1
|
Interfacing microfluidics with information-rich detection systems for cells, bioparticles, and molecules. Anal Bioanal Chem 2022; 414:4575-4589. [PMID: 35389095 PMCID: PMC8987515 DOI: 10.1007/s00216-022-04043-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
The development of elegant and numerous microfluidic manipulations has enabled significant advances in the processing of small volume samples and the detection of minute amounts of biomaterials. Effective isolation of single cells in a defined volume as well as manipulations of complex bioparticle or biomolecule mixtures allows for the utilization of information-rich detection methods including mass spectrometry, electron microscopy imaging, and amplification/sequencing. The art and science of translating biosamples from microfluidic platforms to highly advanced, information-rich detection system is the focus of this review, where we term the translation between the microfluidics elements to the external world “off-chipping.” When presented with the challenge of presenting sub-nanoliter volumes of manipulated sample to a detection scheme, several delivery techniques have been developed for effective analysis. These techniques include spraying (electrospray, nano-electrospray, pneumatic), meniscus-defined volumes (droplets, plugs), constrained volumes (narrow channels, containers), and phase changes (deposition, freezing). Each technique has been proven effective in delivering highly defined samples from microfluidic systems to the detection elements. This review organizes and presents selective publications that illustrate the advancements of these delivery techniques with respect to the type of sample analyzed, while introducing each strategy and providing historical perspective. The publications highlighted in this review were chosen due to their significance and relevance in the development of their respective off-chip technique.
Collapse
|
2
|
Abdollahi-Aghdam A, Majidi MR, Veladi H, Omidi Y. SU8/glass microchip capillary electrophoresis integrated with Pt electrodes for separation and simultaneous detection of phenylephrine and acetaminophen. ACTA ACUST UNITED AC 2021; 11:263-269. [PMID: 34631488 PMCID: PMC8494256 DOI: 10.34172/bi.2021.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 11/25/2022]
Abstract
![]()
Introduction: A new microfluidic-based method with electrochemical detection was developed for the simultaneous quantification of acetaminophen (AP) and phenylephrine (PHE) pharmaceuticals in the human blood and pharmaceuticals (e.g. tablet and drop).
Methods: The separation was achieved on a SU8/glass microchip with a 100 µm Pt working electrode that was positioned out of the channel and 2-(N-morpholino) ethanesulfonic acid was used as a running buffer (pH 7, 10 mM). Home designed modulated high voltage power supply and dual time switcher was used for controlling the injection and separation of the analytes in the unpinched injection mode.
Results: The injection was carried out using +750 V for 7 seconds, and the separation and detection voltages were set at +1000 V and +0.9 V, respectively. Critical parameters such as detection potential, buffer concentration, injection, and separation voltage were studied in terms of their effects on the resolution, peak height, and migration times. For each analyte, the correlation coefficients were over 0.99 (n = 6). The developed microchip was able to detect AP and phenylephrine simultaneously with the limit of detection of 7.9 and 5.2 (µg/mL) respectively for PHE and AP and excellent linear range of 10-200 (µg/mL). The recovery of the drugs ranged from 96% to 103%, while the repeatability of the method through inter- and intra-day was lower than 7%.
Conclusion: The developed method offers several advantages, including easy sample pretreatment process, simplicity, very fast analysis compared to other typical chromatographic methods. Thus, the proposed microfluidic-based method is proposed to be used as a time- and cost-effective monitoring method for the analysis of AP and PHE.
Collapse
Affiliation(s)
- Abdollah Abdollahi-Aghdam
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hadi Veladi
- Microsystem Fabrication Lab., Faculty of Electric and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
3
|
Ha NS, de Raad M, Han LZ, Golini A, Petzold CJ, Northen TR. Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology. RSC Chem Biol 2021; 2:1331-1351. [PMID: 34704041 PMCID: PMC8496484 DOI: 10.1039/d1cb00112d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
High-throughput screening technologies are widely used for elucidating biological activities. These typically require trade-offs in assay specificity and sensitivity to achieve higher throughput. Microfluidic approaches enable rapid manipulation of small volumes and have found a wide range of applications in biotechnology providing improved control of reaction conditions, faster assays, and reduced reagent consumption. The integration of mass spectrometry with microfluidics has the potential to create high-throughput, sensitivity, and specificity assays. This review introduces the widely-used mass spectrometry ionization techniques that have been successfully integrated with microfluidics approaches such as continuous-flow system, microchip electrophoresis, droplet microfluidics, digital microfluidics, centrifugal microfluidics, and paper microfluidics. In addition, we discuss recent applications of microfluidics integrated with mass spectrometry in single-cell analysis, compound screening, and the study of microorganisms. Lastly, we provide future outlooks towards online coupling, improving the sensitivity and integration of multi-omics into a single platform.
Collapse
Affiliation(s)
- Noel S Ha
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Markus de Raad
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
| | - La Zhen Han
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Amber Golini
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Trent R Northen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| |
Collapse
|
4
|
He H, Tian M, Hu L, Yang L. Ultrasensitive determination of organotin compounds in plastic food packaging and edible oils by sheathless capillary electrophoresis-electrospray ionization-mass spectrometry. Analyst 2020; 145:2286-2296. [PMID: 32003368 DOI: 10.1039/c9an02331c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The determination of trace-amount organotins in plastic food packaging materials is of great significance in food safety. However, due to the complexity of organotins and sample treatment processes, it is still a challenging task. Here, we report a method for the sensitive and simultaneous determination of organotins in plastic food packaging materials and edible oils, by utilizing sheathless capillary electrophoresis-electrospray ionization-mass spectrometry. The method of sample pretreatment with ultrasonic extraction and solid phase extraction is used to eliminate interference. The results showed low limits of detection (LODs) of 2 pg mL-1-50 pg mL-1 and excellent inter/intra-day repeatability. Good average recoveries in the range of 80.27% to 108.52% were obtained at three spiked concentrations, with a relative standard deviation less than 8.71%. The successful simultaneous determination of the target analytes will pave the way for further assessment of contamination and migration behaviour of organotins from packaging materials to food, which is of great significance for evaluating and controlling food safety.
