1
|
Song J, Wang Q, Feng Y, Liu K, Guo A, Gao X, Xu H, Nie Q, Wang J, Zhang H, Guo H, Li Z. Blue-/near-infrared light-triggered photochromism in a reinforced acceptor-acceptor type dithienylethene with aggregation-induced emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125454. [PMID: 39579729 DOI: 10.1016/j.saa.2024.125454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The development of photochromic dithienylethene (DTE) derivatives activated by visible light, particularly those exhibiting aggregation-induced emission (AIE) properties, is highly sought after for applications in photoelectric functional materials and biological systems. In this study, we rationally designed and successfully synthesized a novel cyanostilbene- and nitro-functionalized DTE derivative (6) featuring a reinforced acceptor (A)-DTE-acceptor (A) structural motif. Each of the two cyanostilbene fragments bearing nitrobenzene groups imparts both electron-withdrawing effects and AIE characteristics, thereby ensuring efficient visible light-driven photochromic performance. The chemical structure of compound 6 was characterized using standard techniques, including 1H NMR, 13C NMR, and HRMS. As anticipated, the resulting DTE (6) demonstrates efficient photochromism in various solvents when alternately irradiated with blue light (λ = 460-470 nm) and near-infrared (NIR) light (λ = 730-740 nm). Prior to blue light irradiation, the AIE performance and solid-state luminescence behavior were assessed. Furthermore, DTE (6) exhibits enhanced photoswitching behavior within a poly(methyl methacrylate) (PMMA) film. The experimental findings are corroborated by density functional theory (DFT) calculations. Ultimately, this derivative has been successfully employed for information recording and erasing, thereby demonstrating its potential for information storage and encryption.
Collapse
Affiliation(s)
- Jinzhao Song
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Qilian Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Yongliang Feng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Keyu Liu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Aodi Guo
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Xingrui Gao
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Hemin Xu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Qianqian Nie
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Jucai Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Haining Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China.
| | - Hui Guo
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China.
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China.
| |
Collapse
|
2
|
Zhu YQ, Chen Z, Chen ZY, Zhou ZW, Bai Q, Wu MX, Wang XH. Discrete Macrocyclic Polymer Hosts-Induced Cascade Luminescence Enhancement and Application in Bioimaging. Chemistry 2024; 30:e202402808. [PMID: 39207820 DOI: 10.1002/chem.202402808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The integration of polymers, supramolecular macrocycles and aggregation-induced emission (AIE) molecules provides numerous possibilities for constructing various functional supramolecular systems. Herein, we constructed supramolecular assembled systems based on discrete macrocyclic polymer hosts via the cooperation of hydra-headed macrocycles containing two or three pillar[5]arene units (defined as P2, P3), the block polymer F127 and AIE molecules (alkyl-cyano modified tetraphenylethene, alkyl-triazole-cyano modified 9,10-distyrylanthracene, defined as TPE-(CN)4 and DSA-(TACN)2). Compared with the binary assembly between hydra-headed hosts or F127 and AIE molecules, cascaded supramolecular assembly-induced emission enhancement (SAIEE) in aqueous solution was achieved in discrete macrocyclic polymer-based supramolecular assembled systems. Considering the cascaded SAIEE performance, we have successfully applied discrete macrocyclic polymer-based supramolecular assembled systems to bioimaging and constructed an artificial light-harvesting system (LHs) to explore more potential applications. The supramolecular assembly form of discrete macrocyclic polymers hosts and AIE molecules proposed in this work provides new inspiration for the construction and application of high-performance supramolecular luminescent systems.
Collapse
Affiliation(s)
- Yu-Qi Zhu
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhaojun Chen
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhong-Yuan Chen
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhi-Wei Zhou
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Qian Bai
- Center for Medical Experiment, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, P. R. China
| | - Ming-Xue Wu
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Xing-Huo Wang
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| |
Collapse
|
3
|
Sheng J, Perego J, Bracco S, Cieciórski P, Danowski W, Comotti A, Feringa BL. Orthogonal Photoswitching in a Porous Organic Framework. Angew Chem Int Ed Engl 2024; 63:e202404878. [PMID: 38530132 DOI: 10.1002/anie.202404878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
The development of photoresponsive systems with non-invasive orthogonal control by distinct wavelengths of light is still in its infancy. In particular, the design of photochemically triggered-orthogonal systems integrated into solid materials that enable multiple dynamic control over their properties remains a longstanding challenge. Here, we report the orthogonal and reversible control of two types of photoswitches in an integrated solid porous framework, that is, visible-light responsive o-fluoroazobenzene and nitro-spiropyran motifs. The properties of the constructed material can be selectively controlled by different wavelengths of light thus generating four distinct states providing a basis for dynamic multifunctional materials. Solid-state NMR spectroscopy demonstrated the selective transformation of the azobenzene switch in the bulk, which in turn modulates N2 and CO2 adsorption.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
- Present address: Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Jacopo Perego
- Department of Materials Science, University of Milano Bicocca, Milan, Italy, Via R. Cozzi 55, Milan, 20125, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano Bicocca, Milan, Italy, Via R. Cozzi 55, Milan, 20125, Italy
| | - Piotr Cieciórski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Wojciech Danowski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Angiolina Comotti
- Department of Materials Science, University of Milano Bicocca, Milan, Italy, Via R. Cozzi 55, Milan, 20125, Italy
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| |
Collapse
|
4
|
Hu X, Liu J, Gong X, Xu J, Yao J, Li K, Liu H. Photochromic biomaterials: Synthesis and fluorescence properties of spiroxanthenes-grafted alginate derivatives. Carbohydr Polym 2024; 327:121664. [PMID: 38171681 DOI: 10.1016/j.carbpol.2023.121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Herein, we reported a general and green synthetic strategy for photochromic functional alginate derivatives grafting with isoindolinone spiroxanthenes. Under mild condition, diverse 2-aminoalkyl isoindolinone spiroxanthene derivatives have been prepared from organic photochromic isobenzofuranone spiroxanthenes (including rhodamine B, rhodamine 6G and fluorescein), and grafted on alginate chains through amidation reaction using diamine as a linkage with water as a green solvent at room temperature. The photochromic properties of the fluorophores-modified polymers and the effect of pH value have been explored. Under acid conditions, the spiroisoindolinone rings of alginate derivatives are opened resulting in showing absorption bands and fluorescence with orange to green emission, while the alginate derivatives turned to colourless under basic conditions which is reversibly. In addition to biodegradability and biocompatibility, the polymers exhibit good film-forming properties simultaneously. The films and fibers produced from the alginate derivatives also project good fluorescence properties.
Collapse
Affiliation(s)
- Xiaoxia Hu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Xiaole Gong
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jiangtao Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jiuyong Yao
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Kai Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Honglei Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong Province, China.
| |
Collapse
|
5
|
Taruno K, Ikariko I, Taniguchi T, Kim S, Fukaminato T. Internal Heavy-Atom Effect on Visible-Light-Induced Cyclization Reaction in Diarylethene-Perylenebisimide Dyads. J Phys Chem B 2024; 128:273-279. [PMID: 38118147 DOI: 10.1021/acs.jpcb.3c06746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
All-visible-light switchable diarylethene-perylenebisimide (DAE-PBI) dyads having bromine heavy atoms in the molecule were designed and synthesized. Very recently, we found a unique visible-light-induced cyclization reaction in a DAE-PBI dyad. The dyad exhibited reversible cyclization and cycloreversion reactions upon alternate irradiation with green (500-550 nm) and red (>600 nm) light. From the experimental results, it was suggested that the triplet state of DAE unit was generated via multiplicity conversion based on intramolecular energy transfer from the singlet excited state of PBI unit and that the cyclization reaction of DAE unit proceeded from the triplet state. In addition, it was revealed that the reactivity remarkably increased in a solvent containing heavy atoms such as carbon tetrachloride and iodoethane (i.e., external heavy-atom effect). Based on such results, in this study, we attempted to design and synthesize novel DAE-PBI dyads introducing bromine heavy atoms at different positions in the molecule. The synthesized dyads exhibited higher quantum yields of photocyclization reaction under visible-light irradiation even in a heavy-atom-free solvent compared to the previous dyad having no heavy atoms. The magnitude of enhancement well correlated to the contribution ratio of atomic orbital of bromine to the molecular orbital in LUMOs. These results indicated that the internal heavy atom effectively contributed to the visible-light-induced cyclization reaction in DAE-PBI dyads. Such an internal heavy-atom effect will pave the way for new molecular design to develop all-visible-light-activatable molecular switches.
