, Kim TW, Park SS, Kim CJ, Shin MS, Lee SJ, Kim SH, Baek SS. Wnt signaling pathway is implicated in the alleviating effect of treadmill exercise on maternal separation-induced depression. J Exerc Rehabil 2019; 15:200-205. [PMID: 31111001 PMCID: PMC6509450 DOI: 10.12965/jer.1938148.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/21/2019] [Indexed: 01/31/2023] Open
Abstract
Maternal separation in the developmental stage has a negative influence on brain development and causes depression. The extracellular ligand, Wnt, and its receptors play an important role in axis formation and neural development. Exercise inhibits apoptosis, increases cell proliferation, and exerts antidepressive effect. In this study, the effect of treadmill exercise on the maternal separation-induced depression was investigated in the aspect of Wnt signaling pathway. The maternal separation started on the postnatal day 14. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. The rat pups in the maternal separation and fluoxetine-treated group were intraperitoneally injected with 5-mg/kg fluoxetine once a day from postnatal day 21 to postnatal day 34. Forced swimming test was performed to evaluate the depression level. Western blotting was performed for the expressions of Wnt signaling ligands, Wnt2 and Wnt3a, and Wnt signaling inhibitors, Dkk1, and sFRP3. Maternal separation showed depressive behaviors in the forced swimming test. Treadmill exercise alleviated depressive behaviors in the maternal separation rat pups. Expressions of Wnt2 and Wnt3a were decreased by maternal separation. Treadmill exercise alleviated maternal separation-induced reduction of Wnt2 and Wnt3a expressions. Expressions of Dkk1 and sFRP3 in the hippocampus were increased by maternal separation. Treadmill exercise alleviated maternal separation-induced reduction of Dkk1 and sFRP3 expressions. Our study demonstrated that treadmill exercise activates Wnt signaling pathway, and then exerted antidepressive effect.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Sam-Jun Lee
- Department of Physical Education, College of Health, Welfare, and Education, Tong Myong University, Busan, Korea
| | - Sang-Hoon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Sport & Health Care, College of Art & Culture, Sangmyung University, Seoul, Korea
| | - Seung-Soo Baek
- Department of Sport & Health Care, College of Art & Culture, Sangmyung University, Seoul, Korea
| |
Collapse
|
37
|
Fear conditioning downregulates miR-138 expression in the hippocampus to facilitate the formation of fear memory. Neuroreport 2019; 29:1418-1424. [PMID: 30199441 DOI: 10.1097/wnr.0000000000001129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fear memory is important for the survival of animals and is associated with certain anxiety disorders, such as posttraumatic stress disorder. A thorough understanding of the molecular mechanisms of fear memory, especially associative fear memory, is imperative. MicroRNA-138 (miR-138) is a widely distributed microRNA in the brain and is locally enriched at synaptic sites. The role of miR-138 in the formation of fear memory is still largely unknown. In this study, a contextual fear conditioning (CFC) paradigm, bioinformatic methods, a luciferase assay, real-time PCR and western blot were used to evaluate the detailed effects of miR-138 on fear memory. We found that miR-138 transiently decreased in the dorsal hippocampus (DH) after CFC training. Upregulation or downregulation of miR-138 in the DH with miR-138 agomir or antagomir treatment significantly impaired or enhanced the formation of CFC memory, respectively. Moreover, the effects of miR-138 in the DH on the formation of CFC memory were achieved by changing the expression of the downstream target gene calpain 1 (Capn1). Taken together, both the in-vitro evidence and the in-vivo evidence presented in this study support the involvement of miR-138 in CFC memory formation, at least partly via the regulation of Capn1-mediated synaptic plasticity changes. Therapeutic use of miR-138/Capn1 is promising as an alternative option in the treatment of fear memory-related anxiety disorders.
Collapse
|
38
|
Lian N, Niu Q, Lei Y, Li X, Li Y, Song X. MiR-221 is involved in depression by regulating Wnt2/CREB/BDNF axis in hippocampal neurons. Cell Cycle 2018; 17:2745-2755. [PMID: 30589396 DOI: 10.1080/15384101.2018.1556060] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the mechanism of miR-221 in depression. METHODS The molecules expressions were measured by qRT-PCR and western blot. The sucrose preference test (SPT), forced swimming test (FST) and tail suspension test (TST) were used to detect depressive-like symptoms. MTT assay and flow cytometric was used to measure the proliferation and apoptosis of hippocampal neuronal. RESULTS MiR-221 expression in the cerebrospinal fluid and serum of major depressive disorder patients and the hippocampus of chronic unpredictable mild stress (CUMS) mice were increased, while the expression of Wnt2, p-CREB and BDNF were decreased. Additionally, silence of miR-221 increased sucrose preference of CUMS mice and shortened the immobility time of CUMS mice in SPT and FST. MiR-221 could targeted regulate Wnt2, and knockdown of Wnt2 reversed the effect of miR-221 inhibitor on the proliferation and apoptosis of hippocampal neurons and countered the promoting effect of miR-221 inhibitor on the expression of Wnt2, p-CREB and BDNF. CONCLUSION MiR-221 could promote the development of depression by regulating Wnt2/CREB/BDNF axis.