Collapse
Affiliation(s)
- Huiyu He
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China.
| | | | | | | |
Collapse
|
5
|
Ardeleanu MN, Popescu IN, Udroiu IN, Diaconu EM, Mihai S, Lungu E, Alhalaili B, Vidu R. Novel PDMS-Based Sensor System for MPWM Measurements of Picoliter Volumes in Microfluidic Devices. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4886. [PMID: 31717452 PMCID: PMC6891790 DOI: 10.3390/s19224886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023]
Abstract
In order for automatic microinjection to serve biomedical and genetic research, we have designed and manufactured a PDMS-based sensor with a circular section channel using the microwire molding technique. For the very precise control of microfluidic transport, we developed a microfluidic pulse width modulation system (MPWM) for automatic microinjections at a picoliter level. By adding a computer-aided detection and tracking of fluid-specific elements in the microfluidic circuit, the PDMS microchannel sensor became the basic element in the automatic control of the microinjection sensor. With the PDMS microinjection sensor, we precise measured microfluidic volumes under visual detection, assisted by very precise computer equipment (with precision below 1 μm) based on image processing. The calibration of the MPWM system was performed to increase the reproducibility of the results and to detect and measure microfluidic volumes. The novel PDMS-based sensor system for MPWM measurements of microfluidic volumes contributes to the advancement of intelligent control methods and techniques, which could lead to new developments in the design, control, and in applications of real-time intelligent sensor system control.
Collapse
Affiliation(s)
- Mihăiţă Nicolae Ardeleanu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 13 Aleea Sinaia Street, Targoviste 130004 Romania;
- S.C. Celteh Mezotronic S.R.L., Calea Câmpulung Street, No. 6A, Targoviste, 130092, Romania
| | - Ileana Nicoleta Popescu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 13 Aleea Sinaia Street, Targoviste 130004 Romania;
| | - Iulian Nicolae Udroiu
- Faculty of Electrical Engineering, Electronics and Information Technology, Valahia University of Targoviste, Targoviste 130004, Romania; (I.N.U.); (E.M.D.)
| | - Emil Mihai Diaconu
- Faculty of Electrical Engineering, Electronics and Information Technology, Valahia University of Targoviste, Targoviste 130004, Romania; (I.N.U.); (E.M.D.)
| | - Simona Mihai
- The Scientific and Technological Multidisciplinary Research Institute (ICSTM-UVT), Valahia University of Targoviste, Targoviste 130004, Romania;
| | - Emil Lungu
- Faculty of Sciences and Arts, Department of Mathematics, Valahia University of Targoviste, Targoviste 130004, Romania;
| | - Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Ruxandra Vidu
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616 USA
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, Bucharest 060042, Romania
| |
Collapse
|
6
|
Tähkä SM, Bonabi A, Jokinen VP, Sikanen TM. Aqueous and non-aqueous microchip electrophoresis with on-chip electrospray ionization mass spectrometry on replica-molded thiol-ene microfluidic devices. J Chromatogr A 2017; 1496:150-156. [PMID: 28347516 DOI: 10.1016/j.chroma.2017.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022]
Abstract
This work describes aqueous and non-aqueous capillary electrophoresis on thiol-ene-based microfluidic separation devices that feature fully integrated and sharp electrospray ionization (ESI) emitters. The chip fabrication is based on simple and low-cost replica-molding of thiol-ene polymers under standard laboratory conditions. The mechanical rigidity and the stability of the materials against organic solvents, acids and bases could be tuned by adjusting the respective stoichiometric ratio of the thiol and allyl ("ene") monomers, which allowed us to carry out electrophoresis separation in both aqueous and non-aqueous (methanol- and ethanol-based) background electrolytes. The stability of the ESI signal was generally ≤10% RSD for all emitters. The respective migration time repeatabilities in aqueous and non-aqueous background electrolytes were below 3 and 14% RSD (n=4-6, with internal standard). The analytical performance of the developed thiol-ene microdevices was shown in mass spectrometry (MS) based analysis of peptides, proteins, and small molecules. The theoretical plate numbers were the highest (1.2-2.4×104m-1) in ethanol-based background electrolytes. The ionization efficiency also increased under non-aqueous conditions compared to aqueous background electrolytes. The results show that replica-molding of thiol-enes is a feasible approach for producing ESI microdevices that perform in a stable manner in both aqueous and non-aqueous electrophoresis.
Collapse
Affiliation(s)
- Sari M Tähkä
- Faculty of Pharmacy, Drug Research Programme, Viikinkaari 5E, FI-00014, University of Helsinki, Helsinki, Finland.
| | - Ashkan Bonabi
- Faculty of Pharmacy, Drug Research Programme, Viikinkaari 5E, FI-00014, University of Helsinki, Helsinki, Finland.
| | - Ville P Jokinen
- Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, Tietotie 3, FI-00076 Aalto, Espoo, Finland.
| | - Tiina M Sikanen
- Faculty of Pharmacy, Drug Research Programme, Viikinkaari 5E, FI-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Yen GS, Edgar JS, Yoon SH, Huang Y, Heron SR, Chiu DT, Goodlett DR. Polydimethylsiloxane microchannel coupled to surface acoustic wave nebulization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1096-1100. [PMID: 27003047 DOI: 10.1002/rcm.7531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/19/2016] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Gloria S Yen
- Deurion LLC, Seattle, 3518 Frement Avenue #503, WA, 98103, USA
| | - J Scott Edgar
- University of Washington, Department of Chemistry, Seattle, WA, 98195, USA
| | - Sung Hwan Yoon
- University of Maryland, Department of Pharmaceutical Sciences, 20 N Pine Street, Baltimore, MD, 21201, USA
| | - Yue Huang
- Deurion LLC, Seattle, 3518 Frement Avenue #503, WA, 98103, USA
| | - Scott R Heron
- Deurion LLC, Seattle, 3518 Frement Avenue #503, WA, 98103, USA
| | - Daniel T Chiu
- University of Washington, Department of Chemistry, Seattle, WA, 98195, USA
| | - David R Goodlett
- Deurion LLC, Seattle, 3518 Frement Avenue #503, WA, 98103, USA
- University of Maryland, Department of Pharmaceutical Sciences, 20 N Pine Street, Baltimore, MD, 21201, USA
| |
Collapse
|
8
|
Three-Dimensional Electro-Sonic Flow Focusing Ionization Microfluidic Chip for Mass Spectrometry. MICROMACHINES 2015. [DOI: 10.3390/mi6121463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Feng X, Liu BF, Li J, Liu X. Advances in coupling microfluidic chips to mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:535-57. [PMID: 24399782 DOI: 10.1002/mas.21417] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 05/26/2023]
Abstract
Microfluidic technology has shown advantages of low sample consumption, reduced analysis time, high throughput, and potential for integration and automation. Coupling microfluidic chips to mass spectrometry (Chip-MS) can greatly improve the overall analytical performance of MS-based approaches and expand their potential applications. In this article, we review the advances of Chip-MS in the past decade, covering innovations in microchip fabrication, microchips coupled to electrospray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-MS. Development of integrated microfluidic systems for automated MS analysis will be further documented, as well as recent applications of Chip-MS in proteomics, metabolomics, cell analysis, and clinical diagnosis.
