1
|
Jesuraj R, Amalraj A, Vaidyanathan VK, Perumal P. Exceptional peroxidase-like activity of an iron and copper based organic framework nanosheet for consecutive colorimetric biosensing of glucose and kanamycin in real food samples. Analyst 2023; 148:5157-5171. [PMID: 37721098 DOI: 10.1039/d3an01242e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Two-dimensional metal-organic framework nanosheets are attractive as peroxidase mimicking nanocatalysts due to their rich chemical functional groups, large surface area, high porosity, and accessible active sites. In this study, we synthesized FeCu bifunctional 2D MOF nanosheets using a solvothermal method. Fe and Cu ions were added as metal precursors, while organic amine and acid served as the organic ligands to construct the FeCu-MOF nanosheets. These nanosheets demonstrated robust peroxidase-like catalytic activities and were employed to develop a visual detection system for multiple targets, such as glucose and kanamycin. In the detection mechanism, glucose was oxidized into gluconic acid by glucose oxidase (GOx), leading to the generation of H2O2. When H2O2 is present, the FeCu-MOF NSs demonstrate high intrinsic peroxidase-like activity, which might catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into a blue-coloured oxTMB product with a strong UV absorption at 654 nm. Subsequently, kanamycin was added to the above sensing system. The kanamycin strongly interacted with the FeCu-MOF NSs through H-bonding and blocked electron transfer, resulting in a colour change of the solution from blue to colourless with a weak UV absorption at 654 nm. Under the optimal conditions, the proposed colorimetric sensor exhibits an excellent linear response to glucose and kanamycin over the 0.25-5 μM and 0.02-0.1 μM ranges, respectively. The proposed colorimetric assay detection limits for glucose and kanamycin were found to be as low as 0.1 μM and 8 nM, respectively, and such a sensor shows excellent selectivity and sensitivity against different potential interferents. Thus, our proposed colorimetric assay was satisfactory when applied to glucose and kanamycin detection in agricultural and livestock husbandry samples.
Collapse
Affiliation(s)
- Rajakumari Jesuraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Arunjegan Amalraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
3
|
Wang W, Yin Y, Gunasekaran S. Oxygen-terminated few-layered Ti3C2Tx MXene nanosheets as peroxidase-mimic nanozyme for colorimetric detection of kanamycin. Biosens Bioelectron 2022; 218:114774. [DOI: 10.1016/j.bios.2022.114774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/21/2022]
|
4
|
Kędziora A, Lesiów MK, Krupa K, Korzeniowska-Kowal A, Adamski R, Komarnicka UK, Stokowa-Sołtys K, Bugla-Płoskońska G, Jeżowska-Bojczuk M. Protocol of proceedings with Fusobacterium nucleatum and optimization of ABTS method for detection of reactive oxygen species. Future Microbiol 2021; 15:259-271. [PMID: 32271108 DOI: 10.2217/fmb-2019-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Characterization of the ability of Fusobacterium nucleatum DSM 15643 and DSM 20482 strains in the presence of Cu2+ and H2O2 to reactive oxygen species generation. Method: Spectrophotometric ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) method was used. Results: Determination of: MIC for Cu2+, H2O2 and ABTS; survivability of F. nucleatum under atmospheric oxygen exposure; the level and rate constants of free radicals production by the bacteria. Conclusion: F. nucleatum in the presence of Cu2+ and H2O2 is able to generate free radicals. Reactive oxygen species are produced mainly outside the bacterial cell, which suggests that outer membrane proteins may be involved in oxidative process.
Collapse
Affiliation(s)
- Anna Kędziora
- Department of Microbiology, Institute of Genetics & Microbiology, University of Wrocław, S. Przybyszewskiego 63, Wrocław 50-001, Poland
| | | | - Katarzyna Krupa
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław 50-383, Poland
| | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław 53-114, Poland
| | - Ryszard Adamski
- Department of Microbiology, Institute of Genetics & Microbiology, University of Wrocław, S. Przybyszewskiego 63, Wrocław 50-001, Poland
| | | | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław 50-383, Poland
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics & Microbiology, University of Wrocław, S. Przybyszewskiego 63, Wrocław 50-001, Poland
| | | |
Collapse
|
5
|
Hofmann L, Hirsch M, Ruthstein S. Advances in Understanding of the Copper Homeostasis in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:2050. [PMID: 33669570 PMCID: PMC7922089 DOI: 10.3390/ijms22042050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health and Human Services. Among others, the World Health Organization (WHO) encourages the discovery and development of novel antibiotic classes with new targets and mechanisms of action without cross-resistance to existing classes. To find potential new target sites in pathogenic bacteria, such as P. aeruginosa, it is inevitable to fully understand the molecular mechanism of homeostasis, metabolism, regulation, growth, and resistances thereof. P. aeruginosa maintains a sophisticated copper defense cascade comprising three stages, resembling those of public safety organizations. These stages include copper scavenging, first responder, and second responder. Similar mechanisms are found in numerous pathogens. Here we compare the copper-dependent transcription regulators cueR and copRS of Escherichia coli (E. coli) and P. aeruginosa. Further, phylogenetic analysis and structural modelling of mexPQ-opmE reveal that this efflux pump is unlikely to be involved in the copper export of P. aeruginosa. Altogether, we present current understandings of the copper homeostasis in P. aeruginosa and potential new target sites for antimicrobial agents or a combinatorial drug regimen in the fight against multidrug resistant pathogens.