Collapse
Affiliation(s)
- Koya Taruno
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Issei Ikariko
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Taku Taniguchi
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sunnam Kim
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tsuyoshi Fukaminato
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
6
|
Kang M, Gao B, Zhang S, Hao P, Li G, Shen J, Fu Y. The effect of conjugation degree of aromatic carboxylic acids on electronic and photo-responsive behaviors of naphthalenediimide-based coordination polymers. Dalton Trans 2023; 52:12030-12037. [PMID: 37581277 DOI: 10.1039/d3dt01662e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Three novel naphthalenediimide-based (NDI-based) coordination polymers (CPs), namely [Cd(3-PMNDI)(2,2'-BPDC)] (1), [Cd2(3-PMNDI)1.5(4,4'-BPDC)2(H2O)3]·DMF (2) and [Cd(3-PMNDI)(4,4'-SDC)] (3) (2,2'-H2BPDC = 2,2'-biphenyldicarboxylic acid, 4,4'-H2BPDC = 4,4'-biphenyldicarboxylic acid, 4,4'-H2SDC = 4,4'-stilbenedicarboxylic acid, 3-PMNDI = N,N'-bis(3-pyridylmethyl)-1,4,5,8-naphthalenediimide, and DMF = N,N'-dimethylformamide), have been designed and synthesized here from electron-deficient PMNDI (electron acceptors, EAs) and electron-rich aromatic carboxylic acids (electron donors, EDs) in the presence of cadmium ions. The introduction of aromatic carboxylic acids with different sizes and conjugation degrees leads to the generation of a two-dimensional (2D) layer in 1, a two-fold interpenetrated three-dimensional (3D) network in 2 and an eight-fold interpenetrated 3D framework in 3. Furthermore, the use of distinct electron-donating aromatic carboxylic acids and the consequent different numbers and strengths of lone pair-π and π-π interactions in the interfacial contacts of EDs/EAs give rise to distinct intermolecular charge transfer (ICT) and initial colors of the three CPs, and consequently cause different photoinduced intermolecular electron transfer (PIET) and distinguishing photo-responsive behaviors (weak photochromic performance for 1, excellent photochromic properties for 2 and non-photochromism for 3). This study indicates that an appropriate ICT is beneficial for PIET, but too weak or too strong ICT is not conducive to PIET, which provides an effective strategy for the construction of functional CPs with distinguishing photo-responsive properties through the subtle balance of ICT and PIET.
Collapse
Affiliation(s)
- Ming Kang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Bohong Gao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Shimin Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Pengfei Hao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Gaopeng Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Junju Shen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Yunlong Fu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| |
Collapse
|
7
|
Jago D, Walkey MC, Gaschk EE, Spackman PR, Piggott MJ, Moggach SA, Koutsantonis GA. Multistate Switching of Some Ruthenium Alkynyl and Vinyl Spiropyran Complexes. Inorg Chem 2023; 62:12283-12297. [PMID: 37545356 DOI: 10.1021/acs.inorgchem.3c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
To study the switching properties of photochromes, we undertook the synthesis and characterization of several ruthenium organometallic complexes of the type [Ru(Cp*)(dppe)(C≡C-SP)] or [Ru(CO)(dppe)(PPh3)Cl(CH═CH-SP)], where SP = spiropyran. The spectroscopic and electrochemical properties of the complexes were determined by careful cyclic voltammetric and spectroelectrochemical experiments. Whereas the mononuclear alkynyl ruthenium complexes undergo one-electron oxidations localized over the metal alkynyl moiety, the oxidation of the mononuclear vinyl ruthenium complexes is centered on the indoline moiety of the spiropyran. Through these studies, we demonstrate access to several stable redox states, in addition to switching states attained via acidochromism and/or photoisomerization.
Collapse
Affiliation(s)
- David Jago
- Chemistry, School of Molecular Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6000, Australia
| | - Mark C Walkey
- Chemistry, School of Molecular Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6000, Australia
| | - Emma E Gaschk
- Chemistry, School of Molecular Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6000, Australia
| | - Peter R Spackman
- Curtin Institute for Computation, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Matthew J Piggott
- Chemistry, School of Molecular Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6000, Australia
| | - Stephen A Moggach
- Chemistry, School of Molecular Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6000, Australia
| | - George A Koutsantonis
- Chemistry, School of Molecular Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6000, Australia
| |
Collapse
|
8
|
Yan FF, Jiang WJ, Yao NT, Mao PD, Zhao L, Sun HY, Meng YS, Liu T. Manipulating fluorescence by photo-switched spin-state conversions in an iron(ii)-based SCO-MOF. Chem Sci 2023; 14:6936-6942. [PMID: 37389243 PMCID: PMC10306093 DOI: 10.1039/d3sc01217d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Manipulating fluorescence by photo-switched spin-state conversions is an attractive prospect for applications in smart magneto-optical materials and devices. The challenge is how to modulate the energy transfer paths of the singlet excited state by light-induced spin-state conversions. In this work, a spin crossover (SCO) FeII-based fluorophore was embedded into a metal-organic framework (MOF) to tune the energy transfer paths. Compound 1 {Fe(TPA-diPy)[Ag(CN)2]2}·2EtOH (1) has an interpenetrated Hofmann-type structure, wherein the FeII ion is coordinated by a bidentate fluorophore ligand (TPA-diPy) and four cyanide nitrogen atoms and acts as the fluorescent-SCO unit. Magnetic susceptibility measurements revealed that 1 underwent an incomplete and gradual spin crossover with T1/2 = 161 K. Photomagnetic studies confirmed photo-induced spin state conversions between the low-spin (LS) and high-spin (HS) states, where the irradiation of 532 and 808 nm laser lights converted the LS and HS states to the HS and LS states, respectively. Variable-temperature fluorescence spectra study revealed an anomalous decrease in emission intensity upon the HS → LS transition, confirming the synergetic coupling between the fluorophore and SCO units. Alternating irradiation of 532 and 808 nm laser lights resulted in reversible fluorescence intensity changes, confirming spin state-controlled fluorescence in the SCO-MOF. Photo-monitored structural analyses and UV-vis spectroscopic studies demonstrated that the photo-induced spin state conversions changed energy transfer paths from the TPA fluorophore to the metal-centered charge transfer bands, ultimately leading to the switching of fluorescence intensities. This work represents a new prototype compound showing bidirectional photo-switched fluorescence by manipulating the spin states of iron(ii).
Collapse
Affiliation(s)
- Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wen-Jing Jiang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
9
|
Bayach I, Almutlaq N, Alkhalifah MA, Asif M, Ayub K, Sheikh NS. Nonlinear Optical Properties and Phototunable Absorption of a Substituted Dihydroazulene-Vinylheptafulvene Pair of Photochromes. ACS OMEGA 2023; 8:18951-18963. [PMID: 37273631 PMCID: PMC10233684 DOI: 10.1021/acsomega.3c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
Quantum calculations were used to study UV-vis absorption properties and nonlinear optical characteristics of a variety of substituted dihydroazulene (DHA)/vinylheptafulvene (VHF) photoswitches. The absorption properties are substantially based on the position and nature of the substituent. In general, electron-donating groups cause red shifts compared to the parent compound. Any electron-withdrawing group, on the other hand, would generate a blue shift. Furthermore, the steric effect at some positions is accountable for the loss of planarity and, as a response, a decrease in electronic conjugation within the molecule, which in most cases result in blue shifts in maximum absorption. The purpose of this research is to investigate the influence of substitution at the seven-membered ring of the DHA/VHF system on the absorption spectra and nonlinear optical characteristics of dihydroazulene photoswitches. UV-vis spectra and hyperpolarizability are determined since a prospective photoswitch should have a minimum overlap of absorption spectra from both isomers. Furthermore, the differential in hyperpolarizability between DHA and VHF is critical for practical applications.