Collapse
MESH Headings
- Animals
- Chromatography, Liquid/instrumentation
- Chromatography, Liquid/methods
- Electrophoresis, Microchip/instrumentation
- Electrophoresis, Microchip/methods
- Equipment Design
- Humans
- Lab-On-A-Chip Devices
- Lipids/analysis
- Metabolomics/instrumentation
- Metabolomics/methods
- Polysaccharides/analysis
- Proteins/analysis
- Proteomics/instrumentation
- Proteomics/methods
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianjun Li
- Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
10
|
Qian X, Xu J, Yu C, Chen Y, Yu Q, Ni K, Wang X. A reliable and simple method for fabricating a poly(dimethylsiloxane) electrospray ionization chip with a corner-integrated emitter. SENSORS 2015; 15:8931-44. [PMID: 25894936 PMCID: PMC4431197 DOI: 10.3390/s150408931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/18/2023]
Abstract
Monolithically integrated emitters have been increasingly applied to microfluidic devices that are coupled to mass spectrometers (MS) as electrospray ionization sources (ESI). A new method was developed to fabricate a duplicable structure which integrated the emitter into a poly(dimethylsiloxane) chip corner. Two photoresist layers containing a raised base which guaranteed the precise integration of the electrospray tip emitter and ensured that the cutting out of the tip exerted no influence even during repeated prototyping were used to ease the operation of the process. Highly stable ESI-MS performance was obtained and the results were compared with those of a commercial fused-silica capillary source. Furthermore, chip-to-chip and run-to-run results indicated both reliability and reproducibility during repeated fabrication. These results reveal that the proposed chip can provide an ideal ion source for MS across many applications, especially with the perspective to be widely used in portable MS during on-site analysis.
Collapse
Affiliation(s)
- Xiang Qian
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Jie Xu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Cilong Yu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Yan Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Quan Yu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Kai Ni
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Xiaohao Wang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
11
|
Chu J, Koudriavtsev V, Hjort K, Dahlin AP. Fluorescence imaging of macromolecule transport in high molecular weight cut-off microdialysis. Anal Bioanal Chem 2014; 406:7601-9. [PMID: 25286875 DOI: 10.1007/s00216-014-8192-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/29/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
Abstract
When microdialysis (MD) membrane exceeds molecular weight cut-off (MWCO) of 100 kDa, the fluid mechanics are in the ultrafiltration regime. Consequently, fluidic mass transport of macromolecules in the perfusate over the membrane may reduce the biological relevance of the sampling and cause an inflammatory response in the test subject. Therefore, a method to investigate the molecular transport of high MWCO MD is presented. An in vitro test chamber was fabricated to facilitate the fluorescent imaging of the MD sampling process, using fluoresceinylisothiocyanate (FITC) dextran and fluorescence microscopy. Qualitative studies on dextran behavior inside and outside the membrane were performed. Semiquantitative results showed clear dextran leakage from both 40 and 250 kDa dextran when 100 kDa MWCO membranes were used. Dextran 40 kDa leaked out with an order of magnitude higher concentration and the leakage pattern resembled more of a convective flow pattern compared with dextran 250 kDa, where the leakage pattern was more diffusion based. No leakage was observed when dextran 500 kDa was used as a colloid osmotic agent. The results in this study suggest that fluorescence imaging could be used as a method for qualitative and semiquantitative molecular transport and fluid dynamics studies of MD membranes and other hollow fiber catheter membranes.
Collapse
Affiliation(s)
- Jiangtao Chu
- Department of Engineering Sciences, Uppsala University, Box 534, 751 21, Uppsala, Sweden
| | | | | | | |
Collapse
|
12
|
Potential of polyE-323 coated capillaries for capillary electrophoresis of lipids. J Chromatogr A 2013; 1317:193-8. [DOI: 10.1016/j.chroma.2013.08.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/14/2013] [Accepted: 08/14/2013] [Indexed: 01/05/2023]
|
13
|
Recent developments in microfluidic chip-based separation devices coupled to MS for bioanalysis. Bioanalysis 2013; 5:2567-80. [DOI: 10.4155/bio.13.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, the development of microfluidic chip separation devices coupled to MS has dramatically increased for high-throughput bioanalysis. In this review, advances in different types of microfluidic chip separation devices, such as electrophoresis- and LC-based microchips, as well as 2D design of microfluidic chip-based separation devices will be discussed. In addition, the utilization of chip-based separation devices coupled to MS for analyzing peptides/proteins, glycans, drug metabolites and biomarkers for various bioanalytical applications will be evaluated.