Collapse
Affiliation(s)
| | | | - Sharon Ruthstein
- Institute of Nanotechnology and Advanced Materials & Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (M.H.)
| |
Collapse
|
6
|
Stokowa-Sołtys K, Dzyhovskyi V, Wieczorek R, Jeżowska-Bojczuk M. Coordination pattern and reactivity of two model peptides from porin protein P1. J Inorg Biochem 2020; 215:111332. [PMID: 33340803 DOI: 10.1016/j.jinorgbio.2020.111332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022]
Abstract
It has been reported that numerous of Fusobacterium nucleatum outer membrane proteins take part in cancerogenesis. Therefore, it is very interesting to study their interactions with metal ions and the ability to produce reactive oxygen species, which may be involved in cancer progression. Since investigations of metal binding to proteins are often based on fragments that contain the metal-binding domains, designing model peptides should be very mindful. As was shown in this paper, very similar protein fragments may behave differentially. Herein, combined potentiometric, spectroscopic, and computational studies were performed to determine metal ion binding by ligands constituting fragments of porin protein P1. Two studied tetrapeptides (Ac-KEHK-NH2 and Ac-EHKA-NH2) that have common EHK motif have different coordination properties and reactivity. Therefore, we should be cautious when transferring the behavior of small peptide fragments to whole protein.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Valentyn Dzyhovskyi
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Robert Wieczorek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | | |
Collapse
|
7
|
Lesiów MK, Komarnicka UK, Kyzioł A, Bieńko A, Pietrzyk P. ROS-mediated lipid peroxidation as a result of Cu(ii) interaction with FomA protein fragments of F. nucleatum: relevance to colorectal carcinogenesis. Metallomics 2020; 11:2066-2077. [PMID: 31657425 DOI: 10.1039/c9mt00179d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of the studied FomA protein fragments of Fusobacterium nucleatum (Fn) with copper(ii) ions (Cu(ii)-Ac-KGHGNGEEGTPTVHNE-NH2 (1Cu) and its cyclic analogue Cu(ii)-cyclo(KGHGNGEEGTPTVHNE) (2Cu)) to induce reactive oxygen species (ROS) generation, as a result of red-ox processes, was determined by UV-Vis, luminescence methods, spin trapping and cyclic voltamperometry. The contribution of 1O2 and ˙OH to DNA degradation was proved using gel electrophoresis. Furthermore, the pronounced generation of ROS by mouse colon carcinoma cells (CT26) stimulated by both copper(ii) complexes was confirmed. A fluorescence method allowed the total amounts of ROS generated inside the CT26 cells to be detected, while the spin trapping technique proved that free radicals mainly attached to the membrane surface. These last results are in agreement with the data obtained from the ICP-MS method, which demonstrates that 1Cu and 2Cu complexes are not efficiently accumulated inside the cell. Furthermore, the role of ROS in lipid peroxidation was established. The above-mentioned factors may clearly indicate the contribution of ROS generated by the studied copper(ii) complexes to colonic cell damage, which can lead to a carcinogenesis process. This study may be an important step to recognize and understand the mechanism of colon cancer initiation.
Collapse
|
8
|
Reyes C, Hodgskiss LH, Baars O, Kerou M, Bayer B, Schleper C, Kraemer SM. Copper limiting threshold in the terrestrial ammonia oxidizing archaeon Nitrososphaera viennensis. Res Microbiol 2020; 171:134-142. [PMID: 31991171 DOI: 10.1016/j.resmic.2020.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022]
Abstract
Ammonia oxidizing archaea (AOA) inhabiting soils have a central role in the global nitrogen cycle. Copper (Cu) is central to many enzymes in AOA including ammonia monooxygenase (AMO), the enzyme involved in the first step of ammonia oxidation. This study explored the physiological response of the AOA soil isolate, Nitrososphaera viennensis (EN76T) to Cu-limiting conditions in order to approach its limiting threshold under laboratory conditions. The chelator TETA (1,4,8,11-tetraazacyclotetradecane N, N', N″, N‴-tetraacetic acid hydrochloride hydrate) with selective affinity for Cu2+ was used to lower bioavailable Cu2+ in culture experiments as predicted by thermodynamic speciation calculations. Results show that N. viennensis is Cu-limited at concentrations ≤10-15 mol L-1 free Cu2+ compared to standard conditions (10-12 mol L-1). This Cu2+ limiting threshold is similar to pure cultures of denitrifying bacteria and other AOA and AOB inhabiting soils, freshwaters and sewage (<10-16 mol L-1), and lower than pure cultures of the marine AOA Nitrosopumilus maritimus (<10-12.7 mol L-1), which also possesses a high amount of Cu-dependent enzymes.