Collapse
Affiliation(s)
- Imene Bayach
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Nadiah Almutlaq
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammed A. Alkhalifah
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Misbah Asif
- Department
of Chemistry, COMSATS University, Abbottabad
Campus, Abbottabad 22060, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University, Abbottabad
Campus, Abbottabad 22060, Pakistan
| | - Nadeem S. Sheikh
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
10
|
Du Y, Huang CR, Xu ZK, Hu W, Li PF, Xiong RG, Wang ZX. Photochromic Single-Component Organic Fulgide Ferroelectric with Photo-Triggered Polarization Response. JACS AU 2023; 3:1464-1471. [PMID: 37234120 PMCID: PMC10207094 DOI: 10.1021/jacsau.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Organic photochromic compounds have been widely investigated for optical memory storage and switches. Very recently, we pioneeringly discovered optical control of ferroelectric polarization switching in organic photochromic salicylaldehyde Schiff base and diarylethene derivatives, differently from the traditional ferroelectrics. However, the study of such intriguing photo-triggered ferroelectrics is still in its infancy and relatively scarce. In this manuscript, we synthesized a pair of new organic single-component fulgide isomers, (E and Z)-3-(1-(4-(tert-butyl)phenyl)ethylidene)-4-(propan-2-ylidene)dihydrofuran-2,5-dione (1E and 1Z). They undergo prominent photochromism from yellow to red. Interestingly, only polar 1E has been proven to be ferroelectric, while the centrosymmetric 1Z does not meet the basic requirement for ferroelectricity. Besides, experimental evidence shows that the Z-form can be converted to the E-form by light irradiation. More importantly, the ferroelectric domains of 1E can be manipulated by light in the absence of an electric field, benefiting from the remarkable photoisomerization. 1E also adopts good fatigue resistance to the photocyclization reaction. As far as we know, this is the first example of organic fulgide ferroelectric reported with photo-triggered ferroelectric polarization response. This work has developed a new system for studying photo-triggered ferroelectrics and would also provide an expected perspective on developing ferroelectrics for optical applications in trap future.
Collapse
Affiliation(s)
- Ye Du
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, People’s
Republic of China
| | - Chao-Ran Huang
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, People’s
Republic of China
| | - Zhe-Kun Xu
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Wei Hu
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Peng-Fei Li
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Ren-Gen Xiong
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Zhong-Xia Wang
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, People’s
Republic of China
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| |
Collapse
|
11
|
Zuo Y, Chai Y, Liu X, Gao Z, Jin X, Wang F, Bai Y, Zheng Z. A ratiometric fluorescent probe based on spiropyran in situ switching for tracking dynamic changes of lysosomal autophagy and anticounterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122338. [PMID: 36657288 DOI: 10.1016/j.saa.2023.122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Autophagy is the controlled breakdown of cellular components that dysfunctional or nonessential, and the decomposition products are further recycled and synthesized for the normal physiological activities of cells. Lysosomal autophagy has been implicated in cancer, neurological disorders, Parkinson's disease, etc. Therefore, it is necessary to develop a fluorescent probe that can clearly describe the process of lysosomal autophagy. However, there are currently limited fluorescent probes for ratiometric monitoring of the autophagic process in dual channels. To solve this problem, a fluorescent probe based on spiropyran with lysosomal targeting and pH response for ratiometric monitoring the autophagy process of lysosomes were designed. The sensitive response of the probe to pH in vitro was verified by UV and fluorescence spectrum tests. Meanwhile, the probe demonstrated the ability to monitor the intracellular pH fluctuations. In addition, the application of Lyso-SD in the field of anti-counterfeiting has been proposed based on the obvious photoluminescence ability of Lyso-SD under UV irradiation.
Collapse
Affiliation(s)
- Yujing Zuo
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; Ningbo Yinzhou Chinaust Automobile Fittings Corp. Ltd., Ningbo 315142, China
| | - Yanfu Chai
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; School of Mechanical and Electrical Engineering, Shaoxing University, Shaoxing 312000, China; Ningbo Yinzhou Chinaust Automobile Fittings Corp. Ltd., Ningbo 315142, China.
| | - Xiaofei Liu
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhiming Gao
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaofeng Jin
- Ningbo Yinzhou Chinaust Automobile Fittings Corp. Ltd., Ningbo 315142, China
| | - Feng Wang
- Ningbo Yinzhou Chinaust Automobile Fittings Corp. Ltd., Ningbo 315142, China
| | - Yongjie Bai
- Ningbo Yinzhou Chinaust Automobile Fittings Corp. Ltd., Ningbo 315142, China
| | - Zhijun Zheng
- Ningbo Yinzhou Chinaust Automobile Fittings Corp. Ltd., Ningbo 315142, China
| |
Collapse
|
12
|
Fabre N, Fukaminato T, Brosseau A, Sliwa M, Métivier R. Dynamics of the energy transfer involved in a diarylethene-perylenebisimide dyad: comparison between the molecule and the nanoparticle level. Photochem Photobiol Sci 2023:10.1007/s43630-023-00405-5. [PMID: 36947338 DOI: 10.1007/s43630-023-00405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Photochromic materials are widely used to achieve fluorescence photoswitching. Understanding the energy transfer processes occurring in these systems would be an advantage for their use and better optimization of their properties. In this scope, we studied a diarylethene-perylenebisimide (DAE-PBI) dyad that presents a bright red emission and a large ON-OFF contrast, both in solution and in an aqueous suspension of nanoparticles (NPs). Using ultrafast transient absorption spectroscopy, the excited state dynamics was characterized for this dyad in THF solution and compared to its behavior in NPs state. An efficient energy transfer process between the PBI fluorophore and the DAE photochromic unit in its closed form was demonstrated, occurring in a few hundreds of femtoseconds.
Collapse
Affiliation(s)
- Nicolas Fabre
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-Sur-Yvette, France
| | - Tuyoshi Fukaminato
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, 860-8555, Japan.
| | - Arnaud Brosseau
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-Sur-Yvette, France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59 000, Lille, France.
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-Sur-Yvette, France.
| |
Collapse
|
13
|
Mutlutürk E, Tamer U, Caykara T. Photo‐ and pH‐Responsive Hybrid Colloidal Particles. ChemistrySelect 2023. [DOI: 10.1002/slct.202204497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Esma Mutlutürk
- Department of Chemistry Polatlı Faculty of Art and Science Ankara Hacı Bayram Veli University 06900 Polatlı Ankara Turkey
| | - Uğur Tamer
- Department of Analytical Chemistry Faculty of Pharmacy Gazi University 06330 Ankara Turkey
| | - Tuncer Caykara
- Department of Chemistry Faculty of Science Gazi University,Ankara 06500 Besevler, Ankara/ Turkey
| |
Collapse
|
14
|
Non-volatile optical memory based on cooperative orientation switching: improvement of recording speed and contrast by utilizing out-of-plane orientation mode. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:857-865. [PMID: 36635601 DOI: 10.1007/s43630-022-00357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
Herein, we report a novel strategy toward non-volatile optical memory with high-contrast, high-speed recording, and non-destructive readout capability based on the cooperative out-of-plane orientation of a fluorescent dye doped into azobenzene liquid crystalline polymer film. By employing the out-of-plane orientation switching upon irradiation with UV light and thermal heating, high-contrast turn-on fluorescence switching was successfully achieved and the optical recording was demonstrated with non-destructive fluorescence readout capability. Furthermore, the recording speed and the fluorescence on/off contrast in the present system were dramatically improved compared to the previous in-plane orientation mode.
Collapse
|
15
|
Peng LY, Li ZW, Fang Q, Xie BB, Xia SH, Cui G. Combined QM (MS-CASPT2)/MM studies on photocyclization and photoisomerization of a fulgide derivative in toluene solution. Phys Chem Chem Phys 2022; 24:29918-29926. [PMID: 36468632 DOI: 10.1039/d2cp03807b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Photocyclization and photoisomerization of fulgides have been extensively studied experimentally and computationally due to their significant potential applications for example as photoswitches in memory devices. However, the reported excited-state decay mechanisms of fulgides do not include the effects of solvation explicitly to date. Herein, calculations using the high-level MS-CASPT2//CASSCF method were conducted to explore the photoinduced excited-state decay processes of the Eα conformer of a fulgide derivative in toluene with solvent effects treated by implicit PCM and explicit QM/MM models, respectively. Several minima and conical intersections were optimized successfully in and between the S0 and S1 states; then, two nonadiabatic excited-state decay channels that could efficiently drive the system to the ground state were proposed based on the excited-state ring-closure and isomerization paths. In addition, we also found that in the ring-closure path, the potential energy surface is essentially barrierless before approaching the conical intersection, while it needs to overcome a small energy barrier along the E → Z photoisomerization path for the nonadiabatic S1 → S0 internal conversion process. The present computational results could provide useful mechanistic insights into the photoinduced cyclization and isomerization reactions of fulgide and its derivatives.