Collapse
|
14
|
Wang CW, Her GR. Sheathless capillary electrophoresis electrospray ionization-mass spectrometry interface based on poly(dimethylsiloxane) membrane emitter and thin conducting liquid film. Electrophoresis 2013; 34:2538-45. [DOI: 10.1002/elps.201300069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Che-Wei Wang
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Guor-Rong Her
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| |
Collapse
|
15
|
Sarg B, Faserl K, Kremser L, Halfinger B, Sebastiano R, Lindner HH. Comparing and combining capillary electrophoresis electrospray ionization mass spectrometry and nano-liquid chromatography electrospray ionization mass spectrometry for the characterization of post-translationally modified histones. Mol Cell Proteomics 2013; 12:2640-56. [PMID: 23720761 DOI: 10.1074/mcp.m112.024109] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We present the first comprehensive capillary electrophoresis electrospray ionization mass spectrometry (CESI-MS) analysis of post-translational modifications derived from H1 and core histones. Using a capillary electrophoresis system equipped with a sheathless high-sensitivity porous sprayer and nano-liquid chromatography electrospray ionization mass spectrometry (nano-LC-ESI-MS) as two complementary techniques, we characterized H1 histones isolated from rat testis. Without any pre-separation of the perchloric acid extraction, a total of 70 different modified peptides, including 50 phosphopeptides, were identified in the rat linker histones H1.0, H1a-H1e, and H1t. Out of the 70 modified H1 histone peptides, 27 peptides could be identified with CESI-MS only, and 11 solely with LC-ESI-MS. Immobilized metal-affinity chromatography enrichment prior to MS analysis yielded a total of 55 phosphopeptides; 22 of these peptides could be identified only by CESI-MS, and 19 only by LC-ESI-MS, showing the complementarity of the two techniques. We mapped 42 H1 modification sites, including 31 phosphorylation sites, of which 8 were novel sites. For the analysis of core histones, we chose a different strategy. In a first step, the sulfuric-acid-extracted core histones were pre-separated using reverse-phase high-performance liquid chromatography. Individual rat testis core histone fractions obtained in this way were digested and analyzed via bottom-up CESI-MS. This approach yielded the identification of 42 different modification sites including acetylation (lysine and N(α)-terminal); mono-, di-, and trimethylation; and phosphorylation. When we applied CESI-MS for the analysis of intact core histone subtypes from butyrate-treated mouse tumor cells, we were able to rapidly detect their degree of modification, and we found this method very useful for the separation of isobaric trimethyl and acetyl modifications. Taken together, our results highlight the need for additional techniques for the comprehensive analysis of post-translational modifications. CESI-MS is a promising new proteomics tool as demonstrated by this, the first comprehensive analysis of histone modifications, using rat testis as an example.
Collapse
Affiliation(s)
- Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Bonvin G, Schappler J, Rudaz S. Capillary electrophoresis–electrospray ionization-mass spectrometry interfaces: Fundamental concepts and technical developments. J Chromatogr A 2012; 1267:17-31. [DOI: 10.1016/j.chroma.2012.07.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 01/24/2023]
|
17
|
Tie C, Zhang DW, Chen HX, Song SL, Zhang XX. Study of the electrical connection mechanism of sheathless interface for capillary electrophoresis-electrospray ionization-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1429-1434. [PMID: 23147818 DOI: 10.1002/jms.3077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With the combination of high separation ability of capillary electrophoresis (CE) and strong identification ability of mass spectrometry (MS), CE/MS is becoming a powerful tool for polar and ionic analytes analysis. Different interfaces have been developed to enhance the sensitivity and reliability since the first introduction of CE/MS in 1987. A sheathless porous interface based on a new ions transferring electric connection technique was reported to be with high sensitivity and reliability. In this work, a series of optical and electrochemical experiments were designed to study the electric connection process. The results indicated that closing CE electrical circuit and applying MS spray voltage were achieved by the small ions transferring through the interface porous wall. The new electric connection method significantly enhanced the sensitivity, resolution and stability of the CE/MS analysis. The interface was applied in CE/MS detection of morphine and 6-monoacetylmorphine in urine sample and showed an equal sensitivity to LC/MS. With the significant improvement of sensitivity and stability, the CE/MS with the new interface showed strong potential for the determination of low abundance analytes.
Collapse
Affiliation(s)
- Cai Tie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Biochemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Reginskaya I, Stark AK, Schilling M, Janasek D, Franzke J. Measured Effects of Various Electrolyte and Capillary Properties in Dielectric Barrier Electrospray Ionization: Development of a Comprehensive Model. Anal Chem 2012; 84:9015-24. [DOI: 10.1021/ac301027z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina Reginskaya
- Leibniz-Institut für Analytische Wissenschaften − ISAS − e.V., Otto-Hahn-Str.
6b, 44227 Dortmund, Germany
| | - Ann-Kathrin Stark
- Leibniz-Institut für Analytische Wissenschaften − ISAS − e.V., Otto-Hahn-Str.
6b, 44227 Dortmund, Germany
| | - Michael Schilling
- Leibniz-Institut für Analytische Wissenschaften − ISAS − e.V., Otto-Hahn-Str.
6b, 44227 Dortmund, Germany
| | - Dirk Janasek
- Leibniz-Institut für Analytische Wissenschaften − ISAS − e.V., Otto-Hahn-Str.
6b, 44227 Dortmund, Germany
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften − ISAS − e.V., Otto-Hahn-Str.
6b, 44227 Dortmund, Germany
| |
Collapse
|
19
|
AL-Othman ZA, Ali I. NANO CAPILLARY ELECTROPHORESIS IN MICROCHIPS: A NEED OF THE PRESENT CENTURY. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.566031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zeid A. AL-Othman
- a Department of Chemistry, College of Science , King Saud University , Riyadh, Kingdom of Saudi Arabia
| | - Imran Ali
- b Department of Chemistry , Jamia Millia Islamia, (Central University) , New Delhi, India
| |
Collapse
|
20
|
Sun X, Kelly RT, Tang K, Smith RD. Membrane-based emitter for coupling microfluidics with ultrasensitive nanoelectrospray ionization-mass spectrometry. Anal Chem 2011; 83:5797-803. [PMID: 21657269 PMCID: PMC3139426 DOI: 10.1021/ac200960h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high-performance nanoelectrospray ionization mass spectrometry has been fabricated and evaluated. The ∼100-μm-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter enables highly stable electrosprays at flow rates as low as 10 nL/min and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction and provides excellent stability, reproducibility, and sensitivity as well as compatibility with multilayer soft lithography.
Collapse
Affiliation(s)
- Xuefei Sun
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
| | - Ryan T. Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
| |
Collapse
|
21
|
Sun X, Kelly RT, Danielson WF, Agrawal N, Tang K, Smith RD. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization. Electrophoresis 2011; 32:1610-8. [PMID: 21520147 DOI: 10.1002/elps.201000522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/01/2010] [Accepted: 12/29/2010] [Indexed: 11/06/2022]
Abstract
A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip CE separations. The PDMS devices used for the evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~ 100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure, and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to > 2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 10³ theoretical plates for the ~2.4-cm-long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, little sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations for multiplexing CE separations and for sample-limited bioanalyses are discussed.