Collapse
Affiliation(s)
- Carolina Reyes
- University of Vienna, EDGE- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, UZA2, 1090, Vienna, Austria; University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstrasse 14, UZA1, 1090, Vienna, Austria; University of Vienna, Environmental Science Research Network (ESRN), Faculty for Geosciences, Geography and Astronomy, Althanstrasse 14, UZA2, 1090, Vienna, Austria.
| | - Logan H Hodgskiss
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstrasse 14, UZA1, 1090, Vienna, Austria; University of Vienna, Environmental Science Research Network (ESRN), Faculty for Geosciences, Geography and Astronomy, Althanstrasse 14, UZA2, 1090, Vienna, Austria.
| | - Oliver Baars
- North Carolina State University, Department of Entomology and Plant Pathology, 840 Main Campus Drive, Raleigh, NC, 27695, USA.
| | - Melina Kerou
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstrasse 14, UZA1, 1090, Vienna, Austria; University of Vienna, Environmental Science Research Network (ESRN), Faculty for Geosciences, Geography and Astronomy, Althanstrasse 14, UZA2, 1090, Vienna, Austria.
| | - Barbara Bayer
- Department of Limnology and Bio-Oceanography, Division of Bio-Oceanography, Althanstrasse 14, UZA1, 1090, Vienna, Austria; University of Vienna, Environmental Science Research Network (ESRN), Faculty for Geosciences, Geography and Astronomy, Althanstrasse 14, UZA2, 1090, Vienna, Austria.
| | - Christa Schleper
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstrasse 14, UZA1, 1090, Vienna, Austria; University of Vienna, Environmental Science Research Network (ESRN), Faculty for Geosciences, Geography and Astronomy, Althanstrasse 14, UZA2, 1090, Vienna, Austria.
| | - Stephan M Kraemer
- University of Vienna, EDGE- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, UZA2, 1090, Vienna, Austria; University of Vienna, Environmental Science Research Network (ESRN), Faculty for Geosciences, Geography and Astronomy, Althanstrasse 14, UZA2, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Effective inhibition of copper-catalyzed production of hydroxyl radicals by deferiprone. J Biol Inorg Chem 2019; 24:331-341. [DOI: 10.1007/s00775-019-01650-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
|
10
|
Copper(II) complexes with Fusobacterium nucleatum adhesin FadA: Coordination pattern, physicochemical properties and reactivity. J Inorg Biochem 2018; 189:69-80. [DOI: 10.1016/j.jinorgbio.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 11/23/2022]
|
11
|
Lesiów MK, Komarnicka UK, Stokowa-Sołtys K, Rolka K, Łęgowska A, Ptaszyńska N, Wieczorek R, Kyzioł A, Jeżowska-Bojczuk M. Relationship between copper(ii) complexes with FomA adhesin fragments ofF. nucleatumand colorectal cancer. Coordination pattern and ability to promote ROS production. Dalton Trans 2018; 47:5445-5458. [DOI: 10.1039/c7dt04103a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The copper(ii) binding of the fragments of FomA was studied. Complexes stimulate the CT26 cell line to produce ROS which lead to oxidative stress.