Collapse
Affiliation(s)
- Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zi-Wen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, Zhejiang, China
| | - Shu-Hua Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Rabecca Jenifer V, Mohan Das T. Smart supramolecular photoresponsive gelator with long-alkyl chain azobenzene incorporated sugar derivatives for recycling aromatic solvents and sequestration of cationic dyes. SOFT MATTER 2022; 18:9017-9025. [PMID: 36404737 DOI: 10.1039/d2sm01367c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phase-selective gelation of low molecular-weight photoresponsive organogelator possessing long aliphatic chain azobenzene sugar derivatives and its applications in the recycling of aromatic solvents and also the removal of cationic dyes is reported. Very low critical gelation concentration (CGC) in aromatic solvents implies that it acts as a very good gelator. The photoinduced gel-to-sol transition was attained by irradiation with UV light at 350 nm. These organogels work as a selective adsorbent for efficiently removing cationic dyes from individual aqueous dye solutions and in a mixture of cationic and anionic dye solutions show more than 95% removal within 12 h. These insights indicate that these sugar derivatives could be exploited in implementing smart materials for environmental remediation.
Collapse
Affiliation(s)
- V Rabecca Jenifer
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 005, India.
| | - Thangamuthu Mohan Das
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 005, India.
| |
Collapse
|
17
|
Malik R, Bu Y. Intramolecular Proton Transfer Modulation of Magnetic Spin Coupling Interaction in Photochromic Azobenzene Derivatives with an Ortho-Site Hydroxyl as a Modulator. J Phys Chem A 2022; 126:9165-9177. [DOI: 10.1021/acs.jpca.2c05231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Rabia Malik
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, People’s Republic of China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, People’s Republic of China
| |
Collapse
|
18
|
Bayach I, Al-Faiyz YSS, Alkhalifah MA, Almutlaq N, Ayub K, Sheikh NS. Phototunable Absorption and Nonlinear Optical Properties of Thermally Stable Dihydroazulene-Vinylheptafulvene Photochrome Pair. ACS OMEGA 2022; 7:35863-35874. [PMID: 36249387 PMCID: PMC9558242 DOI: 10.1021/acsomega.2c04231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/06/2022] [Indexed: 06/06/2023]
Abstract
The UV-vis absorption characteristics and nonlinear optical properties of a series of substituted dihydroazulene (DHA)/vinylheptafulvene (VHF) photoswitches are investigated by applying quantum calculations. Introduction of substituents at the seven-membered ring resulted in significant changes in their absorption properties depending on the nature and position of the substituent. Electron-donating groups at positions 5, 6, 7, and 8 generally exhibited red shifts with respect to the parent compound. However, the steric effect at positions 8a and 4 is responsible for the loss of planarity and conjugation, which generally leads to blue shifts. In contrast, any electron-withdrawing group, particularly at positions 8a and 4, would cause a blue shift. The presence of bulky groups at position 8a results in a loss of planarity and, as a result, a decrease in electronic conjugation within the molecule, resulting in a blue shift in the maximum absorption. When it comes to halogens, the red shift is directly correlated to the nucleophilicity; the higher the nucleophilicity, the larger the red shift. Regarding hyperpolarizability, the charge separation induces higher hyperpolarizabilities for all substituted VHFs compared to the corresponding DHAs, resulting in a much higher NLO response. In addition, for all DHA and VHF, the highest values of hyperpolarizabilities are calculated for 6-substituted systems. Finally, the objective of this detailed theoretical investigation is to continue exploring the photophysical properties of DHA-VHF through structural modifications.
Collapse
Affiliation(s)
- Imene Bayach
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Yasair S. S. Al-Faiyz
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammed A. Alkhalifah
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Nadiah Almutlaq
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan
| | - Nadeem S. Sheikh
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
19
|
Sudarkova SM, Ioffe IN. E/ Z photoisomerization pathway in pristine and fluorinated di(3-furyl)ethenes. Phys Chem Chem Phys 2022; 24:23749-23757. [PMID: 36156663 DOI: 10.1039/d2cp02563a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an XMCQDPT2 study of the E/Z photoisomerization in a series of fluorinated di(3-furyl)ethenes (3DFEs). Upon excitation, pristine and low-fluorinated 3DFE show conventional behavior of many diarylethenes: unhindered twisting motion toward the pyramidalized zwitterionic state where relaxation to the ground state occurs. However, deep fluorination of 3DFEs can hamper E-to-Z isomerization by giving rise to an alternative excited-state relaxation pathway: an out-of-plane motion of a ring fluorine atom. Importantly, the case of fluorinated 3DFEs reveals serious deficiencies of the popular TDDFT approach. With some commonly used exchange-correlation functionals, the alternative relaxation pathway is not reproduced and, moreover, an irrelevant ring rotation coordinate is predicted instead. Nevertheless, TDDFT remains qualitatively adequate for the E-to-Z twisting coordinate taken alone.
Collapse
Affiliation(s)
- Svetlana M Sudarkova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Ilya N Ioffe
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
20
|
Ikariko I, Kim S, Hiroyasu Y, Higashiguchi K, Matsuda K, Hirose T, Sotome H, Miyasaka H, Yokojima S, Irie M, Kurihara S, Fukaminato T. All-Visible (>500 nm)-Light-Induced Diarylethene Photochromism Based on Multiplicity Conversion via Intramolecular Energy Transfer. J Phys Chem Lett 2022; 13:7429-7436. [PMID: 35929722 DOI: 10.1021/acs.jpclett.2c01903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoswitching molecules that reversibly switch upon visible-light irradiation are some of the most attractive targets for biological and imaging applications. In this study, we found a diarylethene (DAE) derivative having a covalently attached perylenebisimide (PBI) unit (DAE-PBI dyad) underwent an unexpected cyclization reaction upon irradiation with green (500-550 nm) light, where the DAE unit has no absorbance. The photoreactivity was enhanced in solvents containing heavy atoms and in the presence of oxygen. As inferred from the solvent dependence and the calculated excited-state energies of DAE and PBI units, it was suggested that the probable mechanism for this unique visible-light-induced cyclization reaction is multiplicity conversion based on intramolecular energy transfer from the excited singlet state of the PBI unit to the triplet state of DAE units (i.e., DAE-1[PBI]* → 3[DAE]*-PBI). Such a unique photoreaction mechanism with the assistance of oxygen will pave the way for new molecular design for the development of visible-light switching molecules.
Collapse
Affiliation(s)
- Issei Ikariko
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sunnam Kim
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yae Hiroyasu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Higashiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Masahiro Irie
- Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Seiji Kurihara
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tuyoshi Fukaminato
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
21
|
Kunz A, Oberhof N, Scherz F, Martins L, Dreuw A, Wegner HA. Azobenzene‐Substituted Triptycenes: Understanding the Exciton Coupling of Molecular Switches in Close Proximity. Chemistry 2022; 28:e202200972. [PMID: 35499252 PMCID: PMC9401047 DOI: 10.1002/chem.202200972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Herein, we report a series of azobenzene‐substituted triptycenes. In their design, these switching units were placed in close proximity, but electronically separated by a sp3 center. The azobenzene switches were prepared by Baeyer–Mills coupling as key step. The isomerization behavior was investigated by 1H NMR spectroscopy, UV/Vis spectroscopy, and HPLC. It was shown that all azobenzene moieties are efficiently switchable. Despite the geometric decoupling of the chromophores, computational studies revealed excitonic coupling effects between the individual azobenzene units depending on the connectivity pattern due to the different transition dipole moments of the π→π* excitations. Transition probabilities for those excitations are slightly altered, which is also revealed in their absorption spectra. These insights provide new design parameters for combining multiple photoswitches in one molecule, which have high potential as energy or information storage systems, or, among others, in molecular machines and supramolecular chemistry.
