1
|
Li W, McArthur JB, Chen X. Strategies for chemoenzymatic synthesis of carbohydrates. Carbohydr Res 2018; 472:86-97. [PMID: 30529493 DOI: 10.1016/j.carres.2018.11.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/30/2022]
Abstract
Carbohydrates are structurally complex but functionally important biomolecules. Therefore, they have been challenging but attractive synthetic targets. While substantial progress has been made on advancing chemical glycosylation methods, incorporating enzymes into carbohydrate synthetic schemes has become increasingly practical as more carbohydrate biosynthetic and metabolic enzymes as well as their mutants with synthetic application are identified and expressed for preparative and large-scale synthesis. Chemoenzymatic strategies that integrate the flexibility of chemical derivatization with enzyme-catalyzed reactions have been extremely powerful. Briefly summarized here are our experiences on developing one-pot multienzyme (OPME) systems and representative chemoenzymatic strategies from others using glycosyltransferase-catalyzed reactions for synthesizing diverse structures of oligosaccharides, polysaccharides, and glycoconjugates. These strategies allow the synthesis of complex carbohydrates including those containing naturally occurring carbohydrate postglycosylational modifications (PGMs) and non-natural functional groups. By combining these srategies with facile purification schemes, synthetic access to the diverse space of carbohydrate structures can be automated and will not be limited to specialists.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Sittel I, Galan MC. Imidazolium-labeled glycosides as probes to harness glycosyltransferase activity in human breast milk. Org Biomol Chem 2017; 15:3575-3579. [PMID: 28401975 PMCID: PMC5708356 DOI: 10.1039/c7ob00550d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/06/2017] [Indexed: 11/21/2022]
Abstract
Imidazolium-labeled (ITag-) glycosides are used to harness the glycosyltransferase activity directly from human breast milk. The covalently attached ionic labels provide a bifunctional chemical handle that is used to monitor reaction progress by MS, as well as aid in product purification from complex mixtures. The technology is exemplified in the synthesis of biologically relevant oligosaccharide analogs, LacNAc-ITag, ITag-Lewisx and ITag-Lewisa, in a matter of days from human breast milk without having to isolate specific enzymes.
Collapse
Affiliation(s)
- I Sittel
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - M C Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
3
|
Xie J, Bogliotti N. Synthesis and applications of carbohydrate-derived macrocyclic compounds. Chem Rev 2014; 114:7678-739. [PMID: 25007213 DOI: 10.1021/cr400035j] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juan Xie
- PPSM, Institut d'Alembert, ENS Cachan, CNRS, UMR 8531 , 61 av. Président Wilson, F-94235 Cachan Cedex, France
| | | |
Collapse
|
4
|
Meng X, Yao W, Cheng J, Zhang X, Jin L, Yu H, Chen X, Wang F, Cao H. Regioselective chemoenzymatic synthesis of ganglioside disialyl tetrasaccharide epitopes. J Am Chem Soc 2014; 136:5205-8. [PMID: 24649890 PMCID: PMC4210053 DOI: 10.1021/ja5000609] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 02/01/2023]
Abstract
A novel chemoenzymatic approach for the synthesis of disialyl tetrasaccharide epitopes found as the terminal oligosaccharides of GD1α, GT1aα, and GQ1bα is described. It relies on chemical manipulation of enzymatically generated trisaccharides as conformationally constrained acceptors for regioselective enzymatic α2-6-sialylation. This strategy provides a new route for easy access to disialyl tetrasaccharide epitopes and their derivatives.