Collapse
Affiliation(s)
- M. K. Lesiów
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | | | - K. Rolka
- Faculty of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | - A. Łęgowska
- Faculty of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | - N. Ptaszyńska
- Faculty of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | - R. Wieczorek
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - A. Kyzioł
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Kraków
- Poland
| | | |
Collapse
|
12
|
Yeo J, Dippel AB, Wang XC, Hammond MC. In Vivo Biochemistry: Single-Cell Dynamics of Cyclic Di-GMP in Escherichia coli in Response to Zinc Overload. Biochemistry 2017; 57:108-116. [PMID: 29052983 DOI: 10.1021/acs.biochem.7b00696] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intracellular signaling enzymes drive critical changes in cellular physiology and gene expression, but their endogenous activities in vivo remain highly challenging to study in real time and for individual cells. Here we show that flow cytometry can be performed in complex media to monitor single-cell population distributions and dynamics of cyclic di-GMP signaling, which controls the bacterial colonization program. These in vivo biochemistry experiments are enabled by our second-generation RNA-based fluorescent (RBF) biosensors, which exhibit high fluorescence turn-on in response to cyclic di-GMP. Specifically, we demonstrate that intracellular levels of cyclic di-GMP in Escherichia coli are repressed with excess zinc, but not with other divalent metals. Furthermore, in both flow cytometry and fluorescence microscopy setups, we monitor the dynamic increase in cellular cyclic di-GMP levels upon zinc depletion and show that this response is due to de-repression of the endogenous diguanylate cyclase DgcZ. In the presence of zinc, cells exhibit enhanced cell motility and increased sensitivity to antibiotics due to inhibited biofilm formation. Taken together, these results showcase the application of RBF biosensors in visualizing single-cell dynamic changes in cyclic di-GMP signaling in direct response to environmental cues such as zinc and highlight our ability to assess whether observed phenotypes are related to specific signaling enzymes and pathways.
Collapse
Affiliation(s)
- Jongchan Yeo
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Andrew B Dippel
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Xin C Wang
- Department of Molecular & Cell Biology, University of California , Berkeley, California 94720, United States
| | - Ming C Hammond
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Department of Molecular & Cell Biology, University of California , Berkeley, California 94720, United States
| |
Collapse
|
13
|
Stokowa-Sołtys K, Kasprowicz A, Wrzesiński J, Ciesiołka J, Gaggelli N, Gaggelli E, Valensin G, Jeżowska-Bojczuk M. Impact of Cu(2+) ions on the structure of colistin and cell-free system nucleic acid degradation. J Inorg Biochem 2015; 151:67-74. [PMID: 26028475 DOI: 10.1016/j.jinorgbio.2015.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/06/2023]
Abstract
Colistin and transition metal ions are commonly used as feed additives for livestock animals. This work presents the results of an analysis of combined potentiometric and spectroscopic (UV-vis, EPR, CD, NMR) data which lead to conclude that colistin is able to effectively chelate copper(II) ions. In cell-free system the oxidative activity of the complex manifests itself in the plasmid DNA destruction with simultaneous generation of reactive OH species, when accompanied by hydrogen peroxide or ascorbic acid. The degradation of RNA occurs most likely via a hydrolytic mechanism not only for complexed compound but also colistin alone. Therefore, huge amounts of the used antibiotic for nontherapeutic purposes might have a potential influence on livestock health.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Aleksandra Kasprowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jan Wrzesiński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Nicola Gaggelli
- Department of Biotechnology, Chemistry and Pharmacy Via Aldo Moro, 2-53100 Siena, Italy
| | - Elena Gaggelli
- Department of Biotechnology, Chemistry and Pharmacy Via Aldo Moro, 2-53100 Siena, Italy
| | - Gianni Valensin
- Department of Biotechnology, Chemistry and Pharmacy Via Aldo Moro, 2-53100 Siena, Italy
| | | |
Collapse
|
14
|
Shan Y, Shi X, Xu G. Novel affinity monolithic column modified with cuprous sulfide nanoparticles for the selective enrichment of low-molecular-weight electron-rich analytes. J Sep Sci 2015; 38:982-9. [DOI: 10.1002/jssc.201400967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/20/2014] [Accepted: 12/20/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Yuanhong Shan
- Key Lab of Separation Sciences for Analytical Chemistry; National Chromatographic R&A Center; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Xianzhe Shi
- Key Lab of Separation Sciences for Analytical Chemistry; National Chromatographic R&A Center; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Guowang Xu
- Key Lab of Separation Sciences for Analytical Chemistry; National Chromatographic R&A Center; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| |
Collapse
|
15
|
Nagaj J, Kołkowska P, Bykowska A, Komarnicka UK, Kyzioł A, Jeżowska-Bojczuk M. Interaction of methotrexate, an anticancer agent, with copper(II) ions: coordination pattern, DNA-cleaving properties and cytotoxic studies. Med Chem Res 2015; 24:115-123. [PMID: 25589824 PMCID: PMC4284383 DOI: 10.1007/s00044-014-1074-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/07/2014] [Indexed: 01/03/2023]
Abstract
The acid-base properties and the Cu(II) binding processes of methotrexate (MTX) were characterized by selected spectroscopic techniques and potentiometric measurements. The pH titration data showed that MTX behaves as a triprotic ligand. The deprotonation constants were determined for α-COOH and γ-COOH groups and (N1)H+ from the pteridine ring. Taking all the obtained results into consideration, a coordination pattern was proposed. The DNA-cleaving activity and reactive oxygen species (ROS) generation were investigated for both MTX and the Cu(II)-MTX system. The complex displayed a promising nuclease activity toward plasmid DNA in the presence of hydrogen peroxide. Interestingly, the induction of ROS, such as hydroxyl radicals, superoxide anions or singlet oxygen, was excluded and a different mechanism of DNA degradation was proposed. As MTX is now commonly used in anticancer therapy i.e. against lung cancer, basic cell-based studies were carried out to establish if its Cu(II) complex exhibits higher cytotoxic properties than the ligand alone. Activities of both compounds were also tested against colon carcinoma. Moreover, the determined values of IC50 were confronted with the cytotoxic activity of cisplatin.