Collapse
Affiliation(s)
- Anne Kunz
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center of Material Research (LaMa/ZfM) Justus Liebig University Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Nils Oberhof
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Frederik Scherz
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Leon Martins
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center of Material Research (LaMa/ZfM) Justus Liebig University Heinrich-Buff-Ring 16 35392 Giessen Germany
| |
Collapse
|
22
|
Ding G, Gai F, Gou Z, Zuo Y. Multistimuli-responsive fluorescent probes based on spiropyrans for the visualization of lysosomal autophagy and anticounterfeiting. J Mater Chem B 2022; 10:4999-5007. [PMID: 35713019 DOI: 10.1039/d2tb00580h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysosomes, as the main degradative organelles, play an important role in a variety of cellular metabolic activities including autophagy and apoptosis, catabolism and transporting substances. Lysosomal autophagy is an important physiological process and causes a slight change in the intra-lysosomal pH to facilitate the breakdown of macromolecular proteins. Therefore, detecting the fluctuation of intra-lysosomal pH is of great significance in monitoring physiological and pathological activities in living organisms. However, few probes have enabled the ratiometric monitoring of lysosomal pH and lysosomal autophagy in dual channels. Fortunately, spiropyrans, as compounds with multistimuli-responsive discoloration properties, form two different isomers under acid induction and ultraviolet induction. To fill this gap, in this work, two novel multistimuli-responsive fluorescent probes with lysosomal targeting in dual channels based on spiropyrans were rationally designed and synthesized. Notably, the two probes exhibited different absorption wavelengths in their UV-responsive and pH-responsive moieties due to their different electron-donating groups. Moreover, bioimaging experiments clearly demonstrate that the probes Lyso-SP and Lyso-SQ monitor lysosomal autophagy by facilitating the visualization of fluctuations in intra-lysosomal pH. Meanwhile, their potential applications in the field of dual-anticounterfeiting were explored based on their photoluminescence ability. We expect that more multistimuli-responsive fluorescent probes can be developed by this design approach.
Collapse
Affiliation(s)
- Guowei Ding
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Fengqing Gai
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
23
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Yang R, Ren X, Mei L, Pan G, Li XZ, Wu Z, Zhang S, Ma W, Yu W, Fang HH, Li C, Zhu MQ, Hu Z, Sun T, Xu B, Tian W. Reversible Three-Color Fluorescence Switching of an Organic Molecule in the Solid State via "Pump-Trigger" Optical Manipulation. Angew Chem Int Ed Engl 2022; 61:e202117158. [PMID: 35102683 DOI: 10.1002/anie.202117158] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 12/19/2022]
Abstract
In photoswitches that undergo fluorescence switching upon ultraviolet irradiation, photoluminescence and photoisomerization often occur simultaneously, leading to unstable fluorescence properties. Here, we successfully demonstrated reversible solid-state triple fluorescence switching through "Pump-Trigger" multiphoton manipulation. A novel fluorescence photoswitch, BOSA-SP, achieved green, yellow, and red fluorescence under excitation by pump light and isomerization induced by trigger light. The energy ranges of photoexcitation and photoisomerization did not overlap, enabling appropriate selection of the multiphoton light for "pump" and "trigger" photoswitching, respectively. Additionally, the large free volume of the spiropyran (SP) moiety in the solid state promoted reversible photoisomerization. Switching between "pump" and "trigger" light is useful for three-color tunable switching cell imaging, which can be exploited in programmable fluorescence switching. Furthermore, we exploited reversible dual-fluorescence switching in a single molecular system to successfully achieve two-color super-resolution imaging.
Collapse
Affiliation(s)
- Runqing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Xue Ren
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China.,Department of Oncological Gynecology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Lijun Mei
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guocui Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Wenyue Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Weili Yu
- GPL Photonic Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| |
Collapse
|
25
|
Jung HY, Kim B, Jeon MH, Kim Y. Reversible Near-Infrared Fluorescence Photoswitching in Aqueous Media by Diarylethene: Toward High-Accuracy Live Optical Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103523. [PMID: 35023602 DOI: 10.1002/smll.202103523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Fluorescence imaging is an indispensable tool in modern biological research, allowing simple and inexpensive color-coded visualizations of real-time events in living cells and animals, as well as of fixed states of ex vivo specimens. The accuracy of fluorescence imaging in living systems is, however, impeded by autofluorescence, light scattering, and limited penetration depth of light. Nevertheless, the clinical use of fluorescence imaging is expected to grow along with advances in imaging equipment, and will increasingly demand high-accuracy probes to avoid false-positive results in disease detection. To this end, a water-soluble and relatively safe diarylethene (DAE)-based reversible near-infrared (NIR) fluorescence photoswitch for living systems is prepared here. Furthermore, to facilitate excellent switching performance, the photoirradiation results obtained is compared using three different visible light sources to turn on NIR fluorescence through cycloreversion of DAE. While photoswitching using 589 nm light leads to slightly higher cell viability, fluorescence quenching efficiency and fatigue resistance are higher when 532 nm light with low photobleaching is used in both aqueous solution and living systems. The authors anticipate that their reversible NIR fluorescence photoswitch mediated by DAE can be beneficial for fluorescence imaging in aqueous media requiring accurate detection, such as in the autofluorescence-rich living environment.
Collapse
Affiliation(s)
- Hye-Youn Jung
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Boram Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Min Ho Jeon
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Yoonkyung Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Bioscience Major, KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| |
Collapse
|
26
|
Yang R, Ren X, Mei L, Pan G, Li X, Wu Z, Zhang S, Ma W, Yu W, Fang H, Li C, Zhu M, Hu Z, Sun T, Xu B, Tian W. Reversible Three‐Color Fluorescence Switching of an Organic Molecule in the Solid State via “Pump–Trigger” Optical Manipulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Runqing Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Xue Ren
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
- Department of Oncological Gynecology The First Hospital of Jilin University Changchun 130012 China
| | - Lijun Mei
- Wuhan National Laboratory for Optoelectronics (WNLO) School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Guocui Pan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Xiao‐Ze Li
- State Key Laboratory of Precision Measurement Technology & Instruments Department of Precision Instrument Tsinghua University Beijing 100084 China
| | - Zhiyuan Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenyue Ma
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Weili Yu
- GPL Photonic Laboratory State Key Laboratory of Applied Optics Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 China
| | - Hong‐Hua Fang
- State Key Laboratory of Precision Measurement Technology & Instruments Department of Precision Instrument Tsinghua University Beijing 100084 China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO) School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Ming‐Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO) School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education The First Hospital of Jilin University Changchun 130061 China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education The First Hospital of Jilin University Changchun 130061 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
27
|
Yamauchi M, Okaji M, Aratani N, Yamada H, Masuo S. Reversible Photoluminescence Control of Azobenzene Crystals by Light and Heat Stimulation. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mitsuaki Yamauchi
- Kwansei Gakuin University Applied Chemistry for Environment 2-1 Gakuen 669-1337 Sanda JAPAN
| | - Miho Okaji
- Kwansei Gakuin University: Kansei Gakuin Daigaku Applied Chemistry for Environment JAPAN
| | - Naoki Aratani
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Hiroko Yamada
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Sadahiro Masuo
- Kwansei Gakuin University: Kansei Gakuin Daigaku Applied Chemistry for Environment JAPAN
| |
Collapse
|
28
|
Hao P, Gao B, Li GP, Shen J, Fu Y. Ultrafast visible-light photochromic properties of naphthalenediimide-based coordination polymers for visual detecting/filtering blue light. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00100d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel naphthalenediimide-based (NDI-based) coordination polymers (CPs) [Cd∙(3-PMNDI)∙(HNDC)2∙(DMF)] (1) and [Cd∙(4-PMNDI)∙(NDC)]∙DMF (2) (H2NDC = 1,4-naphthalenedicarboxylic acid, 3-/4-PMNDI = N,N′-bis(3-/4-pyridylmethyl)-1,4,5,8-naphthalenediimide, DMF = N,N′-dimethylformamide), have been designed and synthesized, which are constructed...
Collapse
|
29
|
Zhao Y, Li Z, Ma J, Jia Q. Design of a Spiropyran-Based Smart Adsorbent with Dual Response: Focusing on Highly Efficient Enrichment of Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55806-55814. [PMID: 34786943 DOI: 10.1021/acsami.1c14739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Smart responsive materials have attractive application prospects due to their tunable behaviors. In this work, we design novel spiropyran (SP)-based magnetic nanoparticles (MNP-SP) with dual response to ultraviolet light and pH and apply them to the enrichment of phosphopeptides. SP is modified on the surface of magnetic nanoparticles through a simple esterification reaction, based on which an MNP-SP-MS phosphopeptide identification platform is established. The capture and release of phosphopeptides are facilely adjusted by changing external light and the pH of the solution. The smart responsive MNP-SP has fast magnetic response performance, high sensitivity (detection limit of 0.4 fmol), and good reusability (6 cycles). In addition, MNP-SP is used for the enrichment of phosphopeptides in skimmed milk, human saliva, and human serum samples, indicating that it is an ideal adsorbent for enriching low-abundance phosphopeptides in complex biological environments.