Collapse
Affiliation(s)
- Nan Lian
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Qihui Niu
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Yang Lei
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Xue Li
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Youhui Li
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Xueqin Song
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| |
Collapse
|
39
|
Mishra A, Singh S, Tiwari V, Parul, Shukla S. Dopamine D1 receptor activation improves adult hippocampal neurogenesis and exerts anxiolytic and antidepressant-like effect via activation of Wnt/β-catenin pathways in rat model of Parkinson's disease. Neurochem Int 2018; 122:170-186. [PMID: 30500462 DOI: 10.1016/j.neuint.2018.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is primarily characterized by midbrain dopamine depletion. Dopamine acts through dopamine receptors (D1 to D5) to regulate locomotion, motivation, pleasure, attention, cognitive functions and formation of newborn neurons, all of which are likely to be impaired in PD. Reduced hippocampal neurogenesis associated with dopamine depletion has been demonstrated in patients with PD. However, the precise mechanism to regulate multiple steps of adult hippocampal neurogenesis by dopamine receptor(s) is still unknown. In this study, we tested whether pharmacological agonism and antagonism of dopamine D1 and D2 receptor regulate nonmotor symptoms, neural stem cell (NSC) proliferation and fate specification and explored the cellular mechanism(s) underlying dopamine receptor (D1 and D2) mediated adult hippocampal neurogenesis in rat model of PD-like phenotypes. We found that single unilateral intra-medial forebrain bundle administration of 6-hydroxydopamine (6-OHDA) reduced D1 receptor level in the hippocampus. Pharmacological agonism of D1 receptor exerts anxiolytic and antidepressant-like effects as well as enhanced NSC proliferation, long-term survival and neuronal differentiation by positively regulating Wnt/β-catenin signaling pathway in hippocampus in PD rats. shRNA lentivirus mediated knockdown of Axin-2, a negative regulator of Wnt/β-catenin signaling potentially attenuated D1 receptor antagonist induced anxiety and depression-like phenotypes and impairment in adult hippocampal neurogenesis in PD rats. Our results suggest that improved nonmotor symptoms and hippocampal neurogenesis in PD rats controlled by D1-like receptors that involve the activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India
| | - Virendra Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Parul
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
40
|
Wang H, Xu J, Lazarovici P, Quirion R, Zheng W. cAMP Response Element-Binding Protein (CREB): A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia. Front Mol Neurosci 2018; 11:255. [PMID: 30214393 PMCID: PMC6125665 DOI: 10.3389/fnmol.2018.00255] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
Dopamine is a brain neurotransmitter involved in the pathology of schizophrenia. The dopamine hypothesis states that, in schizophrenia, dopaminergic signal transduction is hyperactive. The cAMP-response element binding protein (CREB) is an intracellular protein that regulates the expression of genes that are important in dopaminergic neurons. Dopamine affects the phosphorylation of CREB via G protein-coupled receptors. Neurotrophins, such as brain derived growth factor (BDNF), are critical regulators during neurodevelopment and synaptic plasticity. The CREB is one of the major regulators of neurotrophin responses since phosphorylated CREB binds to a specific sequence in the promoter of BDNF and regulates its transcription. Moreover, susceptibility genes associated with schizophrenia also target and stimulate the activity of CREB. Abnormalities of CREB expression is observed in the brain of individuals suffering from schizophrenia, and two variants (-933T to C and -413G to A) were found only in schizophrenic patients. The CREB was also involved in the therapy of animal models of schizophrenia. Collectively, these findings suggest a link between CREB and the pathophysiology of schizophrenia. This review provides an overview of CREB structure, expression, and biological functions in the brain and its interaction with dopamine signaling, neurotrophins, and susceptibility genes for schizophrenia. Animal models in which CREB function is modulated, by either overexpression of the protein or knocked down through gene deletion/mutation, implicating CREB in schizophrenia and antipsychotic drugs efficacy are also discussed. Targeting research and drug development on CREB could potentially accelerate the development of novel medications against schizophrenia.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Remi Quirion
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, China
| |
Collapse
|
41
|
Goldberg LR, Gould TJ. Multigenerational and transgenerational effects of paternal exposure to drugs of abuse on behavioral and neural function. Eur J Neurosci 2018; 50:2453-2466. [PMID: 29949212 DOI: 10.1111/ejn.14060] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
Addictions are highly heritable disorders, with heritability estimates ranging from 39% to 72%. Multiple studies suggest a link between paternal drug abuse and addiction in their children. However, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Exposure to drugs of abuse results in epigenetic changes that may be passed on through the germline. This mechanism of epigenetic transgenerational inheritance may provide a link between paternal drug exposure and addiction susceptibility in the offspring. Recent studies have begun to investigate the effect of paternal drug exposure on behavioral and neurobiological phenotypes in offspring of drug-exposed fathers in rodent models. This review aims to discuss behavioral and neural effects of paternal exposure to alcohol, cocaine, opioids, and nicotine. Although a special focus will be on addiction-relevant behaviors, additional behavioral effects including cognition, anxiety, and depressive-like behaviors will be discussed.