Collapse
Affiliation(s)
- Justyna Nagaj
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Paulina Kołkowska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Aleksandra Bykowska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Kraków, Poland
| | | |
Collapse
|
16
|
Acid–base characterization, coordination properties towards copper(II) ions and DNA interaction studies of ribavirin, an antiviral drug. J Inorg Biochem 2015; 142:68-74. [DOI: 10.1016/j.jinorgbio.2014.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/23/2022]
|
17
|
El-Attug MN, Adams E, Van Schepdael A. Development and validation of a capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE-C4D) for the analysis of amikacin and its related substances. Electrophoresis 2012; 33:2777-82. [DOI: 10.1002/elps.201100688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Erwin Adams
- Laboratory for Pharmaceutical Analysis; Faculteit Farmaceutische Wetenschappen; Katholieke Universiteit Leuven; Leuven; Belgium
| | - Ann Van Schepdael
- Laboratory for Pharmaceutical Analysis; Faculteit Farmaceutische Wetenschappen; Katholieke Universiteit Leuven; Leuven; Belgium
| |
Collapse
|
18
|
Godoy-Alcántar C, Yatsimirsky AK. Biological Small Molecules as Receptors. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I. Copper(II) complexes of rat amylin fragments. Dalton Trans 2011; 40:9711-21. [PMID: 21858342 DOI: 10.1039/c1dt10835b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fragments of rat amylin rIAPP(17-29) (Ac-VRSSNNLGPVLPP-NH(2)), rIAPP(17-22) (Ac-VRSSNN-NH(2)), rIAPP(19-22) (Ac-SSNN-NH(2)) and rIAPP(17-20) (Ac-VRSS-NH(2)) together with the related mutant peptides (Ac-VASS-NH(2) and Ac-VRAA-NH(2)) have been synthesized and their copper(II) complexes studied by potentiometric, UV-Vis, CD and EPR spectroscopic methods. Despite the lack of any common strongly coordinating donor functions some of these fragments are able to bind copper(II) ions in the physiological pH range. The longest fragment rat amylin(17-29) keeps one equivalent copper(II) ion in solution in the whole pH range, while two other peptides Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) are also able to interact with copper(II) ions in the slightly alkaline pH range. According to the spectral parameters of the complexes, the peptides can be classified into two different categories: (i) the tetrapeptides Ac-VRSS-NH(2), Ac-VASS-NH(2) and Ac-VRAA-NH(2) can interact with copper(II) only under strongly alkaline conditions (pH > 10.0) and the formation of only one species with four amide nitrogen coordination can be detected; (ii) the peptides Ac-VRSSNNLGPVLPP-NH(2), Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) can form complexes above pH 6.0 with the major stoichiometries [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-). These data support that rIAPP(17-29) can interact with copper(II) ions under physiological conditions and the SSNN tetrapeptide fragment can be considered as the shortest sequence responsible for metal binding. Density functional theory (DFT) calculations provide some information on the possible coordination modes of Ac-SSNN-NH(2) towards the copper(II) ion and suggest that for [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-), the binding of two, three and four deprotonated amide nitrogens, with NH(-) of the side chain of asparagine as anchoring group, is probable. Moreover, these data reveal that peptides can be effective metal binding ligands even in the absence of anchoring groups, if more polar side chains are present in a specific sequence.