Collapse
Affiliation(s)
- Yanqing Zhao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Zheng Li
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
30
|
Pizarro GDC, Alavia W, Martin-Trasanco R, Marambio OG, Sánchez J, Oyarzún DP. Preparation of photoactive ZnS-composite porous polymer films: Fluorescent and morphological properties. Des Monomers Polym 2021; 24:320-329. [PMID: 34658659 PMCID: PMC8519547 DOI: 10.1080/15685551.2021.1989151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
This work describes the use of the breath figure (BF) method for the fabrication of photoactive porous polymer films and the characterization of their responsive to photo stimulus. The films incorporate self-assembled photoactive polymers and ZnS nanoparticles (NPs). The effect of both components on the optical and morphological properties of the films were analyzed. Films with a hexagonally ordered pattern were obtained. The photoactive polymer was prepared by grafting the photochromic component 1-(2-hydroxyethyl)-3,3-dimethylindoline-6-nitrobenzopyran (SP) to polystyrene-block-polymethacrylic acid (PS-b-PMMA). ZnS NPs were incorporated into the polymer solution, and the films were prepared using spin-coating on glass substrates before subjecting them to the BF method. The hollow footprints were obtained before introducing the ZnS NPs in order to maintain the necessary conditions for hexagonal film growth. Accordingly, the SEM micrographs of the films prepared in the presence of ZnS NPs displayed a loss in the pore arrangement as a consequence of the interaction between SP moiety and NPs. The light-emitting properties of films were characterized by blue and violet colors when exposed to UV light under fluorescence. Progress in the field of breath-figure formation and its application, such as exemplified in this work, leads to functional structures with suitable applications in chemistry and materials science. It is expected that such microstructured polymeric films will have interesting applications in photonic and optoelectronic devices.
Collapse
Affiliation(s)
- Guadalupe Del C. Pizarro
- Departamento De Química, Facultad De Ciencias Naturales, Matemáticas Y Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Wilson Alavia
- Departamento De Química, Facultad De Ciencias Naturales, Matemáticas Y Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago, Chile
- Programa Institucional De Fomento a La Investigación, Desarrollo E Innovación (Pidi), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Rudy Martin-Trasanco
- Departamento De Química, Facultad De Ciencias Naturales, Matemáticas Y Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Oscar G. Marambio
- Departamento De Química, Facultad De Ciencias Naturales, Matemáticas Y Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Julio Sánchez
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Diego P. Oyarzún
- Departamento de Química y Biología, Facultad de Ciencias Naturales, Universidad de Atacama, Copiapó, Chile
| |
Collapse
|
31
|
Ma X, Yue J, Wang Y, Gao Y, Qiao B, Feng E, Li Z, Ye F, Han X. A new strategy for constructing artificial light-harvesting systems: supramolecular self-assembly gels with AIE properties. SOFT MATTER 2021; 17:5666-5670. [PMID: 34095929 DOI: 10.1039/d1sm00528f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An artificial light-harvesting system (ALHS) has been designed and constructed based on supramolecular organogels made of a simple hydrazide-functionalized benzimidazole derivative (HB), as well as the fluorescent dye rhodamine B (RhB). RhB acted as a good acceptor to realize the energy-transfer process with good efficiency based on a HB/RhB assembly, which showed considerable fluorescence resonance energy transfer (FRET) efficiency of 53% for the energy transfer process. Remarkably, the obtained system showed superior color conversion abilities, converting blue light into orange light. By properly tuning the donor to acceptor ratio, bright orange light emission was achieved with a high fluorescence quantum yield of 35.5%. This system exhibited promise for applications relating to visible-light photo-transformation.
Collapse
Affiliation(s)
- Xinxian Ma
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Jinlong Yue
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Yipei Wang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Yang Gao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Bo Qiao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Enke Feng
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Zhenliang Li
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Fei Ye
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Xinning Han
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| |
Collapse
|
32
|
Energy transfer followed by electron transfer (ETET) endows a TPE-NBD dyad with enhanced environmental sensitivity. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Yamasaki S, Ishida S, Kim S, Yamada M, Nakashima T, Kawai T, Kurihara S, Fukaminato T. Efficient NIR-I fluorescence photoswitching based on giant fluorescence quenching in photochromic nanoparticles. Chem Commun (Camb) 2021; 57:5422-5425. [PMID: 33949476 DOI: 10.1039/d1cc01389k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A photoswitchable near-infrared (NIR) fluorescent nanoparticle (NP) was designed and prepared. The NP showed a characteristic AIE property and high-contrast NIR fluorescence photoswitching with full reversibility. Such efficient NIR fluorescence photoswitching originated from the amplified fluorescence quenching mechanism based on intermolecular energy transfer in a densely packed NP state.
Collapse
Affiliation(s)
- Shinya Yamasaki
- Department of Applied Chemistry & Biochemistry, Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Sanae Ishida
- Department of Applied Chemistry & Biochemistry, Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Sunnam Kim
- Department of Applied Chemistry & Biochemistry, Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Mihoko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Takuya Nakashima
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Kawai
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Seiji Kurihara
- Department of Applied Chemistry & Biochemistry, Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Tuyoshi Fukaminato
- Department of Applied Chemistry & Biochemistry, Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
34
|
Zhang H, Hu X, Zhu H, Shen L, Liu C, Zhang X, Gao X, Li L, Zhu YP, Li Z. A Solid-State Fluorescence Switch Based on Triphenylethene-Functionalized Dithienylethene With Aggregation-Induced Emission. Front Chem 2021; 9:665880. [PMID: 33996756 PMCID: PMC8113874 DOI: 10.3389/fchem.2021.665880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
The development of novel dithienylethene-based fluorescence switches in the aggregated state, and the solid state is highly desirable for potential application in the fields of optoelectronics and photopharmacology. In this contribution, three novel triphenylethene-functionalized dithienylethenes (1-3) have been designed and prepared by appending triphenylethene moieties at one end of dithienylethene unit. Their chemical structures are confirmed by 1H NMR, 13C NMR, and HRMS (ESI). They display good photochromic behaviors with excellent fatigue resistance upon irradiation with UV or visible light in Tetrahydrofuran (THF) solution. Before irradiation with UV light, they exhibit Aggregation Induced Emission (AIE) properties and luminescence behaviors in the solid state. Moreover, upon alternating irradiation with UV/visible light, they display effective fluorescent switching behaviors in the aggregated state and the solid state. The experimental results have been validated by the Density Functional Theory (DFT) calculations. Thus, they can be utilized as novel fluorescence switches integrated in smart, solid-state optoelectronic materials and photopharmacology.