Collapse
Affiliation(s)
- Xuefei Sun
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Electronic coupling and scaling effects during dielectric barrier electrospray ionization. Anal Bioanal Chem 2011; 400:561-9. [DOI: 10.1007/s00216-011-4780-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/28/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
|
23
|
Kitagawa F, Otsuka K. Recent progress in microchip electrophoresis-mass spectrometry. J Pharm Biomed Anal 2010; 55:668-78. [PMID: 21130595 DOI: 10.1016/j.jpba.2010.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 01/30/2023]
Abstract
This review highlights the methodological and instrumental developments in microchip electrophoresis (MCE)-mass spectrometry (MS) from 1997. In MCE-MS, the development of ionization interface is one of the most important issues to realize highly sensitive detection and high separation efficiency. Among several interfaces, electrospray ionization (ESI) has been mainly employed to MCE-MS since a simple structure of the ESI interface is suitable for coupling with the microchips. Although the number of publications is still limited, laser desorption ionization (LDI) interface has also been developed for MCE-MS. The characteristics of the ESI and LDI interfaces applied to the electrophoresis microchips are presented in this review. The scope of applications in MCE-MS covers mainly biogenic compounds such as bioactive amines, peptides, tryptic digests and proteins. This review provides a comprehensive table listing the applications in MCE-MS.
Collapse
Affiliation(s)
- Fumihiko Kitagawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | |
Collapse
|
24
|
Haselberg R, Ratnayake CK, de Jong GJ, Somsen GW. Performance of a sheathless porous tip sprayer for capillary electrophoresis–electrospray ionization-mass spectrometry of intact proteins. J Chromatogr A 2010; 1217:7605-11. [DOI: 10.1016/j.chroma.2010.10.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/26/2010] [Accepted: 10/04/2010] [Indexed: 11/29/2022]
|
25
|
Sun X, Kelly RT, Tang K, Smith RD. Ultrasensitive nanoelectrospray ionization-mass spectrometry using poly(dimethylsiloxane) microchips with monolithically integrated emitters. Analyst 2010; 135:2296-302. [PMID: 20617264 DOI: 10.1039/c0an00253d] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) is a widely used substrate for microfluidic devices, as it enables facile fabrication and has other distinctive properties. However, for applications requiring highly sensitive nanoelectrospray ionization mass spectrometry (nanoESI-MS) detection, the use of PDMS microdevices has been hindered by a large chemical background in the mass spectra that originates from the leaching of uncross-linked oligomers and other contaminants from the substrate. A more general challenge is that microfluidic devices containing monolithically integrated electrospray emitters are frequently unable to operate stably in the nanoflow regime where the best sensitivity is achieved. In this report, we extracted the contaminants from PDMS substrates using a series of solvents, eliminating the background observed when untreated PDMS microchips are used for nanoESI-MS, such that peptides at concentrations of 1 nM were readily detected. Optimization of the integrated emitter geometry enabled stable operation at flow rates as low as 10 nL min(-1).
Collapse
Affiliation(s)
- Xuefei Sun
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
26
|
Stark AK, Schilling M, Janasek D, Franzke J. Characterization of dielectric barrier electrospray ionization for mass spectrometric detection. Anal Bioanal Chem 2010; 397:1767-72. [DOI: 10.1007/s00216-010-3749-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 11/29/2022]
|
27
|
Sikanen T, Franssila S, Kauppila TJ, Kostiainen R, Kotiaho T, Ketola RA. Microchip technology in mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:351-391. [PMID: 19514079 DOI: 10.1002/mas.20238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microfabrication of analytical devices is currently of growing interest and many microfabricated instruments have also entered the field of mass spectrometry (MS). Various (atmospheric pressure) ion sources as well as mass analyzers have been developed exploiting microfabrication techniques. The most common approach thus far has been the miniaturization of the electrospray ion source and its integration with various separation and sampling units. Other ionization techniques, mainly atmospheric pressure chemical ionization and photoionization, have also been subject to miniaturization, though they have not attracted as much attention. Likewise, all common types of mass analyzers have been realized by microfabrication and, in most cases, successfully applied to MS analysis in conjunction with on-chip ionization. This review summarizes the latest achievements in the field of microfabricated ion sources and mass analyzers. Representative applications are reviewed focusing on the development of fully microfabricated systems where ion sources or analyzers are integrated with microfluidic separation devices or microfabricated pums and detectors, respectively. Also the main microfabrication methods, with their possibilities and constraints, are briefly discussed together with the most commonly used materials.
Collapse
Affiliation(s)
- Tiina Sikanen
- Faculty of Pharmacy, Division of Pharmaceutical Chemistry, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
28
|
Bindila L, Peter-Katalinić J. Chip-mass spectrometry for glycomic studies. MASS SPECTROMETRY REVIEWS 2009; 28:223-253. [PMID: 19145581 DOI: 10.1002/mas.20197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The introduction of micro- and nanochip front end technologies for electrospray mass spectrometry addressed a major challenge in carbohydrate analysis: high sensitivity structural determination and heterogeneity assessment in high dynamic range mixtures of biological origin. Chip-enhanced electrospray ionization was demonstrated to provide reproducible performance irrespective of the type of carbohydrate, while the amenability of chip systems for coupling with different mass spectrometers greatly advance the chip/MS technique as a versatile key tool in glycomic studies. A more accurate representation of the glycan repertoire to include novel biologically-relevant information was achieved in different biological sources, asserting this technique as a valuable tool in glycan biomarker discovery and monitoring. Additionally, the integration of various analytical functions onto chip devices and direct hyphenation to MS proved its potential for glycan analysis during the recent years, whereby a new analytical tool is on the verge of maturation: lab-on-chip MS glycomics. The achievements until early beginning of 2007 on the implementation of chip- and functional integrated chip/MS in systems glycobiology studies are reviewed here.