Collapse
Affiliation(s)
- Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, USA
| |
Collapse
|
42
|
Leem YH, Kato M, Chang H. Regular exercise and creatine supplementation prevent chronic mild stress-induced decrease in hippocampal neurogenesis via Wnt/GSK3β/β-catenin pathway. J Exerc Nutrition Biochem 2018; 22:1-6. [PMID: 30149419 PMCID: PMC6058068 DOI: 10.20463/jenb.2018.0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Chronic stress can lead to mood-related psychomotor behaviors such as despair. Decreased hippocampal neurogenesis has been observed in patients with depression and in animal models of depression. Exercise enhances the population of the new born cells in the dentate gyrus (DG). A few studies have demonstrated that creatine has antidepressant effects in humans. However, the mechanism underpinning these effects is poorly understood. Therefore, we examined whether regular exercise and/or creatine was closely associated with the activity of the Wnt/GSK3β/β-catenin pathway in the hippocampal DG. METHODS Mice were subjected to 4 weeks of chronic mild stress starting a week prior to the start of a 4-week protocol of treadmill running and creatine supplementation. Tail suspension (TST) and forced swimming tests (FST) were carried out 2 days after the final treadmill running session. Immunohistochemical and western blot analyses were conducted to evaluate hippocampal neurogenesis, GSK3β activity, and nuclear β-catenin protein levels in the DG. Furthermore, Wnt signaling antagonism in the DG using stereotaxic injection was performed. RESULTS Chronic mild stress-induced increase in immobility in the TST and FST were restored by treadmill running and/or creatine supplementation. The number of Ki-67+ and doublecortin (DCX)+ cells were decreased by chronic stress, and this decline was reversed by the exercise and supplement regimen, along with the changes in GSK3β activity and nuclear β-catenin protein levels in the DG. Local antagonism of DG Wnt signaling caused an increase in immobility even 5 days after injection with C59. CONCLUSION Regular exercise combined with creatine supplementation had a greater effect on hippocampal neurogenesis via the Wnt/GSK3β/β-catenin pathway activation compared with each treatment in chronic mild stress-induced behavioral depression.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Human Movement Science, Seoul Women’s University, SeoulRepublic of Korea
| | - Morimasa Kato
- Department of Health and Nutrition, Yonezawa Nutrition University of Yamagata Prefecture, YonezawaJapan
| | - Hyukki Chang
- Department of Human Movement Science, Seoul Women’s University, SeoulRepublic of Korea
| |
Collapse
|
43
|
Bae SM, Hong JY. The Wnt Signaling Pathway and Related Therapeutic Drugs in Autism Spectrum Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2018; 16:129-135. [PMID: 29739125 PMCID: PMC5953011 DOI: 10.9758/cpn.2018.16.2.129] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a series of neurodevelopmental disorder with a large genetic component. However, the pathogenic genes and molecular mechanisms of ASD have not been clearly defined. Recent technological advancements, such as next-generation sequencing, have led to the identification of certain loci that is responsible for the pathophysiology of ASD. Three functional pathways, such as chromatin remodeling, Wnt signaling and mitochondrial dysfunction are potentially involved in ASD. In this review, we will focus on recent studies of the involvement of Wnt signaling pathway components in ASD pathophysiology and related drugs used in ASD treatment.