Collapse
Affiliation(s)
- Haining Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Xiaoxiao Hu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Huijuan Zhu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Limin Shen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Congmin Liu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Xiaoman Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Xinyu Gao
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Lingmei Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Yan-Ping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| |
Collapse
|
35
|
Naren G, Larsson W, Benitez-Martin C, Li S, Pérez-Inestrosa E, Albinsson B, Andréasson J. Rapid amplitude-modulation of a diarylethene photoswitch: en route to contrast-enhanced fluorescence imaging. Chem Sci 2021; 12:7073-7078. [PMID: 34123335 PMCID: PMC8153230 DOI: 10.1039/d1sc01071a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A water soluble diarylethene (DAE) derivative that displays exceptionally intense fluorescence from the colorless open form has been synthesized and characterized using UV/vis spectroscopy and fluorescence microscopy. We show that the bright emission from the open form can be rapidly switched using amplitude modulated red light, that is, by light at wavelengths longer than those absorbed by the fluorescent species. This is highly appealing in any context where undesired background fluorescence disturbs the measurement, e.g., the autofluorescence commonly observed in fluorescence microscopy. We show that this scheme is conveniently applicable using lock-in detection, and that robust amplitude modulation of the probe fluorescence is indeed possible also in cell studies using fluorescence microscopy. A water soluble diarylethene derivative displaying exceptionally bright fluorescence in the open isomeric form has been used for emission amplitude-modulation. We apply this scheme in fluorescence microscopy, aiming to suppress undesired background.![]()
Collapse
Affiliation(s)
- Gaowa Naren
- Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology 41296 Göteborg Sweden
| | - Wera Larsson
- Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology 41296 Göteborg Sweden
| | - Carlos Benitez-Martin
- Universidad de Málaga-IBIMA, Departamento de Química Orgánica E-29071 Málaga Spain.,Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Parque Tecnológico de Andalucía E-29590 Málaga Spain
| | - Shiming Li
- Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology 41296 Göteborg Sweden
| | - Ezequiel Pérez-Inestrosa
- Universidad de Málaga-IBIMA, Departamento de Química Orgánica E-29071 Málaga Spain.,Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Parque Tecnológico de Andalucía E-29590 Málaga Spain
| | - Bo Albinsson
- Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology 41296 Göteborg Sweden
| | - Joakim Andréasson
- Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology 41296 Göteborg Sweden
| |
Collapse
|
36
|
Synthesis and properties of photochromic hybrid diarylethenes bearing benzothiophene and pyrrole moieties. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Zhang Z, Zhang Y. Orthogonal Emissive Upconversion Nanoparticles: Material Design and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004552. [PMID: 33543556 DOI: 10.1002/smll.202004552] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Upconversion nanoparticles (UCNPs) have gone beyond traditional fluorophores in a lot of fields due to the outstanding features such as sharp excitation and emission bands, chemical and photo stability of high quality, low auto fluorescence, and high tissue permeation depth of the near-infrared irradiation light used for excitation. Conventional UCNPs carrying single/multiple emissions under a single excitation wavelength can be only employed in concurrent activation, orthogonal emissive upconversion nanoparticles (OUCNPs) with the emissions, a kind of luminescence reliant on excitation, in which by switching the external excitation different lanthanide activators can adopt independent way to control the emission, is more like an ideal UCNPs nanoplatform which can switch their activated emissions depending upon the different application for which it is used at the right time when necessary. This review summaries what has been achieved on the synthesis optimization of designed OUCNPs in recent years and sums up various applications including bioimaging, photo-switching, and programmable control process. And also, the limitations OUCNPs face, and the efforts that have been made to overcome these limitations are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
38
|
Xia B, Gao Q, Hu ZP, Wang QL, Cao XW, Li W, Song Y, Bu XH. Concomitant Photoresponsive Chiroptics and Magnetism in Metal-Organic Frameworks at Room Temperature. RESEARCH 2021; 2021:5490482. [PMID: 33644763 PMCID: PMC7894082 DOI: 10.34133/2021/5490482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023]
Abstract
Stimulus-responsive metal-organic frameworks (MOFs) can be used for designing smart materials. Herein, we report a family of rationally designed MOFs which exhibit photoresponsive chiroptical and magnetic properties at room temperature. In this design, two specific nonphotochromic ligands are selected to construct enantiomeric MOFs, {Cu2(L-mal)2(bpy)2(H2O)·3H2O}n (1) and {Cu2(D-mal)2(bpy)2(H2O)·3H2O}n (2) (mal = malate, bpy = 4, 4′ − bipyridine), which can alter their color, magnetism, and chiroptics concurrently in response to light. Upon UV or visible light irradiation, long-lived bpy− radicals are generated via photoinduced electron transfer (PET) from oxygen atoms of carboxylates and hydroxyl of malates to bpy ligands, giving rise to a 23.7% increase of magnetic susceptibility at room temperature. The participation of the chromophores (-OH and -COO−) bound with the chiral carbon during the electron transfer process results in a small dipolar transition; thus, the Cotton effects of the enantiomers are weakened along with a photoinduced color change. This work demonstrates that the simultaneous responses of chirality, optics, and magnetism can be achieved in a single compound at room temperature and may open up a new pathway for designing chiral stimuli-responsive materials.
Collapse
Affiliation(s)
- Bin Xia
- College of Chemistry, State Key Lab of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qian Gao
- School of Physics, Nankai University, Tianjin 300071, China
| | - Zhen-Peng Hu
- School of Physics, Nankai University, Tianjin 300071, China
| | - Qing-Lun Wang
- College of Chemistry, State Key Lab of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Wei Cao
- School of Physics, Nankai University, Tianjin 300071, China
| | - Wei Li
- School of Materials Science and Engineering, Tianjin Key Lab of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - You Song
- State Key Lab of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xian-He Bu
- College of Chemistry, State Key Lab of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.,School of Materials Science and Engineering, Tianjin Key Lab of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| |
Collapse
|
39
|
Larsen CB. Temperature and solvent-dependent photoluminescence quenching in [Ru(bpy) 2(bpy-cc-AQ)] 2. Phys Chem Chem Phys 2021; 23:3574-3580. [PMID: 33514966 DOI: 10.1039/d0cp05044j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
I have herein investigated the solvent-dependent photoluminescence quenching mechanism of [Ru(bpy)2(bpy-cc-AQ)]2+ using variable temperature emission spectroscopies. The photophysics of this complex are dominated by an excited-state thermal equilibrium between a photoluminescent 3MLCT state and a charge-separated state that lies higher in energy relative to the 3MLCT state in low polarity solvents and approximately isoenergetic in high polarity solvents. Furthermore, an unusual photoluminescence temperature-dependence in high polarity solvents is shown to arise from competition between enthalpic factors favouring the charge-separated state and entropic factors favouring the photoluminescent 3MLCT state, analogous to the molecular light-switch effect of [Ru(bpy)2(dppz)]2+. The solvent-dependent photoluminescence quenching of [Ru(bpy)2(bpy-cc-AQ)]2+ is attributed to two key solvent-dependent factors: (1) the excited-state equilibrium position and (2) the rate of charge-recombination from the charge-separated state.
Collapse
Affiliation(s)
- Christopher B Larsen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| |
Collapse
|
40
|
Hodée M, Lenne A, Rodríguez-López J, Robin-le Guen F, Katan C, Achelle S, Fihey A. Influence of (de)protonation on the photophysical properties of phenol-substituted diazine chromophores: experimental and theoretical studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj03878h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this contribution, a series of seven push–pull systems has been designed by combining a protonable diazine heterocycle with a deprotonable phenol unit through various π-conjugated linkers (phenylene, thienylene, thienylenevinylene, and phenylenevinylene).
Collapse
Affiliation(s)
- Maxime Hodée
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Augustin Lenne
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Julián Rodríguez-López
- Universidad de Castilla-La Mancha, Área de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Françoise Robin-le Guen
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Claudine Katan
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Sylvain Achelle
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Arnaud Fihey
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| |
Collapse
|
41
|
Zhang Y, Ng M, Chan MHY, Wu NMW, Wu L, Yam VWW. Synthesis and characterization of photochromic triethylene glycol-containing spiropyrans and their assembly in solution. Org Chem Front 2021. [DOI: 10.1039/d1qo00316j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of photochromic triethylene glycol (TEG)-containing spiropyrans (SPs) has been synthesized, and systematic and controlled formation of their self-assembled functional materials has been achieved.
Collapse
Affiliation(s)
- Yiwei Zhang
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials and Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Nathan Man-Wai Wu
- Institute of Molecular Functional Materials and Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Vivian Wing-Wah Yam
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry
| |
Collapse
|
42
|
Zhang LT, Xia B, Zhang X, Lu S, Zhou XX, Li QW, Wang QL. Photochromism and photoresponsive luminescence in naphthalenediimide coordination polymers with high thermostability. CrystEngComm 2021. [DOI: 10.1039/d0ce01317j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two novel photochromic complexes [Zn2(bpdc)2(m-DPNDI)2]·H2O (1) and [Cd(bpdc)(m-DPNDI)]·H2O (2) (H2bpdc = 4,4′-diphenic acid, m-DPNDI = N,N′-bis(3-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide) were prepared through a solvothermal method.
Collapse
Affiliation(s)
- Le-Tian Zhang
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Bin Xia
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xia Zhang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Sha Lu
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xian-Xian Zhou
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Quan-Wen Li
- School of Materials Science and Engineering
- National Institute for Advanced Materials
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry
- Nankai University
- Tianjin 300350
| | - Qing-Lun Wang
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
43
|
Zhang X, Fu Y, Liu J, Qian G, Zhang J, Zhang R, Xu ZP. A hydrogen peroxide activatable nanoprobe for light-controlled "double-check" multi-colour fluorescence imaging. NANOSCALE 2020; 12:22527-22533. [PMID: 33094759 DOI: 10.1039/d0nr04881j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new probe for precise and accurate bioimaging contributes significantly to advancing biomedical research for early disease diagnosis and treatment monitoring. Through wrapping a photochromic molecule (SP-Np-B) within a polymer nanoparticle, a new light-controlled multicolour fluorescence nanoprobe (Poly-SP-Np-B) is developed for precise fluorescence subcellular bioimaging. Poly-SP-Np-B shows an "OFF-ON" red-emitting fluorescence response upon alternate UV/Vis light irradiation. After activation by hydrogen peroxide (H2O2), a green-emitting Poly-SP-Np nanoparticle is generated, thus allowing light-controlled fluorescence response simultaneously, i.e., green and yellow switch upon alternate UV/Vis light irradiation for 10 and 20 s, respectively. Such a "blinking" fluorescence signal change is not possible by only using a photochromic molecule probe (SP-Np-B) with alternate UV/vis light irradiation for over 5 min. Poly-SP-Np-B has large isomerization kinetic constants (kSP-MR = 0.4543 s-1 and kMR-SP = 0.0809 s-1), excellent biocompatibility and lysosome distribution capability, enabling multicolour fluorescence imaging in live cells. With exo-/endogenous H2O2 activation in lysosomes, light-controlled "double-check" fluorescence imaging at the subcellular level is successfully achieved. More specifically, the change in fluorescence imaging is reversible in green, red and yellow channels in live cells upon excitation under alternate UV and visible light. This work thus provides a new strategy to develop switchable photochromic probes for precise fluorescence bioassay and bioimaging.