Collapse
Affiliation(s)
- Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
El-Attug MN, Adams E, Hoogmartens J, Van Schepdael A. Capacitively coupled contactless conductivity detection as an alternative detection mode in CE for the analysis of kanamycin sulphate and its related substances. J Sep Sci 2011; 34:2448-54. [DOI: 10.1002/jssc.201100267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/06/2011] [Accepted: 06/11/2011] [Indexed: 11/08/2022]
|
21
|
Abstract
The extent of ionization of the polyamines is an important factor in their interactions with cellular components. The pK(a) is the pH at which a functional group is 50% ionized. For compounds such as polyamines with more than one ionizable center (atom or functional group), there is a pK(a) value for each center of ionization. This chapter describes the pK(a) values for each amine group in many important polyamines, the factors influencing these values and methods for their determination using potentiometric titration and nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Ian S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | |
Collapse
|
22
|
Fuentes-Martínez Y, Godoy-Alcántar C, Medrano F, Dikiy A, Yatsimirsky AK. Protonation of kanamycin A: detailing of thermodynamics and protonation sites assignment. Bioorg Chem 2010; 38:173-80. [PMID: 20457465 DOI: 10.1016/j.bioorg.2010.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/15/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
Protonation of an aminoglycoside antibiotic kanamycin A sulfate was studied by potentiometric titrations at variable ionic strength, sulfate concentration and temperature. From these results the association constants of differently protonated forms of kanamycin A with sulfate and enthalpy changes for protonation of each amino group were determined. The protonation of all amino groups of kanamycin A is exothermic, but the protonation enthalpy does not correlate with basicity as in a case of simple polyamines. The sites of stepwise protonation of kanamycin A have been assigned by analysis of (1)H-(13)C-HSQC spectra at variable pH in D(2)O. Plots of chemical shifts for each H and C atom of kanamycin A vs. pH were fitted to the theoretical equation relating them to pK(a) values of ionogenic groups and it was observed that changes in chemical shifts of all atoms in ring C were controlled by ionization of a single amino group with pK(a) 7.98, in ring B by ionization of two amino groups with pK(a) 6.61 and 8.54, but in ring A all atoms felt ionization of one group with pK(a) 9.19 and some atoms felt ionization of a second group with pK(a) 6.51, which therefore should belong to amino group at C3 in ring B positioned closer to the ring A while higher pK(a) 8.54 can be assigned to the group at C1. This resolves the previously existed uncertainty in assignment of protonation sites in rings B and C.
Collapse
Affiliation(s)
- Yanet Fuentes-Martínez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209 Cuernavaca, Mexico
| | | | | | | | | |
Collapse
|
23
|
Fuentes-Martínez Y, Godoy-Alcántar C, Medrano F, Dikiy A, Yatsimirsky AK. Nucleotide recognition by protonated aminoglycosides. Supramol Chem 2010. [DOI: 10.1080/10610270903254134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yanet Fuentes-Martínez
- a Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, CP 62209, Cuernavaca, Morelos, Mexico
| | - Carolina Godoy-Alcántar
- a Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, CP 62209, Cuernavaca, Morelos, Mexico
| | - Felipe Medrano
- a Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, CP 62209, Cuernavaca, Morelos, Mexico
| | - Alexander Dikiy
- b Department of Biotechnology , Norwegian University of Science and Technology , N-7491, Trondheim, Norway
| | - Anatoly K. Yatsimirsky
- c Facultad de Química, Universidad Nacional Autónoma de México , 04510, México, DF, Mexico
| |
Collapse
|
24
|
Gaggelli E, Gaggelli N, Molteni E, Valensin G, Balenci D, Wrońska M, Szczepanik W, Nagaj J, Skała J, Jeżowska-Bojczuk M. Coordination pattern, solution structure and DNA damage studies of the copper(ii) complex with the unusual aminoglycoside antibiotic hygromycin B. Dalton Trans 2010; 39:9830-7. [DOI: 10.1039/c0dt00458h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Balenci D, Bonechi G, D'Amelio N, Gaggelli E, Gaggelli N, Molteni E, Valensin G, Szczepanik W, Dziuba M, Swiecicki G, Jezowska-Bojczuk M. Structural features and oxidative stress towards plasmid DNA of apramycin copper complex. Dalton Trans 2008:1123-30. [PMID: 19322482 DOI: 10.1039/b815046j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of apramycin with copper at different pH values was investigated by potentiometric titrations and EPR, UV-vis and CD spectroscopic techniques. The Cu(II)-apramycin complex prevailing at pH 6.5 was further characterized by NMR spectroscopy. Metal-proton distances derived from paramagnetic relaxation enhancements were used as restraints in a conformational search procedure in order to define the structure of the complex. Longitudinal relaxation rates were measured with the IR-COSY pulse sequence, thus solving the problems due to signal overlap. At pH 6.5 apramycin binds copper(II) with a 2 : 1 stoichiometry, through the vicinal hydroxyl and deprotonated amino groups of ring III. Plasmid DNA electrophoresis showed that the Cu(II)-apramycin complex is more active than free Cu(II) in generating strand breakages. Interestingly, this complex in the presence of ascorbic acid damages DNA with a higher yield than in the presence of H(2)O(2).