Collapse
Affiliation(s)
- Seung Min Bae
- Department of Psychiatry, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Ji Yeon Hong
- Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Vidal R, Garro-Martínez E, Díaz Á, Castro E, Florensa-Zanuy E, Taketo MM, Pazos Á, Pilar-Cuéllar F. Targeting β-Catenin in GLAST-Expressing Cells: Impact on Anxiety and Depression-Related Behavior and Hippocampal Proliferation. Mol Neurobiol 2018; 56:553-566. [PMID: 29737454 DOI: 10.1007/s12035-018-1100-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
β-catenin (key mediator in the Wnt signaling pathway) contributes to the pathophysiology of mood disorders, associated to neurogenesis and neuroplasticity. Decreased β-catenin protein levels have been observed in the hippocampus and prefrontal cortex of depressed subjects. Additionally, the antidepressants exert, at least in part, their neurogenic effects by increasing β-catenin levels in the subgranular zone of the hippocampus. To further understand the role of β-catenin in depression and anxiety, we generated two conditional transgenic mice in which β-catenin was either inactivated or stabilized in cells expressing CreERT under the control of the astrocyte-specific glutamate transporter (GLAST) promoter inducible by tamoxifen, which presents high expression levels on the subgranular zone of the hippocampus. Here, we show that β-catenin inactivation in GLAST-expressing cells enhanced anxious/depressive-like responses. These behavioral changes were associated with impaired hippocampal proliferation and markers of immature neurons as doublecortin. On the other hand, β-catenin stabilization induced an anxiolytic-like effect in the novelty suppressed feeding test and tended to ameliorate depressive-related behaviors. In these mice, the control over the Wnt/β-catenin pathway seems to be tighter as evidenced by the lack of changes in some proliferation markers. Moreover, animals with stabilized β-catenin showed resilience to some anxious/depressive manifestations when subjected to the corticosterone model of depression. Our findings demonstrate that β-catenin present in GLAST-expressing cells plays a critical role in the development of anxious/depressive-like behaviors and resilience, which parallels its regulatory function on hippocampal proliferation. Further studies need to be done to clarify the importance of these changes in other brain areas also implicated in the neurobiology of anxiety and depressive disorders.
Collapse
Affiliation(s)
- Rebeca Vidal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain.,Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Emilio Garro-Martínez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Álvaro Díaz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Elena Castro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Eva Florensa-Zanuy
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Ángel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Fuencisla Pilar-Cuéllar
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain. .,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain. .,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
45
|
Oliva CA, Montecinos-Oliva C, Inestrosa NC. Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:81-130. [PMID: 29389523 DOI: 10.1016/bs.pmbts.2017.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since its discovery, Wnt signaling has been shown to be one of the most crucial morphogens in development and during the maturation of central nervous system. Its action is relevant during the establishment and maintenance of synaptic structure and neuronal function. In this chapter, we will discuss the most recent evidence on these aspects, and we will explore the evidence that involves Wnt signaling on other less known functions, such as in adult neurogenesis, in the generation of oscillatory neural rhythms, and in adult behavior. The dysfunction of Wnt signaling at different levels will be also discussed, in particular in those aspects that have been found to be linked with several neurodegenerative diseases and neurological disorders. Finally, we will address the possibility of Wnt signaling manipulation to treat those pathophysiological aspects.