Collapse
Affiliation(s)
- Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
44
|
Yoshino J, Hirono Y, Akahane R, Higuchi H, Hayashi N. Effects of π-conjugation on the solid-state photoresponsive coloring behavior of bipyridine-boronium complexes. Photochem Photobiol Sci 2020; 19:1517-1521. [PMID: 33047774 DOI: 10.1039/d0pp00296h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solid-state photoinduced coloring of boronium complexes consisting of 9-borabicyclononane and 2,2'-bipyridine with π-conjugated substituents at the 4,4'- or 5,5'-positions was investigated. The substitution position affected the highest occupied molecular orbital distribution and determined the coloring capability. The 4,4'-substituted complexes exhibited coloration upon irradiation, whereas most of the 5,5'-substituted complexes did not.
Collapse
Affiliation(s)
- Junro Yoshino
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan. and Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Yoshito Hirono
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Ryota Akahane
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Hiroyuki Higuchi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Naoto Hayashi
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan. and Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| |
Collapse
|
45
|
Wong CL, Cheng YH, Poon CT, Yam VWW. Synthesis, Photophysical, Photochromic, and Photomodulated Resistive Memory Studies of Dithienylethene-Containing Copper(I) Diimine Complexes. Inorg Chem 2020; 59:14785-14795. [PMID: 32914626 DOI: 10.1021/acs.inorgchem.0c02089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of dithienylethene-containing copper(I) diimine complexes have been synthesized and structurally characterized. Systematic studies on their photophysics, electrochemistry, and photochromism have been carried out. The photoinduced color changes of the copper(I) complexes have been achieved by photoexcitation into the metal-to-ligand charge-transfer (MLCT) absorption bands, indicating the photosensitization of light-induced cyclization by the 3MLCT excited state. In addition, by an increase in either the steric bulkiness around the copper(I) center or the structural rigidity of the complexes, the quantum efficiencies of photoluminescence and photocyclization can be effectively enhanced because of suppression of the flattening distortion of the complexes at the MLCT excited state. Furthermore, one of the complexes has been employed as an active component in the fabrication of solution-processed resistive memory devices. Notable lowering of the switching threshold voltage of the binary memory devices has been realized through photocyclization of the dithienylethene-containing copper(I) system.
Collapse
Affiliation(s)
- Cheok-Lam Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yat-Hin Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Ting Poon
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
46
|
Guo S, Zhou S, Chen J, Guo P, Ding R, Sun H, Feng H, Qian Z. Photochromism and Fluorescence Switch of Furan-Containing Tetraarylethene Luminogens with Aggregation-Induced Emission for Photocontrolled Interface-Involved Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42410-42419. [PMID: 32812420 DOI: 10.1021/acsami.0c12603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is extremely challenging to design photocontrolled molecular switches with absorption and fluorescence dual-mode outputs that are suited for a solid surface and interface. Herein, we report a group of furan-containing tetraarylethene derivatives with unique photophysical behavior of aggregation-induced emission (AIE) and distinct photochemical reaction-triggered photochromic behaviors by combining a photoactive furan or benzofuran group and an AIE-active triphenylethene molecule. The introduction of a furyl or benzofuryl group into the AIE luminogen endows the molecules with significant reversible photochromism and solid-state fluorescence. The coloration and decoloration of these molecules can be switched by respective irradiation of UV and visible light in a reversible way, and the photochromic changes are accompanied by a switch-on and switch-off of the solid-state fluorescence. It is revealed that the photocontrolled cyclization and cycloreversion reactions are responsible for the reversible photochromism and fluorescence switching based on experimental data and theoretical analysis. Both the position and conjugation of the introduced photoactive units have significant influence on the color and strength of the photochromism, and the simultaneous occurrence of photoinduced fluorescence change in the solid state is perfectly suited for surface-involved applications. The demonstrations of dual-mode signaling in photoswitchable patterning on a filter paper and anti-counterfeiting of an anti-falsification paper strongly highlight the unique advantage of these photochromic molecules with an aggregation-induced emission characteristic in various practical applications. This work proposes a general strategy to design photochromic molecules with AIE activity by introducing photoactive functionals into an AIEgen and demonstrates incomparable advantage in dual-mode signaling and multifunctional applications of these molecules.
Collapse
Affiliation(s)
- Sidan Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Shasha Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiajing Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Ping Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Riqing Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Huili Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hui Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
47
|
Reversible upconversion modulation in new photochromic SrBi2Nb2O9 based ceramics for optical storage and anti-counterfeiting applications. Ann Ital Chir 2020. [DOI: 10.1016/j.jeurceramsoc.2020.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Spiro-conjugated indenodiarylethenes: enabling steric-induced electronic tuning of photochromic and photoluminescent properties by spiro-conjugation. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9827-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Benitez-Martin C, Li S, Dominguez-Alfaro A, Najera F, Pérez-Inestrosa E, Pischel U, Andréasson J. Toward Two-Photon Absorbing Dyes with Unusually Potentiated Nonlinear Fluorescence Response. J Am Chem Soc 2020; 142:14854-14858. [PMID: 32799520 PMCID: PMC7498150 DOI: 10.1021/jacs.0c07377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The
combination of two two-photon-induced processes in a Förster
resonance energy transfer (FRET)-operated photochromic fluorene-dithienylethene
dyad lays the foundation for the observation of a quartic dependence
of the fluorescence signal on the excitation light intensity. While
this photophysical behavior is predicted for a four-photon absorbing
dye, the herein proposed approach opens the way to use two-photon
absorbing dyes, reaching the same performance. Hence, the spatial
resolution limit, being a critical parameter for applications in fluorescence
imaging or data storage with common two-photon absorbing dyes, is
dramatically improved.
Collapse
Affiliation(s)
- Carlos Benitez-Martin
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Universidad de Málaga-IBIMA, Departamento de Quı́mica Orgánica, Campus Teatinos s/n, E-29071 Málaga, Spain.,Centro Andaluz de Nanomedicina y Biotecnologı́a (BIONAND), Parque Tecnológico de Andalucı́a, C/Severo Ochoa 35, E-29590 Málaga, Spain
| | - Shiming Li
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Antonio Dominguez-Alfaro
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Francisco Najera
- Universidad de Málaga-IBIMA, Departamento de Quı́mica Orgánica, Campus Teatinos s/n, E-29071 Málaga, Spain.,Centro Andaluz de Nanomedicina y Biotecnologı́a (BIONAND), Parque Tecnológico de Andalucı́a, C/Severo Ochoa 35, E-29590 Málaga, Spain
| | - Ezequiel Pérez-Inestrosa
- Universidad de Málaga-IBIMA, Departamento de Quı́mica Orgánica, Campus Teatinos s/n, E-29071 Málaga, Spain.,Centro Andaluz de Nanomedicina y Biotecnologı́a (BIONAND), Parque Tecnológico de Andalucı́a, C/Severo Ochoa 35, E-29590 Málaga, Spain
| | - Uwe Pischel
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
50
|
Larsen CB, Farrow GA, Smith LD, Appleby MV, Chekulaev D, Weinstein JA, Wenger OS. Solvent-Mediated Activation/Deactivation of Photoinduced Electron-Transfer in a Molecular Dyad. Inorg Chem 2020; 59:10430-10438. [DOI: 10.1021/acs.inorgchem.0c00679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher B. Larsen
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland
| | - George A. Farrow
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Liam D. Smith
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Martin V. Appleby
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Julia A. Weinstein
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland
| |
Collapse
|