Collapse
Affiliation(s)
- Laura Bindila
- Institute for Medical Physics and Biophysics, University of Münster, Robert Koch Str. 31, 48149 Münster, Germany.
| | | |
Collapse
|
29
|
Maxwell EJ, Chen DD. Twenty years of interface development for capillary electrophoresis–electrospray ionization–mass spectrometry. Anal Chim Acta 2008; 627:25-33. [DOI: 10.1016/j.aca.2008.06.034] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/13/2008] [Accepted: 06/19/2008] [Indexed: 11/15/2022]
|
30
|
Ali I, Aboul-Enein HY, Gupta VK. Microchip-Based Nano Chromatography and Nano Capillary Electrophoresis in Genomics and Proteomics. Chromatographia 2008. [DOI: 10.1365/s10337-008-0813-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Sikanen T, Tuomikoski S, Ketola RA, Kostiainen R, Franssila S, Kotiaho T. Analytical characterization of microfabricated SU-8 emitters for electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:726-735. [PMID: 18205241 DOI: 10.1002/jms.1368] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a detailed optimization and characterization of the analytical performance of SU-8-based emitters for electrospray ionization mass spectrometry (ESI/MS). The improved SU-8 fabrication process presented here enhances patterning accuracy and reduces the time and cost of fabrication. All emitters are freestanding and enable sample delivery by both pressure-driven and spontaneous flows. The optimized emitter design incorporates a sharp, double-cantilevered tip implemented to the outlet of an SU-8 microchannel and provides highly sensitive ESI/MS detection. Moreover, the optimized design allows the use of relatively large microchannel dimensions (up to 200 x 50 microm(2), w x h) without sacrificing the detection sensitivity. This is advantageous with a view of preventing emitter clogging and enabling reproducible analysis. The measured limits of detection for the optimized emitter design were 1 nM for verapamil and 4 nM for Glu-fibrinopeptide B with good quantitative linearities between 1 nM and 10 microM (R(2) = 0.9998) for verapamil and between 4 nM and 3 microM (R(2) = 0.9992) for Glu-fibrinopeptide B. The measured tip-to-tip repeatability for signal intensity was 14% relative standard deviation (RSD) (n = 3; 5 microM verapamil) and run-to-run repeatability 4-11% RSD (n = 4; 5 microM verapamil) for all individual emitters tested. In addition, long-term stability of < 2% RSD was maintained for timescales of 30 min even under free flow conditions. SU-8 polymer was also shown to be chemically stable against most of the tested electrospray solvents.
Collapse
Affiliation(s)
- Tiina Sikanen
- Laboratory of Analytical Chemistry, Department of Chemistry, FI-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Freire SLS, Yang H, Wheeler AR. A practical interface for microfluidics and nanoelectrospray mass spectrometry. Electrophoresis 2008; 29:1836-43. [DOI: 10.1002/elps.200700661] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Herrero M, Ibañez E, Cifuentes A. Capillary electrophoresis-electrospray-mass spectrometry in peptide analysis and peptidomics. Electrophoresis 2008; 29:2148-60. [DOI: 10.1002/elps.200700404] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Schilling M, Janasek D, Franzke J. Electrospray-ionization driven by dielectric polarization. Anal Bioanal Chem 2008; 391:555-61. [DOI: 10.1007/s00216-008-2027-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/31/2008] [Accepted: 02/25/2008] [Indexed: 12/01/2022]
|
35
|
Gaspar A, Englmann M, Fekete A, Harir M, Schmitt-Kopplin P. Trends in CE-MS 2005–2006. Electrophoresis 2008; 29:66-79. [DOI: 10.1002/elps.200700721] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Sikanen T, Tuomikoski S, Ketola RA, Kostiainen R, Franssila S, Kotiaho T. Fully Microfabricated and Integrated SU-8-Based Capillary Electrophoresis-Electrospray Ionization Microchips for Mass Spectrometry. Anal Chem 2007; 79:9135-44. [DOI: 10.1021/ac071531+] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Okada H, Kaji N, Tokeshi M, Baba Y. Channel wall coating on a poly-(methyl methacrylate) CE microchip by thermal immobilization of a cellulose derivative for size-based protein separation. Electrophoresis 2007; 28:4582-9. [DOI: 10.1002/elps.200700105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Koster S, Verpoorte E. A decade of microfluidic analysis coupled with electrospray mass spectrometry: an overview. LAB ON A CHIP 2007; 7:1394-1412. [PMID: 17960264 DOI: 10.1039/b709706a] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review presents a thorough overview covering the period 1997-2006 of microfluidic chips coupled to mass spectrometry through an electrospray interface. The different types of fabrication processes and materials used to fabricate these chips throughout this period are discussed. Three 'eras' of interfaces are clearly distinguished. The earliest approach involves spraying from the edge of a chip, while later devices either incorporate a standard fused-silica emitter inserted into the device or fully integrated emitters formed during chip fabrication. A summary of microfluidic-electrospray devices for performing separations and sample pretreatment steps before sample introduction into the mass spectrometer is also presented.
Collapse
Affiliation(s)
- Sander Koster
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
| | | |
Collapse
|
39
|
Zamfir AD. Recent advances in sheathless interfacing of capillary electrophoresis and electrospray ionization mass spectrometry. J Chromatogr A 2007; 1159:2-13. [PMID: 17428492 DOI: 10.1016/j.chroma.2007.03.115] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/20/2007] [Accepted: 03/29/2007] [Indexed: 01/13/2023]
Abstract
On line sheathless capillary electrophoresis (CE)-electrospray ionization (ESI) mass spectrometry is developing as a powerful method in bioanalytics as it provides high resolution, sensitivity, relatively short analysis times, and amenability to a wide class of compounds. However, unlike the popular nano liquid chromatography (nano LC) or sheath-flow CE/ESI-MS, the sheathless coupling lacks standardized designs and protocols. For this reason, sheathless CE/ESI is a subject of conceptual and technical upgrading more than any other liquid-based separation method hyphenated to MS. Here, recent innovations in sheathless CE/ESI-MS interfacing are gathered in a survey covering the 2005/2006 period. In the first part of the review, the current concepts and methods for in-laboratory production of sturdy designs based on either conductive emitters or electrodeless interfaces are described. The second part is dedicated to microchip CE platforms with externally connected emitters for sheathless coupling to ESI-MS and advanced microfluidic devices integrating CE and sheathless electrospray in a single chip substrate. The advantages, limitations and feasibility for certain applications of all these systems as well as the perspectives for their performance improvement are concurrently assessed.