Collapse
Affiliation(s)
- Carolina A Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile
| | - Carla Montecinos-Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Interdisciplinary Institute for Neuroscience (IINS), University of Bordeaux, Bordeaux, France
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia; Center of Excellence in Biomedicine of Magallanes (CEBIMA), University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|
46
|
Zwamborn RA, Snijders C, An N, Thomson A, Rutten BP, de Nijs L. Wnt Signaling in the Hippocampus in Relation to Neurogenesis, Neuroplasticity, Stress and Epigenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:129-157. [DOI: 10.1016/bs.pmbts.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Lee HJ, Baek SS. Role of exercise on molecular mechanisms in the regulation of antidepressant effects. J Exerc Rehabil 2017; 13:617-620. [PMID: 29326891 PMCID: PMC5747194 DOI: 10.12965/jer.1735188.594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022] Open
Abstract
Regular exercise reduces depressive-like behavior activation. In this study, we look for exact roles of exercise on molecular and neuronal mechanisms for antidepressant action by studying the hippocampal neuroplasticity and proliferation. Increased hippocampal neurogenesis with exercise has potential significance for depression. Exercise promotes brain health in the molecular levels in the hippocampus and also affects behavior in a similar way to chronic antidepressant treatment. Wingless (Wnt) and frizzled signaling system plays an important role in cell proliferation, growth, and differentiation during development. Our results demonstrate complicated, differential effects of antidepressants on Wnt signaling system, and assume a role for selected signaling molecules in the neurogenic activity of antidepressant care. Our review suggests that exercise may preserve brain function by increasing neurogenesis through activating Wnt signaling pathway in the psychiatric disorders, such as depression.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Sport & Health Science, College of Natural Science, Sangmyung University, Seoul, Korea
| | - Seung-Soo Baek
- Department of Sport & Health Science, College of Natural Science, Sangmyung University, Seoul, Korea
| |
Collapse
|
48
|
Melatonin Augments the Effects of Fluoxetine on Depression-Like Behavior and Hippocampal BDNF-TrkB Signaling. Neurosci Bull 2017; 34:303-311. [PMID: 29086908 DOI: 10.1007/s12264-017-0189-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Depression is a debilitating psychiatric disorder with a huge socioeconomic burden, and its treatment relies on antidepressants including selective serotonin reuptake inhibitors (SSRIs). Recently, the melatonergic system that is closely associated with the serotonergic system has been implicated in the pathophysiology and treatment of depression. However, it remains unknown whether combined treatment with SSRI and melatonin has synergistic antidepressant effects. In this study, we applied a sub-chronic restraint stress paradigm, and evaluated the potential antidepressant effects of combined fluoxetine and melatonin in adult male mice. Sub-chronic restraint stress (6 h/day for 10 days) induced depression-like behavior as shown by deteriorated fur state, increased latency to groom in the splash test, and increased immobility time in the forced-swim test. Repeated administration of either fluoxetine or melatonin at 10 mg/kg during stress exposure failed to prevent depression-like phenotypes. However, combined treatment with fluoxetine and melatonin at the selected dose attenuated stress-induced behavioral abnormalities. Moreover, we found that the antidepressant effects of combined treatment were associated with the normalization of brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling in the hippocampus, but not in the prefrontal cortex. Our findings suggest that combined fluoxetine and melatonin treatment exerts synergistic antidepressant effects possibly by restoring hippocampal BDNF-TrkB signaling.
Collapse
|
49
|
Chen XR, Sun SC, Teng SW, Li L, Bie YF, Yu H, Li DL, Chen ZY, Wang Y. Uhrf2 deletion impairs the formation of hippocampus-dependent memory by changing the structure of the dentate gyrus. Brain Struct Funct 2017; 223:609-618. [DOI: 10.1007/s00429-017-1512-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022]
|
50
|
Oliveros A, Cho CH, Cui A, Choi S, Lindberg D, Hinton D, Jang MH, Choi DS. Adenosine A 2A receptor and ERK-driven impulsivity potentiates hippocampal neuroblast proliferation. Transl Psychiatry 2017; 7:e1095. [PMID: 28418405 PMCID: PMC5416704 DOI: 10.1038/tp.2017.64] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/04/2017] [Accepted: 02/01/2017] [Indexed: 12/26/2022] Open
Abstract
Dampened adenosine A2A receptor (A2AR) function has been implicated in addiction through enhancement of goal-directed behaviors. However, the contribution of the A2AR to the control of impulsive reward seeking remains unknown. Using mice that were exposed to differential reward of low rate (DRL) schedules during Pavlovian-conditioning, second-order schedule discrimination, and the 5-choice serial reaction time task (5-CSRTT), we demonstrate that deficits of A2AR function promote impulsive responses. Antagonism of the A2AR lowered ERK1 and ERK2 phosphorylation in the dorsal hippocampus (dHip) and potentiated impulsivity during Pavlovian-conditioning and the 5-CSRTT. Remarkably, inhibition of ERK1 and ERK2 phosphorylation by U0126 in the dHip prior to Pavlovian-conditioning exacerbated impulsive reward seeking. Moreover, we found decreased A2AR expression, and reduced ERK1 and ERK2 phosphorylation in the dHip of equilibrative nucleoside transporter type 1 (ENT1-/-) null mice, which displayed exacerbated impulsivity. To determine whether impulsive response behavior is associated with hippocampal neuroblast development, we investigated expression of BrdU+ and doublecortin (DCX+) following 5-CSRTT testing. These studies revealed that impulsive behavior driven by inhibition of the A2AR is accompanied by increased neuroblast proliferation in the hippocampus.
Collapse
Affiliation(s)
- A Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - C H Cho
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - A Cui
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - S Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - D Lindberg
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - D Hinton
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - M-H Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - D-S Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA,Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|