Collapse
Affiliation(s)
- D Balenci
- Department of Chemistry, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Direct catalytic electrochemistry of sulfite dehydrogenase: Mechanistic insights and contrasts with related Mo enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1319-25. [DOI: 10.1016/j.bbabio.2008.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/06/2008] [Accepted: 06/06/2008] [Indexed: 11/21/2022]
|
27
|
Impact of Cu(II) ions on the structure and antimicrobial properties of sisomicin, an aminoglycoside antibiotic. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2007.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Balenci D, Bernardi F, Cellai L, D'Amelio N, Gaggelli E, Gaggelli N, Molteni E, Valensin G. Effect of Cu(II) on the complex between kanamycin A and the bacterial ribosomal A site. Chembiochem 2008; 9:114-23. [PMID: 18058790 DOI: 10.1002/cbic.200700387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The solution structure of kanamycin A interacting with a ribosomal A-site fragment was solved by transferred-NOE techniques and found to agree with the structure of the complex observed in the crystal. Despite the fast exchange conditions found for the interaction, the bound form was identified by NOESY spectroscopy. At 600 MHz, NOE effects are only observed for the RNA-associated antibiotic. Dissociation constants were measured by NMR spectroscopy for two sites of interaction (K(d1)=150+/-40 microM; K(d2)=360+/-50 microM). Furthermore, the effects of the Cu(II) ion on the antibiotic, on the RNA fragment that mimics the bacterial ribosomal A site, and on the complex formed between these two entities were analyzed. The study led to the proposal of a model that localizes the copper ion within the kanamycin-RNA complex.
Collapse
Affiliation(s)
- Duccio Balenci
- Department of Chemistry, University of Siena, Via A. Moro, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mucha A, Bal W, Jezowska-Bojczuk M. Comparative studies of coordination properties of puromycin and puromycin aminonucleoside towards copper(II) ions. J Inorg Biochem 2008; 102:46-52. [PMID: 17689614 DOI: 10.1016/j.jinorgbio.2007.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/19/2007] [Accepted: 06/22/2007] [Indexed: 11/20/2022]
Abstract
Protonation equilibria of puromycin (PM) and puromycin aminonucleoside (PAN) and their coordination by copper(II) ion were studied in solution by potentiometry, electronic absorption spectroscopy (UV-Vis), circular dichroism (CD), electron paramagnetic resonance (EPR) and mass spectrometry. For puromycin four mononuclear complexes were found, with stoichiometries Cu(PM)2+, CuH(-1)(PM)+, CuH(-2)(PM) and CuH(-3)(PM)(-). In each of them the Cu(II) ion was bound in the peptidic-like manner, the differences of stoichiometries are a consequence of subsequent deprotonations of the sugar C2'-OH group and the coordinated water molecule. The coordination mode for puromycin aminonucleoside was aminosugar-like. Two dimeric complexes, Cu2H(-1)(PAN)2(2+) and Cu2H(-2)(PAN)2+, and one monomeric CuH(-2)(PAN)2 were found. The N6,N6-dimethyladenine moiety of PAN was not involved in the coordination process due to steric hindrance.
Collapse
Affiliation(s)
- Ariel Mucha
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | | |
Collapse
|
30
|
Kozłowski H, Kowalik-Jankowska T, Jeżowska-Bojczuk M. Chemical and biological aspects of Cu2+ interactions with peptides and aminoglycosides. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2005.04.027] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Sainlos M, Hauchecorne M, Oudrhiri N, Zertal-Zidani S, Aissaoui A, Vigneron JP, Lehn JM, Lehn P. Kanamycin A-derived cationic lipids as vectors for gene transfection. Chembiochem 2005; 6:1023-33. [PMID: 15883979 DOI: 10.1002/cbic.200400344] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cationic lipids nowadays constitute a promising alternative to recombinant viruses for gene transfer. We have recently explored the transfection potential of a new class of lipids based upon the use of aminoglycosides as cationic polar headgroups. The encouraging results obtained with a first cholesterol derivative of kanamycin A prompted us to investigate this family of vectors further, by modulating the constituent structural units of the cationic lipid. For this study, we have investigated the transfection properties of a series of new derivatives based on a kanamycin A scaffold. The results primarily confirm that aminoglycoside-based lipids are efficient vectors for gene transfection both in vitro and in vivo (mouse airways). Furthermore, a combination of transfection and physicochemical data revealed that some modifications of the constitutive subunits of kanamycin A-based vectors were associated with substantial changes in their transfection properties.