Collapse
Affiliation(s)
- Alina D Zamfir
- Department of Chemistry and Biology, University of Arad, Revolutiei Blvd. 1, RO-310139 Arad, Romania.
| |
Collapse
|
40
|
Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MA, Cifuentes A. Sample treatments prior to capillary electrophoresis-mass spectrometry. J Chromatogr A 2006; 1153:214-26. [PMID: 17098242 DOI: 10.1016/j.chroma.2006.10.070] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/13/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
Sample preparation is a crucial part of chemical analysis and in most cases can become the bottleneck of the whole analytical process. Its adequacy is a key factor in determining the success of the analysis and, therefore, careful selection and optimization of the parameters controlling sample treatment should be carried out. This work revises the different strategies that have been developed for sample preparation prior to capillary electrophoresis-mass spectrometry (CE-MS). Namely the present work presents an exhaustive and critical revision of the different samples treatments used together with on-line CE-MS including works published from January 2000 to July 2006.
Collapse
Affiliation(s)
- Javier Hernández-Borges
- Department of Analytical Chemistry, Nutrition and Food Science, University of La Laguna, Avda. Astrofísico Fco. Sánchez s/n, 38071 La Laguna, Tenerife, Spain.
| | | | | | | |
Collapse
|
41
|
Abstract
Proteomics has emerged as the next great scientific challenge in the post-genome era. But even the most basic form of proteomics, proteome profiling, i.e., identifying all of the proteins expressed in a given sample, has proven to be a demanding task. The proteome presents unique analytical challenges, including significant molecular diversity, an extremely wide concentration range, and a tendency to adsorb to solid surfaces. Microfluidics has been touted as being a useful tool for developing new methods to solve complex analytical challenges, and, as such, seems a natural fit for application to proteome profiling. In this review, we summarize the recent progress in the field of microfluidics in four key areas related to this application: chemical processing, sample preconcentration and cleanup, chemical separations, and interfaces with mass spectrometry. We identify the bright spots and challenges for the marriage of microfluidics and proteomics, and speculate on the outlook for progress.
Collapse
Affiliation(s)
- Sergio L S Freire
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | | |
Collapse
|
42
|
Puerta A, Axén J, Söderberg L, Bergquist J. Novel adsorptive polyamine coating for enhanced capillary electrophoresis of basic proteins and peptides. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 838:113-21. [PMID: 16714157 DOI: 10.1016/j.jchromb.2006.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/06/2006] [Accepted: 04/16/2006] [Indexed: 11/15/2022]
Abstract
In capillary electrophoresis (CE), the anionic and hydrophobic nature of the fused-silica capillary surface has long been known to present a problem in protein and peptide analysis. The use of capillary surface coating is one of the approaches to avoid the analyte-wall interactions. In this study, a new polymer, poly-LA 313, has been synthesized, physico-chemical characterized, and applied as polyamine coating for CE separations. The coating process is highly reproducible and provides fast separations of peptides and proteins in a few minutes and with high efficiency. The physically adsorbed polymer gives rise to a durable coating in the range of pH 2-10, in the presence of organic modifiers (acetonitrile and methanol) and with complex biological samples. The efficiency of the new cationic polymer was also tested performing protein and peptide separations with capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS).
Collapse
Affiliation(s)
- Angel Puerta
- Department of Physical and Analytical Chemistry, Analytical Chemistry, Biomedical Centre, Uppsala University, PO Box 599, SE-75124 Uppsala, Sweden
| | | | | | | |
Collapse
|
43
|
Lindberg P, Dahlin AP, Bergström SK, Thorslund S, Andrén PE, Nikolajeff F, Bergquist J. Sample pretreatment on a microchip with an integrated electrospray emitter. Electrophoresis 2006; 27:2075-82. [PMID: 16645978 DOI: 10.1002/elps.200500763] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study presents a microbead-packed PDMS microchip with an integrated electrospray emitter for sample pretreatment prior to sheathless ESI-MS. We prove the concept of analytical functions integrated onto a cm-sized area of a single bulk material. The microchip consists of two PDMS substrates replicated from SU-8 fabricated silicon wafer masters, bonded together after oxidation by corona discharge treatment. The channel within the microchip contains a grid structure that was used to trap 5 microm hypercross-linked polystyrene beads. The beads acted as a medium for sample desalting and enrichment. Electrical contact for the sheathless ESI process was achieved by coating the integrated emitter with conductive graphite powder after applying a thin layer of PDMS as glue. The coating as well as the bond of the PDMS structures showed excellent durability. A continuous spray was obtained from the microchip for over 800 h in a long-term electrospray stability experiment. Desalting and enrichment of neuropeptides from a physiological salt solution was successful by loading the sample onto the packed beads, followed by a washing and an eluting step. The results were obtained and evaluated using a TOF MS. An LOD of approximately 20 fmol (loaded onto the beads) for angiotensin II was obtained from a sample of neuropeptides dissolved in physiological salt solution.
Collapse
Affiliation(s)
- Peter Lindberg
- Department of Analytical Chemistry, Uppsala University, Sweden
| | | | | | | | | | | | | |
Collapse
|
44
|
Dabek-Zlotorzynska E, Celo V. Recent advances in capillary electrophoresis and capillary electrochromatography of pollutants. Electrophoresis 2006; 27:304-22. [PMID: 16315167 DOI: 10.1002/elps.200500547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in the CE and CEC separation, detection, and sample preparation methodologies applied to the determination of a variety of compounds having current or potential environmental relevance have been overviewed. The reviewed literature has illustrated the wide range of CE applications, indicating the continuing interest in CE and CEC in the environmental field.
Collapse
Affiliation(s)
- Ewa Dabek-Zlotorzynska
- Analysis and Air Quality Division, Environmental Technology Centre, Environment Canada, Ottawa, Ontario, Canada.
| | | |
Collapse
|
45
|
Abstract
This review article with 304 references describes recent developments in CE of proteins, and covers the two years since the previous review (Hutterer, K., Dolník, V., Electrophoresis 2003, 24, 3998-4012) through Spring 2005. It covers topics related to CE of proteins, including modeling of the electrophoretic migration of proteins, sample pretreatment, wall coatings, improving separation, various forms of detection, special electrophoretic techniques such as affinity CE, CIEF, and applications of CE to the analysis of proteins in real-world samples including human body fluids, food and agricultural samples, protein pharmaceuticals, and recombinant protein preparations.