Collapse
Affiliation(s)
- Xin Meng
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Wenlong Yao
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Jiansong Cheng
- College
of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xu Zhang
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Lan Jin
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Hai Yu
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Xi Chen
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Fengshan Wang
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
- Key
Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan 250012, China
| | - Hongzhi Cao
- National
Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| |
Collapse
|
5
|
Galan MC, Tran AT, Bromfield K, Rabbani S, Ernst B. Ionic-liquid-based MS probes for the chemo-enzymatic synthesis of oligosaccharides. Org Biomol Chem 2012; 10:7091-7. [DOI: 10.1039/c2ob25855b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
7
|
Patsos G, Hebbe-Viton V, Robbe-Masselot C, Masselot D, San Martin R, Greenwood R, Paraskeva C, Klein A, Graessmann M, Michalski JC, Gallagher T, Corfield A. O-glycan inhibitors generate aryl-glycans, induce apoptosis and lead to growth inhibition in colorectal cancer cell lines. Glycobiology 2009; 19:382-98. [PMID: 19122213 DOI: 10.1093/glycob/cwn149] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our studies provide direct evidence that O-glycosylation pathways play a role in the regulation of cell growth through apoptosis and proliferation pathways. A series of small molecular weight analogs of the GalNAc-alpha-1-O-serine/threonine structure based on 1-benzyl-2-acetamido-2-deoxy-alpha-O-d-galactopyranoside have been synthesized and tested in the human colorectal cancer cell lines PC/AA/C1/SB10C and HCA7/C29. Three inhibitors, 1-benzyl-2-acetamido-2-deoxy-alpha-O-D-galactopyranoside, and the corresponding 2-azido- and C-glycoside analogs were screened in these colorectal cancer cell lines at 0.5 mM and showed induction of apoptosis and downregulation of proliferation. Treatment of both cell lines with inhibitors led to changes in glycosylation detected with peanut lectin. The inhibition of glycosyltransferase activity in cell homogenates from human colorectal mucosal cells and cultured cell lines could be shown. The competitive action of the inhibitors resulted in the intracellular formation of 28 aryl-glycan products which were identified by MALDI and electrospray mass spectroscopy. The structures showed a differential pattern for each of the inhibitors in both cell lines. Gene array analysis of the glycogenes illustrated a pattern of glycosyltransferases that matched the glycan structures found in glycoproteins and aryl-glycans formed in the PC/AA/C1/SB10C cells; however, there was no action of the three inhibitors on glycogene transcript levels. The inhibitors act at both intermediary metabolic and genomic levels, resulting in altered protein glycosylation and aryl-glycan formation. These events may play a part in growth arrest.
Collapse
Affiliation(s)
- Georgios Patsos
- Department of Clinical Science, University of Bristol, Bristol BS8 1TH, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rowan AS, Hamilton CJ. Recent developments in preparative enzymatic syntheses of carbohydrates. Nat Prod Rep 2006; 23:412-43. [PMID: 16741587 DOI: 10.1039/b409898f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrew S Rowan
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building
| | | |
Collapse
|
9
|
McGavin RS, Gagne RA, Chervenak MC, Bundle DR. The design, synthesis and evaluation of high affinity macrocyclic carbohydrate inhibitors. Org Biomol Chem 2005; 3:2723-32. [PMID: 16032350 DOI: 10.1039/b416105j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbohydrate-protein interactions have been investigated for a model system of a monoclonal antibody, SYA/J6, which binds a trisaccharide epitope of the O-polysaccharide of the Shigella flexneri variant Y lipopolysaccharide. The thermodynamics of binding for the methyl glycoside of the native trisaccharide epitope, Rha-Rha-GlcNAc () to SYA/J6 over a range of temperatures exhibits strong, linear enthalpy-entropy compensation and a negative heat capacity change (DeltaC(p)=-152 cal mol(-1) degree(-1)). At 293 K the free energy of association is the sum of favourable enthalpy and entropy contributions (DeltaH=-3.9 kcal mol(-1) and -TDeltaS=-2.9 kcal mol(-1)). Crystal structures for SYA/J6 Fab detailed the position of the native trisaccharide epitope, Rha-Rha-GlcNAc, and facilitated a strategy to design a tighter binding, low molecular weight ligand. This involved pre-organization of the native trisaccharide in its bound conformation by addition of intramolecular constraints (a beta-alanyl or glycinyl tether). ELISA measurements indicated that the glycinyl tethered trisaccharide was not an optimal candidate for further analysis, while microcalorimetry provided data showing that the beta-alanyl tethered trisaccharide displayed a 15-fold increase in affinity for SYA/J6. Tethering resulted in a favourable entropic contribution to binding, relative to the native trisaccharide (-TDeltaDeltaS=-1.2 kcal mol(-1)). Potential energy and dynamics calculations using the AMBER Plus force fields indicated that trisaccharide adopted a rigid conformation similar to that of the bound conformation of the native trisaccharide epitope. While this strategy resulted in modest free energy gains by minimizing losses due to conformational entropy, thermodynamic data are consistent with significant contributions from solvent reorganization.
Collapse
Affiliation(s)
- Robert S McGavin
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | |
Collapse
|