Collapse
Affiliation(s)
- Matthieu Sainlos
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, CNRS UPR 285, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Jeżowska-Bojczuk M, Szczepanik W, Mangani S, Gaggelli E, Gaggelli N, Valensin G. Identification of Copper(II) Binding Sites in the Aminoglycosidic Antibiotic Neomycin B. Eur J Inorg Chem 2005. [DOI: 10.1002/ejic.200500102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Swiatek M, Valensin D, Migliorini C, Gaggelli E, Valensin G, Jezowska-Bojczuk M. Unusual binding ability of vancomycin towards Cu2+ ions. Dalton Trans 2005:3808-13. [PMID: 16471064 DOI: 10.1039/b508662k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vancomycin, a "last chance" antibiotic, is a glycopeptide consisting of an oligopeptide unit being potentially the effective binder of Cu2+ ions. The potentiometric and spectroscopic studies (UV-Vis, CD, EPR, NMR) have shown that, indeed, the peptide unit binds cupric ions very effectively forming almost instantly the 3N complex involving the N-terminal nitrogen donors in the metal ion coordination. The comparison of the binding ability of vancomycin with other peptide chelators clearly shows the efficiency of this antibiotic in metal ion coordination. It is very likely that Cu2+ ions may play a crucial role in the pharmacology of vancomycin, particularly when administered in high doses.
Collapse
|
34
|
Szczepanik W, Swiatek M, Skała J, Jezowska-Bojczuk M. ATP, histidine or magnesium ions can protect DNA against sisomicin-induced damage, following stray Cu(II) binding. Arch Biochem Biophys 2004; 431:88-94. [PMID: 15464730 DOI: 10.1016/j.abb.2004.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 07/13/2004] [Indexed: 11/15/2022]
Abstract
The oxidative DNA damage by the cupric complexes of sisomicin was investigated in the presence of varying amounts of histidine, ATP, Mg(II) ions or phosphates. We found that by very low concentrations, the amino acid is able to inhibit the cleavage totally. This occurs both by its competition with antibiotic for copper(II) binding, what was proved by spectroscopic measurements, as well as by ROS scavenging by the imidazole ring. ATP and magnesium also exert an influence on the yield of the DNA destruction by decreasing the amount of the single strand breaks, however only their significant excess is able to break this process. The influence of ATP on the plasmid damage has in this case a similar chemical mechanism to that one observed for histidine. Mg(II) ions, however, interact with DNA and thus prevent the complex binding. Only phosphate anions, in the range of their physiological concentrations, exert no influence on the cleavage process.
Collapse
Affiliation(s)
- Wojciech Szczepanik
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | | | | |
Collapse
|
35
|
D'Amelio N, Gaggelli E, Gaggelli N, Molteni E, Baratto MC, Valensin G, Jezowska-Bojczuk M, Szczepanik W. NMR and EPR structural delineation of copper(ii) complexes formed by kanamycin A in water. Dalton Trans 2004:363-8. [PMID: 15252540 DOI: 10.1039/b313060f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexes formed by kanamycin A at three different pH values (5.5, 7.4 and 12.0) were investigated by NMR and EPR spectroscopy. Paramagnetic relaxation contributions to proton relaxation rates were measured using a combination of the TOCSY sequence with the inversion recovery experiment in order to gain signal resolution in the bulk region. Measured contributions were converted into distances and used for structural determination by restrained simulated annealing where all possible chair and boat conformations of the rings were taken into account. The interaction of the Cu(II) ion with the nitrogen of the C ring is apparent at all pH values. At higher pH also the amino group of ring A starts to be involved in the metal coordination sphere. This is accompanied by a switch in conformation of ring C. Structures are consistent with the involvement in the coordination sphere either of the 2' or 4' hydroxyl oxygens at pH 5.5 and the 5 and the 6' hydroxyl oxygens (or the ring oxygen) at pH 12.0.
Collapse
Affiliation(s)
- Nicola D'Amelio
- Department of Chemistry and the NMR Center, University of Siena, Via A.Moro 2, Siena 53100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Szczepanik W, Dworniczek E, Ciesiołka J, Wrzesiński J, Skala J, Jezowska-Bojczuk M. In vitro oxidative activity of cupric complexes of kanamycin A in comparison to in vivo bactericidal efficacy. J Inorg Biochem 2003; 94:355-64. [PMID: 12667707 DOI: 10.1016/s0162-0134(03)00029-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interactions of copper(II) complexes of kanamycin A with oxidation-susceptible biomolecules: 2'-deoxyguanosine, plasmid DNA and yeast tRNA(Phe) were studied in both the presence and absence of hydrogen peroxide. The mixture of complex with H(2)O(2) was found to be an efficient oxidant, converting dG to its 8-oxo derivative, generating strand breaks in plasmid DNA and multiple cleavages in tRNA(Phe). Some of these reactions may play a role in toxic effects of aminoglycoside antibiotics. These complexes were screened for their antibacterial activity. The microbiological studies undertaken to compare the bactericidal action of kanamycin A alone and complexed with copper(II) ions in both neutral and oxidative environment revealed that the enhancement of bactericidal action by Cu(II) was not statistically significant.
Collapse
Affiliation(s)
- Wojciech Szczepanik
- Faculty of Chemistry, University of Wroclaw, F Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|