Collapse
|
46
|
Bedair MF, Oleschuk RD. Fabrication of Porous Polymer Monoliths in Polymeric Microfluidic Chips as an Electrospray Emitter for Direct Coupling to Mass Spectrometry. Anal Chem 2006; 78:1130-8. [PMID: 16478104 DOI: 10.1021/ac0514570] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coupling of polymeric microfluidic devices to mass spectrometry is reported using porous polymer monoliths (PPM) as nanoelectrospray emitters. Lauryl acrylate-co-ethylene dimethacrylate porous polymer monolith was photopatterned for 5 mm at the end of the channel of microfluidic devices fabricated from three different polymeric substrate materials, including the following: poly(dimethylsiloxane) (PDMS), poly(methyl methacrylate) (PMMA), and cyclic olefin copolymer (COC). Spraying directly from the end of the chip removes any dead volume associated with inserted emitters or transfer lines, and the presence of multiple pathways in the PPM prevents the clogging of the channels, which is a common problem in conventional nanospray emitters. Spraying from a microfluidic channel having a PPM emitter produced a substantial increase in TIC stability and increased sensitivity by as much as 70x compared to spraying from an open end chip with no PPM. The performance of PPM emitter in COC, PMMA, and PDMS chips was compared in terms of stability and reproducibility of the electrospray. COC chips showed the highest reproducibility in terms of chip-to-chip performance, which can be attributed to the ease and reproducibility of the PPM formation due to the favorable optical and chemical properties of COC. We have further tested the performance of the COC chips by constant infusion of poly(propylene glycol) solution at organic content ranging from 10 to 90% methanol and at flow rates ranging from 50 to 1000 nL/min, showing optimum spraying conditions (RSD < 5%) at 50-70% organic content and at flow rates from 100 to 500 nL/min. The PPM sprayer was also used for protein preconcentration and desalting prior to mass spectrometric detection, and results were comparable with a chip spraying from an electrospray tip.
Collapse
Affiliation(s)
- Mohamed F Bedair
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
47
|
Klampfl CW. Recent advances in the application of capillary electrophoresis with mass spectrometric detection. Electrophoresis 2006; 27:3-34. [PMID: 16315165 DOI: 10.1002/elps.200500523] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review gives an overview of applications of CE coupled to MS detection published in the literature of the last three years. The works discussed in this paper comprise a wide range of different fields of application. These include important sections such as the analysis of biomolecules, the analysis of pharmaceuticals and their metabolites in different matrices, environmental analysis, and also investigations on the composition of technical products.
Collapse
Affiliation(s)
- Christian W Klampfl
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
48
|
Bergström SK, Dahlin AP, Ramström M, Andersson M, Markides KE, Bergquist J. A simplified multidimensional approach for analysis of complex biological samples: on-line LC-CE-MS. Analyst 2006; 131:791-8. [PMID: 16802024 DOI: 10.1039/b601660j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Information on protein expression, disease biomarkers or surrogate markers and genetic disorders can nowadays be achieved from analysis of complex biological samples by liquid separation coupled to mass spectrometric (MS) detection. This paper describes fast multidimensional separation by on-line liquid chromatography (LC) and capillary electrophoresis (CE), followed by electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) MS detection. This detector provides ultrahigh resolution of the detected ions, mass accuracy at the ppm-level and high sensitivity. Most of the challenge of this system lies in the development of a new interface for the on-line coupling of LC to CE. The interface developed in poly(dimethylsiloxane) provides a RSD for injection repeatability of <3.5% and surface control for unspecific binding by deactivation with a cationic polymer, PolyE-323. We have evaluated the interface, as well as the overall system, with respect to robustness and deconvolution ability. Sequence coverage for bovine serum albumin (BSA) of 93% showed a high recovery of sample in the different transfer steps through the system. The detection limit for identification is 277 ng mL(-1) (or 280 nM) on average for peptides. In the future, we expect LC-CE-MS to be a novel strategy for elucidating the chemistry of biological matrices.
Collapse
Affiliation(s)
- Sara K Bergström
- Analytical Chemistry, Department of Physical and Analytical Chemistry, Biomedical Centre, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Iannacone JM, Jakubowski JA, Bohn PW, Sweedler JV. A multilayer poly(dimethylsiloxane) electrospray ionization emitter for sample injection and online mass spectrometric detection. Electrophoresis 2005; 26:4684-90. [PMID: 16278909 DOI: 10.1002/elps.200500498] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An ESI emitter made of poly(dimethylsiloxane) interfaces on-chip sample preparation with MS detection. The unique multilayer design allows both the analyte and the spray solutions to reside on the device simultaneously in discrete microfluidic environments that are spatially separated by a polycarbonate track-etched, nanocapillary array membrane (NCAM). In direct spray mode, voltage is applied to the microchannel containing a spray solution delivered via a syringe pump. For injection, the spray potential is lowered and a voltage is applied that forward biases the membrane and permits the analyte to enter the spray channel. Once the injection is complete, the bias potential is switched off, and the spray voltage is increased to generate the ESI of the injected analyte plug. Consecutive injections of a 10 microM bovine insulin solution are reproducible and produce sample plugs with limited band broadening and high quality mass spectra. Peptide signals are observed following transport through the NCAM, even when the peptide is dissolved in solutions containing up to 20% seawater. The multilayer emitter shows great potential for performing multidimensional chemical manipulations on-chip, followed by direct ESI with negligible dead volume for online MS analysis.
Collapse
Affiliation(s)
- Jamie M Iannacone
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
50
|
Thorslund S, Lindberg P, Andrén PE, Nikolajeff F, Bergquist J. Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip. Electrophoresis 2005; 26:4674-83. [PMID: 16273585 DOI: 10.1002/elps.200500338] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel microsystem device in poly(dimethylsiloxane) (PDMS) for MS detection is presented. The microchip integrates sample injection, capillary electrophoretic separation, and electrospray emitter in a single substrate, and all modules are fabricated in the PDMS bulk material. The injection and separation flow is driven electrokinetically and the total amount of external equipment needed consists of a three-channel high-voltage power supply. The instant switching between sample injection and separation is performed through a series of low-cost relays, limiting the separation field strength to a maximum of 270 V/cm. We show that this set-up is sufficient to accomplish electrospray MS analysis and, to a moderate extent, microchip separation of standard peptides. A new method of instant in-channel oxidation makes it possible to overcome the problem of irreversibly bonded PDMS channels that have recovered their hydrophobic properties over time. The fast method turns the channel surfaces hydrophilic and less prone to nonspecific analyte adsorption, yielding better separation efficiencies and higher apparent peptide mobilities.
Collapse
Affiliation(s)
- Sara Thorslund
- Department of Engineering Sciences, Angström Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|